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Variational inference: why? i

• One of the core problems of modern statistics is to approximate
difficult-to-compute probability densities: this is relevant especially in
Bayesian statistics, which frames all inference about unknown quantities as
a calculation about the posterior.

• Variational inference (VI) is widely used to approximate posterior densities
for Bayesian models, an alternative strategy to MCMC sampling.

• Compared to MCMC, variational inference tends to be faster and easier to
scale to large data—it has been applied to problems such as large-scale
document analysis, computational neuroscience, and computer vision.

• But variational inference has been studied less rigorously than MCMC, and
its statistical properties are less well understood.

• However, there are problems for which we cannot easily use the MCMC
approach, such as when datasets are large or models are very complex.
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Variational inference: why? ii

• Rather than use sampling, the main idea behind variational inference is to
use optimization. First, we posit a family of approximate densities Q. This
is a set of densities over the latent variables. Then, we try to find the
member of that family that minimizes the Kullback-Leibler (KL) divergence
to the exact posterior:

q∗(θ) = argmin
q(θ)∈Q

KL(q(θ)||π(θ|y)). (1)

• Finally, we approximate the posterior with the optimized member of the
family q∗(·).

• One of the key ideas behind variational inference is to choose Q to be
flexible enough to capture a density close to π(θ|y), but simple enough for
efficient optimization.
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Comparing VI and MCMC i

• MCMC algorithms sample a Markov chain; variational algorithms solve an
optimization problem. MCMC algorithms approximate the posterior with
samples from the chain; variational algorithms approximate the posterior
with the result of the optimization.

• MCMC methods tend to be more computationally intensive than variational
inference but they also provide guarantees of producing (asymptotically)
exact samples from the target density.

• Variational inference does not enjoy such guarantees—it can only find a
density close to the target—but tends to be faster than MCMC.

• VI is suited to large datasets and scenarios where we want to quickly explore
many models; MCMC is suited to smaller datasets and scenarios where we
happily pay a heavier computational cost for more precise samples.

• Another factor is the geometry of the posterior distribution: see the
posterior distribution in mixture models.
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Comparing VI and MCMC ii
• Exploring the interplay between model complexity and inference (and

between variational inference and MCMC) is an exciting avenue for future
research.

• The relative accuracy of variational inference and MCMC is still unknown.

• Moreover, as we’ll see, there is a strong connection between VI and the
expectation and maximization (EM) algorithm.

• Modern research on variational inference focuses on several aspects:
• tackling Bayesian inference problems that involve massive data;
• using improved optimization methods for solving Equation (1) (which

is usually subject to local minima);
• developing generic variational inference algorithms that are easy to

apply to a wide class of models;
• and increasing the accuracy of variational inference, for example, by

stretching the boundaries of Q while managing complexity in
optimization.

6



VI: the setup



Start with VI

• The goal of VI is to approximate a conditional density of latent variables
given observed variables.

• We use a family of densities over the latent variables, parameterized by free
“variational parameters.” The optimization finds the member of this family,
that is, the setting of the parameters, which is closest in KL divergence to
the conditional of interest.

• The fitted variational density then serves as a proxy for the exact
conditional density.

• The inference problem is to compute the conditional density of the latent
variables given the observations, π(θ|y). As widely known, the denominator
contains the marginal density of the observations, also called the evidence:

p(y) =
∫

p(θ, y)dθ. (2)

• For many models, this evidence integral is unavailable in closed form or
requires exponential time to compute.
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The ELBO i

• Each q(θ) ∈ Q is a candidate approximation to the exact conditional.
Once found, q∗(·) is the best approximation of the conditional, within the
family Q.

• However, this objective is not computable because it requires computing
the logarithm of the evidence, log p(y) in Equation (2).

• To see why, recall that KL divergence is;

KL(q(θ)||π(θ|y)) =
∫

log
(

q(θ)
π(θ|y)

)
q(θ)dθ

= E[log q(θ)]− E[log π(θ|y)]

= E[log q(θ)]− E[log p(θ, y)] + log p(y),

(3)

where the expectations are taken with respect to q(θ). This reveals its
dependence on log p(y).
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The ELBO ii

• Because we cannot compute the KL, we optimize an alternative objective
that is equivalent to the KL up to an added constant,

ELBO(q) = E[log p(θ, y)]− E[log q(θ)]. (4)

• This function is called the evidence lower bound (ELBO) (see below). The
ELBO is the negative KL divergence of Equation (3) plus log p(y), which is
a constant with respect to q(θ). Maximizing the ELBO is equivalent to
minimizing the KL divergence.

• We could rewrite the ELBO as:

ELBO(q) = E[log p(θ)] + E[log p(y |θ)]− E[log q(θ)]

= E[log p(y |θ)]− KL(q(θ)||p(θ)),
(5)

where the first term is an expected likelihood, and the second term is the
negative divergence between the variational density and the prior. Thus, the
variational objective mirrors the usual balance between likelihood and prior.
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The ELBO iii

• Another property of the ELBO is that it lower-bounds the (log) evidence,
log p(y) ≥ ELBO(q) for any q(θ). This explains the name. To see this
notice that Equation (3) and (4) give the following expression of the
evidence:

log p(y) = KL(q(θ)||π(θ|y)) + ELBO(q). (6)

The bound then follows from the fact that KL(·) ≥ 0.

• We notice that the first term of the ELBO in Equation (4) is the expected
complete log-likelihood, which is optimized by the EM algorithm.

• Unlike variational inference, EM assumes the expectation under π(θ|y) is
computable and uses it in otherwise difficult parameter estimation problems.

• Unlike EM, variational inference does not estimate fixed model
parameters—it is often used in a Bayesian setting where classical
parameters are treated as latent variables.
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The Mean-Field Variational family i

• The complexity of the family determines the complexity of the optimization;
it is more difficult to optimize over a complex family than a simple family.

• We focus on the mean-field variational family, where the latent variables
are mutually independent and each governed by a distinct factor in the
variational density. A generic member of the mean-field variational family is:

q(θ) =
m∏

j=1

qj(θj). (7)

Each latent variable θj is governed by its own variational factor, the density
qj(θj). In optimization, these variational factors are chosen to maximize the
ELBO of Equation (4).

• Notice we have not specified the parametric form of the individual
variational factors. In principle, each can take on any parametric form
appropriate to the corresponding random variable.
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The Mean-Field Variational family ii

• The mean-field family is expressive because it can capture any marginal
density of the latent variables. However, it cannot capture correlation
between them. Seeing this in action reveals some of the intuitions and
limitations of mean-field variational inference,as shown by two-dimensional
Gaussian distributions in Figure 1.
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The Mean-Field Variational family iii

• While the variational approximation has the same mean as the original
density, its covariance structure is, by construction, decoupled. Further, the
marginal variances of the approximation under-represent those of the target
density.

• The KL divergence in (3) penalizes placing mass in q(·) on areas where π(·)
has little mass, but penalizes less the reverse.

• One way to expand the family is to add dependencies between the variables:
this is called structured variational inference.
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Coordinate Ascent Mean-Field
VI (CAVI) algorithm



CAVI algorithm i

• Using the ELBO and the mean-field family, we have cast approximate
conditional inference as an optimization problem.

• The CAVI algorithm iteratively optimizes each factor of the mean-field
variational density, while holding the others fixed. It climbs the ELBO to a
local optimum.

• We first state a result. Consider the j-th latent variable θj . The complete
conditional of θj is its conditional density given all of the other latent
variables in the model and the observations, p(θj |θ−j , y).

• The optimal qj(θj) is then proportional to the exponentiated expected log
of the complete conditional,

q∗(θj) ∝ exp{E−j [log p(θj |θ−j , y)]}. (8)

The expectation in (8) is with respect to the variational density over θ−j ,
that is

∏
6̀=j q`(θ`).
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CAVI algorithm ii

• Equivalently, Equation (8) is proportional to the exponentiated log of the
joint,

q∗(θj) ∝ exp{E−j [log p(θj , θ−j , y)]}. (9)

• Because of the mean-field property—all the latent variables are
independent—the expectations on the right-hand side of (8) and (9) do
not involve the j-th variational factor.

• We maintain a set of variational factors q`(θ`). We iterate through them,
updating q`(θ`) using Equation (9). CAVI goes uphill on the ELBO of
Equation (4), eventually finding a local optimum. Details are provided by
Algorithm 1.
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CAVI algorithm iii

Algorithm 1: Coordinate ascent variational inference (CAVI)

Input: A model p(y , θ), a data set y
Output: A variational density q(θ) =

∏m
j=1 qj (θj )

Initialize: Variational factors qj (θj )
while the ELBO has not converged do

for j ∈ {1, . . . ,m} do
Set qj (θj ) ∝ exp{E−j [log p(θj |θ−j , y)]}
end
Compute ELBO(q) = E[log p(θ, y)]− E[log q(θ)]

end
return q(θ)

• Finally, CAVI is closely related to Gibbs sampling, the classical workhorse of
approximate inference. The GS maintains a realization of the latent
variables and iteratively samples from each variable’s complete conditional.
Equation (8) uses the same complete conditional. It takes the expected log,
and uses this quantity to iteratively set each variable’s variational factor.
Equation (8) is called the coordinate update.
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CAVI algorithm iv

• Derivation: We now derive the coordinate update in Equation (9). Rewrite
the ELBO of (4) as a function of the j-th variational factor qj(θj),
absorbing into a constant the terms that do not depend on it:

ELBO(qj) = Ej [E−j [log p(θj , θ−j , y)]]− Ej [log qj(θj)] + const. (10)

We have rewritten the first term of the ELBO using iterated expectation.
The second term we have decomposed, using the independence of the
variables (i.e., the mean-field assumption) and retaining only the term that
depends on qj(θj).

• Up to an added constant, the objective function in Equation (10) is equal
to the negative KL divergence between qj(θj) and q∗j (θj) from Equation (9).
Thus, we maximize the ELBO with respect to qj when we set
qj(θj) = q∗j (θj).
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CAVI algorithm v

• Initialization: The ELBO is (generally) a nonconvex objective function.
CAVI only guarantees convergence to a local optimum, which can be
sensitive to initialization.

• Assessing convergence: Monitoring the ELBO in CAVI is simple; we
typically declare convergence once the change in ELBO falls below some
small threshold. However, computing the ELBO of the full dataset may be
undesirable.
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Bayesian mixture of Gaussians i

• Consider a Bayesian mixture of unit-variance univariate Gaussians. There
are K mixture components, corresponding to K Gaussian distributions with
means µ = {µ1, . . . , µK}, assigned a common prior distribution N (0, σ2),
whereas the prior variance σ2 is a hyperparameter. ci denotes the cluster
assignment, it indicates which latent cluster yi comes from and is drawn
from a categorical distribution over {1, . . . ,K}. We then draw data yi from
the corresponding Gaussian N (cT

i µ, 1).

• The full model is:

yi |ci ,µ ∼ N (cT
i µ, 1), i = 1, . . . , n

ci ∼ categorical(1/K , . . . , 1/K), k = 1, . . . ,K

µk ∼ N (0, σ2), k = 1, . . . ,K .

(11)
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Bayesian mixture of Gaussians ii

• For a sample of size n, the joint density of latent and observed variables is:

p(µ, c, y) = p(µ)
n∏

i=1

p(ci )p(yi |ci ,µ). (12)

• Here the evidence is:

p(y) =
∫

p(µ)
n∏

i=1

∑
ci

p(ci )p(yi |ci ,µ)dµ. (13)

The integral in (13) does not reduce to a product of one-dimensional
integrals over the µk ’s. Computing the evidence remains exponential in K ,
hence intractable.
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Mean-field family for Gaussian mixtures i

• Now, suppose to assume the mean-field variational family, that contains
approximate posterior densities of the form:

q(µ, c) =
K∏

k=1

q(µk ; mk , s2k )
n∏

i=1

q(ci ;ϕi ). (14)

• The factor q(µk ; mk , s2k ) is a Gaussian distribution on the k-th mixture
component’s mean parameter; its mean is mk and its variance is σ2

k . The
factor q(ci ;ϕi ) is a distribution on the i-th observation’s mixture
assignment; its assignment probabilities are a K -vector ϕi .

• With the variational family in place, we have completely specified the
variational inference problem for the mixture of Gaussians. The ELBO is
defined by the joint model density in Equation (12) and the mean-field
variational family in Equation (14).
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Mean-field family for Gaussian mixtures ii
• Two types of variational parameters: categorical parameters ϕi for

approximating the posterior cluster assignment of the i-th data point and
Gaussian parameters mk and s2k for approximating the posterior of the k-th
mixture component.

• We combine the joint and the mean-field family to form the ELBO for the
mixture of Gaussians.

ELBO(m, s2,ϕ) =
K∑

k=1

E[log p(µk); mk , s2k )]+

n∑
i=1

(E[log p(ci );ϕi ] + E[log p(yi |ci ,µ);ϕi ,m, s2])−

n∑
i=1

E[log q(ci ;ϕi )]−
K∑

k=1

E[log q(µk ; mk , s2k )].

(15)
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CAVI for mixtures i

• In each term, we have made explicit the dependence on the variational
parameters. Each expectation can be computed in closed form.

• The CAVI algorithm updates each variational parameter in turn. We first
derive the update for the variational cluster assignment factor; we then
derive the update for the variational mixture component factor.

• Using Equation (9):

q∗(ci ;ϕi ) ∝ exp{log p(ci ) + E[log p(yi |ci ,µ); m, s2]}. (16)

The expectation in the second term is over the mixture components µ.
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CAVI for mixtures ii

• For the second term in Equation (16), we can write:
p(yi |ci ,µ) =

∏K
k=1 p(yi |µk)cik , and then we can compute the expected log

probability as (after some steps, see the paper Blei et al. (2017) for
technical details, and/or try on your own!):

E[log p(yi |ci ,µ)] =
∑

k

cik(E[µk ; mk , s2k [yi − E[µ2
k ; mk , s2k ]/2) + const.

(17)

In each line we remove terms that are constant with respect to ci .

• Thus, the variational update for the i-th cluster assignment is

ϕik ∝ exp{E[µk ; mk , s2k ]yi − E[µ2
k ; mk , s2k ]/2}. (18)
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CAVI for mixtures iii

• Now we turn to the variational density q(µk ; mk , s2k ) of the k-th mixture
component. Again we use Equation (9) and write down the joint density up
to a normalizing constant:

q(µk) ∝ exp

{
log p(µk) +

n∑
i=1

E[log p(yi |ci ,µ];ϕi ,m−k , s2−k ]

}
. (19)

• Recall ϕik is the probability that the i-th observation come from the k-th
cluster. Because ci is an indicator vector, ϕik = E[cik ;ϕi ]. We compute
now the unnormalized logarithm for the coordinate-optimal in Equation
(14). As Blei et al. (2017) report (see them for computational details):

log q(µk) =

(∑
i

ϕikyi

)
µk −

(
1/2σ2 +

∑
i

ϕik/2

)
µ2

k + const. (20)
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CAVI for mixtures iv

• This calculation in (20) reveals that the coordinate-optimal variational
density of µk is an exponential family with sufficient statistics {µk , µ

2
k} and

natural parameters {
∑

i ϕikyi ,−1/2σ2 −
∑

i ϕik/2}, that is, a Gaussian.

• Expressed in terms of the variational mean and variance, the updates for
q(µk) are

mk =
∑

i ϕikyi

1/σ2 +
∑

i ϕik
, s2k = 1

1/σ2 +
∑

i ϕik
. (21)

These updates relate closely to the complete conditional density of the k-th
component in the mixture model. The complete conditional is a posterior
Gaussian given the data assigned to the k-th component. The variational
update is a weighted complete conditional, where each data point is
weighted by its variational probability of being assigned to component k.
For all the details, see Algorithm 2.
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CAVI for mixtures v

Algorithm 2: CAVI for a Gaussian mixture model

Input: Data set y , number of components K , prior variance of component means σ2
Output: Variational densities q(µk ; mk , s2k ) (Gaussian) and q(ci ;ϕi ) (K -categorical)
Initialize: Variational parameters m = m1:K , s2 = s21:K , and ϕ = ϕ1:n.
while the ELBO has not converged do

for i ∈ {1, . . . , n} do
Set ϕik ∝ exp{E[µk ; mk , s2k ]yi − E[µ2k ; mk , s2k ]/2}
end
for k ∈ {1, . . . ,K} do

Set mk ←
∑

i
ϕik yi

1/σ2+
∑

i
ϕik

Set s2k ←
1

1/σ2+
∑

i
ϕik

end
Compute ELBO(m, s2,ϕ)

end
return q(m, s2,ϕ)
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CAVI for mixtures vi

• The algorithm 2 requires computing the ELBO in (15). We use the ELBO
to track the progress of the algorithm and assess when it has converged.

• Once we have a fitted variational density, we can use it as we would use the
posterior. For instance, we can assign points to their most likely mixture
assignment ĉi and estimate cluster means with their variational means mk .
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VI with exponential families



VI with exponential families

• The mixture of Gaussians is one member of the important class of models
where each complete conditional is in the exponential family.

• This includes a number of widely used models, such as Bayesian mixtures
of exponential families, factorial mixture models, matrix factorization
models, certain hierarchical regression models (e.g., linear regression, probit
regression, Poisson regression), stochastic blockmodels of networks,
hierarchical mixtures of experts, and a variety of mixed-membership models.

• Working in this family simplifies variational inference: it is easier to derive
the corresponding CAVI algorithm, and it enables variational inference to
scale up to massive data.
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Complete conditionals in the exponential family

• Consider the generic model p(y , θ) and suppose each complete conditional
is in the exponential family:

π(θj |θ−j , y) = h(θj) exp{ηj(θ−j , y)T θj − a(ηj(θ−j , y))}, (22)

where θj is its own sufficient statistic, h(·) is a base measure, and a(·) is
the log normalizer.

• Consider mean-field variational inference for this class of models, where we
fit q(θ) =

∏
j qj(θj). The coordinate update is:

q(θj) ∝ h(θj) exp{E[ηj(θ−j , y)]T θj}. (23)

Each one is in the same exponential family as its corresponding complete
conditional.

• Let νj denote the variational parameter for the j-th variational factor.
When we update each factor, we set its parameter equal to the expected
parameter of the complete conditional, νj = E[ηj(θ−j , y)].
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Conjugate models i

• One important special case of exponential family models are conditionally
conjugate models with local and global variables. Models like this come up
frequently in Bayesian statistics and statistical machine learning, where the
global variables are the “parameters” and the local variables are
per-data-point latent variables.

• Let β be a vector of global latent variables, which potentially govern any of
the data. Let z be a vector of local latent variables, whose i-th component
only governs data in the i-th “context.” The joint density is

p(β, z, y) = π(β)
n∏

i=1

p(zi , yi |β). (24)

The mixture of Gaussian in (11) is an example. The global variables are the
mixture components; the i-th local variable is the cluster assignment for
data point yi .
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Conjugate models ii

• We will assume that the modeling terms of Equation (24) are chosen to
ensure each complete conditional is in the exponential family:

p(zi , yi |β) = h(zi , yi ) exp{βT t(zi , yi )− a(β)}, (25)

where t(·, ·) is the sufficient statistic.

• Next, we take the prior on the global variables to be the corresponding
conjugate prior

π(β) = h(β) exp{αT [β,−a(β)]− a(α)}. (26)

This prior has natural (hyper)parameter α = [α1, α2]T and sufficient
statistics that concatenate the global variable and its log normalizer in the
density of the local variables.
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Conjugate models iii
• With the conjugate prior, the complete conditional of the global variables is

in the same family. Its natural parameter is

α̂ =

[
α1 +

n∑
i=1

t(zi , yi ), α2 + n

]T

.

• Given β and yi , the local variable zi is conditionally independent of the
other local variables z−i and other data y−i . This follows from the form of
the joint density in Equation (24). Thus

p(zi |yi ,β, z−i , y−i ) = p(zi |yi ,β), (27)

and we further assume that this density is in an exponential family.

• We now describe CAVI for this general class of models.

• Write q(β|λ) for the variational posterior approximation on β; we call λ
the “global variational parameter.” It indexes the same exponential family
density as the prior.
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Conjugate models iv

• Similarly, let the variational posterior q(zi |ϕi ) on each local variable zi be
governed by a “local variational parameter” ϕi . It indexes the same
exponential family density as the local complete conditional. CAVI iterates
between updating each local variational parameter and updating the global
variational parameter.

• The local variational update is

ϕi = E[η(β, yi )]

This is an application of νj = E[ηj(θ−j , y)], where we take the expectation
of the natural parameter of the complete conditional in Equation (27).

• The global variational update applies the same technique. It is

λ =

[
α1 +

n∑
i=1

Eϕi [t(zi , yi )], α2 + n

]T

.
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Conjugate models v

• CAVI optimizes the ELBO by iterating between local updates of each local
parameter and global updates of the global parameters.

• The ELBO is

ELBO =

(
α1 +

n∑
i=1

Eϕi [t(zi , yi )]

)T

Eλ[β]

− (α2 + n)Eλ[a(β)]− E[log q(β, z)].

(28)

This is the ELBO in applied to the joint in Equation (24) and the
corresponding mean-field variational density; we have omitted terms that
do not depend on the variational parameters.

• CAVI for the mixture of Gaussians model (Algorithm 2) is an instance of
this method.

• See Blei et al. (2017) for full computational details.
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Stochastic variational inference i

• Modern applications of probability models often require analyzing massive
data. However, most posterior inference algorithms do not easily scale.
CAVI is no exception, particularly in the conditionally conjugate setting of
the previous section.

• The reason is that the coordinate ascent structure of the algorithm requires
iterating through the entire dataset at each iteration. As the dataset size
grows, each iteration becomes more computationally expensive.

• An alternative to coordinate ascent is gradient-based optimization, which
climbs the ELBO by computing and following its gradient at each iteration.
This perspective is the key to scaling up variational inference using
stochastic variational inference (SVI), a method that combines natural
gradients and stochastic optimization.
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Stochastic variational inference ii

• SVI focuses on optimizing the global variational parameters λ of a
conditionally conjugate model. The flow of computation is simple. The
algorithm maintains a current estimate of the global variational parameters.
It repeatedly (a) subsamples a data point from the full dataset; (b) uses
the current global parameters to compute the optimal local parameters for
the subsampled data point; and (c) adjusts the current global parameters in
an appropriate way. SVI is detailed in Algorithm 3.

• In gradient-based optimization, the natural gradient accounts for the
geometric structure of probability parameters.
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Stochastic variational inference iii

Algorithm 3: SVI for conditionally conjugate models

Input: A model p(y , θ), a data set y , step size sequence εt
Output: Global variational density qλ(β) Initialize: Variational parameters λ0
while TRUE do

Choose a data point uniformly at random,
t ∼ Unif(1, . . . , n)
Optimize its local variational parameters
ϕ∗t = E[η(β, yt)]
Compute the coordinate update as though yt were repeated n times,
λ̂ = α+ nE[ϕ∗t f (θt , yt)]
Update the global variational parameter,
λt = (1− εt)λt−1 + εt λ̂t
end

return λ

• Conditionally conjugate models enjoy simple natural gradients of the ELBO
of the form:
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Stochastic variational inference iv

g(λ) = Eϕ[α̂]− λ, (29)

that is the difference between the coordinate updates Eϕ[α̂] and the
variational parameters λ at which we are evaluating the gradient.

• We can use this natural gradient in a gradient-based optimization
algorithm. At each iteration, we update the global parameters

λt = λt−1 + εtg(λt), (30)

where εt is the step size.

• Substituting Equation (29) into the second term reveals a special structure,

λt = (1− εt)λt−1 + εtEϕ[α̂] (31)
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Stochastic variational inference v

• Notice this does not require additional types of calculations other than
those for coordinate ascent updates. At each iteration, we first compute
the coordinate update. We then adjust the current estimate to be a
weighted combination of the update and the current variational parameter.
With massive data, this is prohibitively expensive.

• SVI solves this problem by using the natural gradient in a stochastic
optimization algorithm.

• We could perhaps construct a noisy unbiased natural gradient by sampling
an index t from the data. The noisy gradient only requires calculations
from the coordinate ascent algorithm.

• We emphasize that SVI requires no new derivation beyond what is needed
for CAVI. Any implementation of CAVI can be immediately scaled up to a
stochastic algorithm.
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Softwares and implementation



Available softwares

• There are many packages/softwares around to deal with VI methods.

• In this course, the R code accompanying the lecture (see the official Moodle page)
shows how to use the CmdStan ecosystem.

• It relies on Stan and works as a wrapper: you compile in C++ a Stan model and
then you can fit it by using MCMC techniques, VI methods (such as the
“Pathfinder” algorithm or the ADVI procedure), Laplace approximation, penalized
likelihood estimation.

• Then, you can use many of the packages of the Stan ecosystem to display
posterior estimates (posterior, bayesplot), to compare models (loo), and so
on.

• SVI can be used in Pyro, another probabilistic programming language.

• PyMC allows to use VI in Python.

• LINFA is another Python package for VI methods.

• VIBES is a software package which allows variational inference to be performed
automatically on a Bayesian network.

• And many others!

41



Two words about Pathfinder

• Variational method for approximately sampling from differentiable
probability densities.

• Starting from a random initialization, Pathfinder locates normal
approximations to the target density along a quasi-Newton optimization
path (with L-BFGS procedure), with local covariance estimated using the
inverse Hessian estimates produced by the optimizer.

• Pathfinder returns draws from the approximation with the lowest estimated
Kullback-Leibler (KL) divergence to the target distribution.

• See Zhang et al. (2022) for further details. Check the R code
accompanying the lecture in the Moodle page.
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Pathfinder with CmdStan

# compile a model
file <- file.path(cmdstan_path(), "examples", "bernoulli", "bernoulli.stan")
mod <- cmdstan_model(file)
data_list <- list(N = 10, y = c(0,1,0,0,0,0,0,0,0,1))

# Variational 'pathfinder'
fit_pf <- mod$pathfinder(

data = data_list,
seed = 123,
draws = 4000)

# plot fit
mcmc_hist(fit_pf$draws("theta"), binwidth = 0.025) +

ggplot2::labs(subtitle = "Approximate posterior from pathfinder") +
ggplot2::xlim(0, 1)
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Bayesian mixture: Pathfinder VS MCMC, means
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Bayesian mixture: Pathfinder VS MCMC, proportions
theta[1] theta[2]
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Bayesian mixture: Pathfinder VS MCMC

fit_pf$print()
variable mean median sd mad q5 q95

lp_approx__ 2.74 3.06 1.24 1.04 0.22 4.11
lp__ -62.41 -62.09 1.22 1.03 -64.86 -61.06
theta[1] 0.50 0.50 0.07 0.07 0.39 0.61
theta[2] 0.50 0.50 0.07 0.07 0.39 0.61
mu[1] -1.08 -1.08 0.08 0.08 -1.21 -0.94
mu[2] 0.98 0.98 0.08 0.08 0.84 1.12

fit_mcmc$print()
variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
lp__ -57.32 -57.01 1.19 0.99 -59.82 -56.01 1.00 1552 2270
theta[1] 0.50 0.50 0.07 0.07 0.38 0.61 1.00 2767 2315
theta[2] 0.50 0.50 0.07 0.07 0.39 0.62 1.00 2767 2315
mu[1] -1.07 -1.07 0.08 0.08 -1.21 -0.94 1.00 2300 2302
mu[2] 0.98 0.98 0.08 0.08 0.85 1.11 1.00 4326 3251

46



Further reading

To properly grasp VI methods, I suggest you the further reading:

• Variational inference: A review for statisticians. by Blei, D. M.,
Kucukelbir, A., & McAuliffe, J. D. (2017). Journal of the American
statistical Association, 112(518), 859-877.

More advanced papers and texts:

• Pattern recognition and machine learning by Bishop, C. (2006).
Springer google schola, 2, 5-43.

• Stochastic variational inference by Hoffman, M. D., Blei, D. M.,
Wang, C., & Paisley, J. (2013). The Journal of Machine Learning
Research.

• Pathfinder: Parallel quasi-Newton variational inference. by Zhang, L.,
Carpenter, B., Gelman, A., & Vehtari, A. (2022). The Journal of
Machine Learning Research.
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