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Abstract

One of the core problems of modern statistics is to approximate difficult-to-compute
probability densities. This problem is especially important in Bayesian statistics, which
frames all inference about unknown quantities as a calculation involving the posterior
density. In this paper, we review variational inference (VI), a method from machine
learning that approximates probability densities through optimization. VI has been used
in many applications and tends to be faster than classical methods, such as Markov chain
Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then
to find the member of that family which is close to the target. Closeness is measured
by Kullback-Leibler divergence. We review the ideas behind mean-field variational
inference, discuss the special case of VI applied to exponential family models, present
a full example with a Bayesian mixture of Gaussians, and derive a variant that uses
stochastic optimization to scale up to massive data. We discuss modern research in VI and
highlight important open problems. VI is powerful, but it is not yet well understood. Our
hope in writing this paper is to catalyze statistical research on this class of algorithms.

Keywords: Algorithms; Statistical Computing; Computationally Intensive Methods.
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1 Introduction

One of the core problems of modern statistics is to approximate difficult-to-compute proba-
bility densities. This problem is especially important in Bayesian statistics, which frames all
inference about unknown quantities as a calculation about the posterior. Modern Bayesian
statistics relies on models for which the posterior is not easy to compute and corresponding
algorithms for approximating them.

In this paper, we review variational inference (VI), a method from machine learning for
approximating probability densities (Jordan et al., 1999; Wainwright and Jordan, 2008).
Variational inference is widely used to approximate posterior densities for Bayesian models,
an alternative strategy to Markov chain Monte Carlo (MCMC) sampling. Compared to
MCMC, variational inference tends to be faster and easier to scale to large data—it has been
applied to problems such as large-scale document analysis, computational neuroscience,
and computer vision. But variational inference has been studied less rigorously than MCMC,
and its statistical properties are less well understood. In writing this paper, our hope is to
catalyze statistical research on variational inference.

First, we set up the general problem. Consider a joint density of latent variables z= z1:m
and observations x= x1:n,

p(z,x) = p(z)p(x |z).
In Bayesian models, the latent variables help govern the distribution of the data. A Bayesian
model draws the latent variables from a prior density p(z) and then relates them to the
observations through the likelihood p(x |z). Inference in a Bayesian model amounts to
conditioning on data and computing the posterior p(z |x). In complex Bayesian models,
this computation often requires approximate inference.

For decades, the dominant paradigm for approximate inference has been MCMC (Hastings,
1970; Gelfand and Smith, 1990). In MCMC, we first construct an ergodic Markov chain on z
whose stationary distribution is the posterior p(z |x). Then, we sample from the chain to
collect samples from the stationary distribution. Finally, we approximate the posterior with
an empirical estimate constructed from (a subset of) the collected samples.

MCMC sampling has evolved into an indispensable tool to the modern Bayesian statisti-
cian. Landmark developments include the Metropolis-Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970), the Gibbs sampler (Geman and Geman, 1984) and its application to
Bayesian statistics (Gelfand and Smith, 1990). MCMC algorithms are under active investiga-
tion. They have been widely studied, extended, and applied; see Robert and Casella (2004)
for a perspective.

However, there are problems for which we cannot easily use this approach. These arise
particularly when we need an approximate conditional faster than a simple MCMC algorithm
can produce, such as when data sets are large or models are very complex. In these
settings, variational inference provides a good alternative approach to approximate Bayesian
inference.

Rather than use sampling, the main idea behind variational inference is to use optimization.
First, we posit a family of approximate densities Q. This is a set of densities over the latent
variables. Then, we try to find the member of that family that minimizes the Kullback-Leibler
(KL) divergence to the exact posterior,

q∗(z) = argmin
q(z)∈Q

KL (q(z)‖p(z |x)) . (1)

Finally, we approximate the posterior with the optimized member of the family q∗(·).
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Variational inference thus turns the inference problem into an optimization problem, and
the reach of the familyQ manages the complexity of this optimization. One of the key ideas
behind variational inference is to choose Q to be flexible enough to capture a density close
to p(z |x), but simple enough for efficient optimization.1

We emphasize that MCMC and variational inference are different approaches to solving the
same problem. MCMC algorithms sample a Markov chain; variational algorithms solve an
optimization problem. MCMC algorithms approximate the posterior with samples from the
chain; variational algorithms approximate the posterior with the result of the optimiza-
tion.

Comparing variational inference and MCMC. When should a statistician use MCMC and
when should she use variational inference? We will offer some guidance. MCMC methods
tend to be more computationally intensive than variational inference but they also provide
guarantees of producing (asymptotically) exact samples from the target density (Robert
and Casella, 2004). Variational inference does not enjoy such guarantees—it can only
find a density close to the target—but tends to be faster than MCMC. Because it rests on
optimization, variational inference easily takes advantage of methods like stochastic opti-
mization (Robbins and Monro, 1951; Kushner and Yin, 1997) and distributed optimization
(though some MCMC methods can also exploit these innovations (Welling and Teh, 2011;
Ahmed et al., 2012)).

Thus, variational inference is suited to large data sets and scenarios where we want to
quickly explore many models; MCMC is suited to smaller data sets and scenarios where
we happily pay a heavier computational cost for more precise samples. For example, we
might use MCMC in a setting where we spent 20 years collecting a small but expensive data
set, where we are confident that our model is appropriate, and where we require precise
inferences. We might use variational inference when fitting a probabilistic model of text to
one billion text documents and where the inferences will be used to serve search results
to a large population of users. In this scenario, we can use distributed computation and
stochastic optimization to scale and speed up inference, and we can easily explore many
different models of the data.

Data set size is not the only consideration. Another factor is the geometry of the posterior
distribution. For example, the posterior of a mixture model admits multiple modes, each
corresponding label permutations of the components. Gibbs sampling, if the model permits,
is a powerful approach to sampling from such target distributions; it quickly focuses on
one of the modes. For mixture models where Gibbs sampling is not an option, variational
inference may perform better than a more general MCMC technique (e.g., Hamiltonian
Monte Carlo), even for small datasets (Kucukelbir et al., 2015). Exploring the interplay
between model complexity and inference (and between variational inference and MCMC) is
an exciting avenue for future research (see Section 5.4).

The relative accuracy of variational inference and MCMC is still unknown. We do know that
variational inference generally underestimates the variance of the posterior density; this is a
consequence of its objective function. But, depending on the task at hand, underestimating
the variance may be acceptable. Several lines of empirical research have shown that
variational inference does not necessarily suffer in accuracy, e.g., in terms of posterior
predictive densities (Blei and Jordan, 2006; Braun and McAuliffe, 2010; Kucukelbir et al.,
2016); other research focuses on where variational inference falls short, especially around
the posterior variance, and tries to more closely match the inferences made by MCMC

(Giordano et al., 2015). In general, a statistical theory and understanding around variational

1We focus here on KL(q||p)-based optimization, also called Kullback Leibler variational inference (Barber, 2012).
Wainwright and Jordan (2008) emphasize that any procedure which uses optimization to approximate a density
can be termed “variational inference.” This includes methods like expectation propagation (Minka, 2001), belief
propagation (Yedidia et al., 2001), or even the Laplace approximation. We briefly discuss alternative divergence
measures in Section 5.
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inference is an important open area of research (see Section 5.2). We can envision future
results that outline which classes of models are particularly suited to each algorithm and
perhaps even theory that bounds their accuracy. More broadly, variational inference is a
valuable tool, alongside MCMC, in the statistician’s toolbox.

It might appear to the reader that variational inference is only relevant to Bayesian analysis.
Indeed, both variational inference and MCMC have had a significant impact on applied
Bayesian computation and we will be focusing on Bayesian models here. We emphasize,
however, that these techniques also apply more generally to computation about intractable
densities. MCMC is a tool for simulating from densities and variational inference is a
tool for approximating densities. One need not be a Bayesian to have use for variational
inference.

Research on variational inference. The development of variational techniques for Bayesian
inference followed two parallel, yet separate, tracks. Peterson and Anderson (1987) is
arguably the first variational procedure for a particular model: a neural network. This paper,
along with insights from statistical mechanics (Parisi, 1988), led to a flurry of variational
inference procedures for a wide class of models (Saul et al., 1996; Jaakkola and Jordan,
1996, 1997; Ghahramani and Jordan, 1997; Jordan et al., 1999). In parallel, Hinton and
Van Camp (1993) proposed a variational algorithm for a similar neural network model.
Neal and Hinton (1999) (first published in 1993) made important connections to the
expectation maximization (EM) algorithm (Dempster et al., 1977), which then led to a
variety of variational inference algorithms for other types of models (Waterhouse et al.,
1996; MacKay, 1997).

Modern research on variational inference focuses on several aspects: tackling Bayesian infer-
ence problems that involve massive data; using improved optimization methods for solving
Equation (1) (which is usually subject to local minima); developing generic variational
inference, algorithms that are easy to apply to a wide class of models; and increasing the
accuracy of variational inference, e.g., by stretching the boundaries of Q while managing
complexity in optimization.

Organization of this paper. Section 2 describes the basic ideas behind the simplest
approach to variational inference: mean-field inference and coordinate-ascent optimization.
Section 3 works out the details for a Bayesian mixture of Gaussians, an example model
familiar to many readers. Sections 4.1 and 4.2 describe variational inference for the class of
models where the joint density of the latent and observed variables are in the exponential
family—this includes many intractable models from modern Bayesian statistics and reveals
deep connections between variational inference and the Gibbs sampler of Gelfand and
Smith (1990). Section 4.3 expands on this algorithm to describe stochastic variational
inference (Hoffman et al., 2013), which scales variational inference to massive data using
stochastic optimization (Robbins and Monro, 1951). Finally, with these foundations in place,
Section 5 gives a perspective on the field—applications in the research literature, a survey
of theoretical results, and an overview of some open problems.

2 Variational inference

The goal of variational inference is to approximate a conditional density of latent variables
given observed variables. The key idea is to solve this problem with optimization. We use a
family of densities over the latent variables, parameterized by free “variational parameters.”
The optimization finds the member of this family, i.e., the setting of the parameters, that is
closest in KL divergence to the conditional of interest. The fitted variational density then
serves as a proxy for the exact conditional density. (All vectors defined below are column
vectors, unless stated otherwise.)
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2.1 The problem of approximate inference

Let x = x1:n be a set of observed variables and z = z1:m be a set of latent variables, with joint
density p(z,x). We omit constants, such as hyperparameters, from the notation.

The inference problem is to compute the conditional density of the latent variables given the
observations, p(z |x). This conditional can be used to produce point or interval estimates of
the latent variables, form predictive densities of new data, and more.

We can write the conditional density as

p(z |x) = p(z,x)
p(x)

. (2)

The denominator contains the marginal density of the observations, also called the evidence.
We calculate it by marginalizing out the latent variables from the joint density,

p(x) =

∫
p(z,x)dz. (3)

For many models, this evidence integral is unavailable in closed form or requires exponential
time to compute. The evidence is what we need to compute the conditional from the joint;
this is why inference in such models is hard.

Note we assume that all unknown quantities of interest are represented as latent random
variables. This includes parameters that might govern all the data, as found in Bayesian
models, and latent variables that are “local” to individual data points.

Bayesian mixture of Gaussians. Consider a Bayesian mixture of unit-variance univariate
Gaussians. There are K mixture components, corresponding to K Gaussian distributions
with means µ = {µ1, . . . ,µK}. The mean parameters are drawn independently from a
common prior p(µk), which we assume to be a Gaussian N (0,σ2); the prior variance σ2

is a hyperparameter. To generate an observation x i from the model, we first choose a
cluster assignment ci . It indicates which latent cluster x i comes from and is drawn from a
categorical distribution over {1, . . . , K}. (We encode ci as an indicator K-vector, all zeros
except for a one in the position corresponding to x i ’s cluster.) We then draw x i from the
corresponding Gaussian N (c>i µ, 1).

The full hierarchical model is

µk ∼N (0,σ2), k = 1, . . . , K , (4)

ci ∼ Categorical(1/K, . . . , 1/K), i = 1, . . . , n, (5)

x i | ci ,µ∼N
�
c>i µ, 1

�
i = 1, . . . , n. (6)

For a sample of size n, the joint density of latent and observed variables is

p(µ,c,x) = p(µ)
n∏

i=1

p(ci)p(x i | ci ,µ). (7)

The latent variables are z= {µ,c}, the K class means and n class assignments.

Here, the evidence is

p(x) =

∫
p(µ)

n∏
i=1

∑
ci

p(ci)p(x i | ci ,µ)dµ. (8)

The integrand in Equation (8) does not contain a separate factor for each µk. (Indeed, each
µk appears in all n factors of the integrand.) Thus, the integral in Equation (8) does not
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reduce to a product of one-dimensional integrals over the µk ’s. The time complexity of
numerically evaluating the K-dimensional integral is O (Kn).

If we distribute the product over the sum in (8) and rearrange, we can write the evidence
as a sum over all possible configurations c of cluster assignments,

p(x) =
∑

c

p(c)

∫
p(µ)

n∏
i=1

p(x i | ci ,µ)dµ. (9)

Here each individual integral is computable, thanks to the conjugacy between the Gaussian
prior on the components and the Gaussian likelihood. But there are Kn of them, one for
each configuration of the cluster assignments. Computing the evidence remains exponential
in K , hence intractable.

2.2 The evidence lower bound

In variational inference, we specify a family Q of densities over the latent variables. Each
q(z) ∈ Q is a candidate approximation to the exact conditional. Our goal is to find the
best candidate, the one closest in KL divergence to the exact conditional.2 Inference now
amounts to solving the following optimization problem,

q∗(z) = argmin
q(z)∈Q

KL (q(z)‖p(z |x)) . (10)

Once found, q∗(·) is the best approximation of the conditional, within the family Q. The
complexity of the family determines the complexity of this optimization.

However, this objective is not computable because it requires computing the evidence
log p(x) in Equation (3). (That the evidence is hard to compute is why we appeal to
approximate inference in the first place.) To see why, recall that KL divergence is

KL (q(z)‖p(z |x)) = E [log q(z)]−E [log p(z |x)] , (11)

where all expectations are taken with respect to q(z). Expand the conditional,

KL (q(z)‖p(z |x)) = E [log q(z)]−E [log p(z,x)] + log p(x). (12)

This reveals its dependence on log p(x).

Because we cannot compute the KL, we optimize an alternative objective that is equivalent
to the KL up to an added constant,

ELBO(q) = E [log p(z,x)]−E [log q(z)] . (13)

This function is called the evidence lower bound (ELBO). The ELBO is the negative KL diver-
gence of Equation (12) plus log p(x), which is a constant with respect to q(z). Maximizing
the ELBO is equivalent to minimizing the KL divergence.

Examining the ELBO gives intuitions about the optimal variational density. We rewrite the
ELBO as a sum of the expected log likelihood of the data and the KL divergence between the
prior p(z) and q(z),

ELBO(q) = E [log p(z)] +E [log p(x |z)]−E [log q(z)]
= E [log p(x |z)]− KL (q(z)‖p(z)) .

2 The KL divergence is an information-theoretic measure of proximity between two densities. It is asymmetric—
that is, KL (q‖p) 6= KL (p‖q)—and nonnegative. It is minimized when q(·) = p(·).
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Which values of z will this objective encourage q(z) to place its mass on? The first term
is an expected likelihood; it encourages densities that place their mass on configurations
of the latent variables that explain the observed data. The second term is the negative
divergence between the variational density and the prior; it encourages densities close to
the prior. Thus the variational objective mirrors the usual balance between likelihood and
prior.

Another property of the ELBO is that it lower-bounds the (log) evidence, log p(x)≥ ELBO(q)
for any q(z). This explains the name. To see this notice that Equations (12) and (13) give
the following expression of the evidence,

log p(x) = KL (q(z)‖p(z |x)) + ELBO(q). (14)

The bound then follows from the fact that KL (·)≥ 0 (Kullback and Leibler, 1951). In the orig-
inal literature on variational inference, this was derived through Jensen’s inequality (Jordan
et al., 1999).

The relationship between the ELBO and log p(x) has led to using the variational bound as a
model selection criterion. This has been explored for mixture models (Ueda and Ghahra-
mani, 2002; McGrory and Titterington, 2007) and more generally (Beal and Ghahramani,
2003). The premise is that the bound is a good approximation of the marginal likelihood,
which provides a basis for selecting a model. Though this sometimes works in practice,
selecting based on a bound is not justified in theory. Other research has used variational
approximations in the log predictive density to use VI in cross-validation based model
selection (Nott et al., 2012).

Finally, many readers will notice that the first term of the ELBO in Equation (13) is the
expected complete log-likelihood, which is optimized by the EM algorithm (Dempster et al.,
1977). The EM algorithm was designed for finding maximum likelihood estimates in models
with latent variables. It uses the fact that the ELBO is equal to the log likelihood log p(x)
(i.e., the log evidence) when q(z) = p(z |x). EM alternates between computing the expected
complete log likelihood according to p(z |x) (the E step) and optimizing it with respect to the
model parameters (the M step). Unlike variational inference, EM assumes the expectation
under p(z |x) is computable and uses it in otherwise difficult parameter estimation problems.
Unlike EM, variational inference does not estimate fixed model parameters—it is often used
in a Bayesian setting where classical parameters are treated as latent variables. Variational
inference applies to models where we cannot compute the exact conditional of the latent
variables.3

2.3 The mean-field variational family

We described the ELBO, the variational objective function in the optimization of Equation (10).
We now describe a variational family Q, to complete the specification of the optimization
problem. The complexity of the family determines the complexity of the optimization; it is
more difficult to optimize over a complex family than a simple family.

In this review we focus on the mean-field variational family, where the latent variables are
mutually independent and each governed by a distinct factor in the variational density. A
generic member of the mean-field variational family is

q(z) =
m∏

j=1

q j(z j). (15)

3Two notes: (a) Variational EM is the EM algorithm with a variational E-step, i.e., a computation of an
approximate conditional. (b) The coordinate ascent algorithm of Section 2.4 can look like the EM algorithm. The
“E step” computes approximate conditionals of local latent variables; the “M step” computes a conditional of the
global latent variables.
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Each latent variable z j is governed by its own variational factor, the density q j(z j). In opti-
mization, these variational factors are chosen to maximize the ELBO of Equation (13).

We emphasize that the variational family is not a model of the observed data—indeed, the
data x does not appear in Equation (15). Instead, it is the ELBO, and the corresponding
KL minimization problem, that connects the fitted variational density to the data and
model.

Notice we have not specified the parametric form of the individual variational factors. In
principle, each can take on any parametric form appropriate to the corresponding random
variable. For example, a continuous variable might have a Gaussian factor; a categorical
variable will typically have a categorical factor. We will see in Sections 4, 4.1 and 4.2 that
there are many models for which properties of the model determine optimal forms of the
mean-field variational factors q j(z j).

Finally, though we focus on mean-field inference in this review, researchers have also
studied more complex families. One way to expand the family is to add dependencies
between the variables (Saul and Jordan, 1996; Barber and Wiegerinck, 1999); this is called
structured variational inference. Another way to expand the family is to consider mixtures
of variational densities, i.e., additional latent variables within the variational family (Bishop
et al., 1998). Both of these methods potentially improve the fidelity of the approximation,
but there is a trade off. Structured and mixture-based variational families come with a more
difficult-to-solve variational optimization problem.

Bayesian mixture of Gaussians (continued). Consider again the Bayesian mixture of
Gaussians. The mean-field variational family contains approximate posterior densities of
the form

q(µ,c) =
K∏

k=1

q(µk; mk, s2
k)

n∏
i=1

q(ci;ϕi). (16)

Following the mean-field recipe, each latent variable is governed by its own variational
factor. The factor q(µk; mk, s2

k) is a Gaussian distribution on the kth mixture component’s
mean parameter; its mean is mk and its variance is s2

k . The factor q(ci;ϕi) is a distribution
on the ith observation’s mixture assignment; its assignment probabilities are a K-vector
ϕi .

Here we have asserted parametric forms for these factors: the mixture components are
Gaussian with variational parameters (mean and variance) specific to the kth cluster; the
cluster assignments are categorical with variational parameters (cluster probabilities) specific
to the ith data point. In fact, these are the optimal forms of the mean-field variational
density for the mixture of Gaussians.

With the variational family in place, we have completely specified the variational inference
problem for the mixture of Gaussians. The ELBO is defined by the model definition in
Equation (7) and the mean-field family in Equation (16). The corresponding variational
optimization problem maximizes the ELBO with respect to the variational parameters, i.e.,
the Gaussian parameters for each mixture component and the categorical parameters for
each cluster assignment. We will see this example through in Section 3.

Visualizing the mean-field approximation. The mean-field family is expressive because
it can capture any marginal density of the latent variables. However, it cannot capture
correlation between them. Seeing this in action reveals some of the intuitions and limitations
of mean-field variational inference.

Consider a two dimensional Gaussian distribution, shown in violet in Figure 1. This density
is highly correlated, which defines its elongated shape.
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Figure 1: Visualizing the mean-field approximation to a two-dimensional Gaussian posterior.
The ellipses (2�) show the effect of mean-field factorization.

2.4 Coordinate ascent mean-field variational inference

Using the ELBO and the mean-field family, we have cast approximate conditional inference
as an optimization problem. In this section, we describe one of the most commonly used
algorithms for solving this optimization problem, coordinate ascent variational inference
(CAVI) (Bishop, 2006). CAVI iteratively optimizes each factor of the mean-field variational
distribution, while holding the others fixed. It climbs the ELBO to a local optimum.

The algorithm. We first state a result. Consider the jth latent variable zj . The complete
conditional of zj is its conditional distribution given all of the other latent variables in the
model and the observations, p(zj |z� j ,x). Fix the other variational factors q`(z`), ` 6= j.
The optimal qj(zj) is then proportional to the exponentiated expected log of the complete
conditional,

q⇤j (zj)/ exp
�
E� j

⇥
log p(zj |z� j ,x)

⇤ 
. (17)

The expectation in Equation (17) is with respect to the (currently fixed) variational dis-
tribution over z� j , that is,

Q
` 6= j q`(z`). Equivalently, Equation (17) is proportional to the

exponentiated log of the joint,

q⇤j (zj)/ exp
�
E� j

⇥
log p(zj ,z� j ,x)

⇤ 
. (18)

Because of the mean-field family—that all the latent variables are independent—the expec-
tations on the right hand side do not involve the jth variational factor. Thus this is a valid
coordinate update.

These equations underlie the CAVI algorithm, presented as Algorithm 1. We maintain a set
of variational factors q`(z`). We iterate through them, updating qj(zj) using Equation (18).
CAVI goes uphill on the ELBO of Equation (13), eventually finding a local optimum. As
examples we show CAVI for a mixture of Gaussians in Section 3 and for a nonconjugate
linear regression in Appendix A.

CAVI can also be seen as a “message passing” algorithm (Winn and Bishop, 2005), iteratively
updating each random variable’s variational parameters based on the variational parameters
of the variables in its Markov blanket. This perspective enabled the design of automated
software for a large class of models (Wand et al., 2011; Minka et al., 2014). Variational
message passing connects variational inference to the classical theories of graphical models
and probabilistic inference (Pearl, 1988; Lauritzen and Spiegelhalter, 1988). It has been
extended to nonconjugate models (Knowles and Minka, 2011) and generalized via factor
graphs (Minka, 2005).

Finally, CAVI is closely related to Gibbs sampling (Geman and Geman, 1984; Gelfand and
Smith, 1990), the classical workhorse of approximate inference. The Gibbs sampler main-
tains a realization of the latent variables and iteratively samples from each variable’s com-
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Figure 1: Visualizing the mean-field approximation to a two-dimensional Gaussian posterior.
The ellipses show the effect of mean-field factorization. (The ellipses are 2σ contours of
the Gaussian distributions.)

The optimal mean-field variational approximation to this posterior is a product of two
Gaussian distributions. Figure 1 shows the mean-field variational density after maximizing
the ELBO. While the variational approximation has the same mean as the original density,
its covariance structure is, by construction, decoupled.

Further, the marginal variances of the approximation under-represent those of the target
density. This is a common effect in mean-field variational inference and, with this example,
we can see why. The KL divergence from the approximation to the posterior is in Equa-
tion (11). It penalizes placing mass in q(·) on areas where p(·) has little mass, but penalizes
less the reverse. In this example, in order to successfully match the marginal variances, the
circular q(·) would have to expand into territory where p(·) has little mass.

2.4 Coordinate ascent mean-field variational inference

Using the ELBO and the mean-field family, we have cast approximate conditional inference
as an optimization problem. In this section, we describe one of the most commonly used
algorithms for solving this optimization problem, coordinate ascent variational inference
(CAVI) (Bishop, 2006). CAVI iteratively optimizes each factor of the mean-field variational
density, while holding the others fixed. It climbs the ELBO to a local optimum.

The algorithm. We first state a result. Consider the jth latent variable z j . The complete
conditional of z j is its conditional density given all of the other latent variables in the
model and the observations, p(z j |z− j ,x). Fix the other variational factors q`(z`), ` 6= j.
The optimal q j(z j) is then proportional to the exponentiated expected log of the complete
conditional,

q∗j (z j)∝ exp
�
E− j

�
log p(z j |z− j ,x)

�	
. (17)

The expectation in Equation (17) is with respect to the (currently fixed) variational density
over z− j , that is,

∏
6̀= j q`(z`). Equivalently, Equation (17) is proportional to the exponenti-

ated log of the joint,

q∗j (z j)∝ exp
�
E− j

�
log p(z j ,z− j ,x)

�	
. (18)

Because of the mean-field family assumption—that all the latent variables are independent—
the expectations on the right hand side do not involve the jth variational factor. Thus this
is a valid coordinate update.

These equations underlie the CAVI algorithm, presented as Algorithm 1. We maintain a set
of variational factors q`(z`). We iterate through them, updating q j(z j) using Equation (18).
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Algorithm 1: Coordinate ascent variational inference (CAVI)
Input: A model p(x,z), a data set x

Output: A variational density q(z) =
∏m

j=1 q j(z j)
Initialize: Variational factors q j(z j)
while the ELBO has not converged do

for j ∈ {1, . . . , m} do
Set q j(z j)∝ exp{E− j[log p(z j |z− j ,x)]}

end

Compute ELBO(q) = E [log p(z,x)]−E [log q(z)]
end

return q(z)

CAVI goes uphill on the ELBO of Equation (13), eventually finding a local optimum. As
examples we show CAVI for a mixture of Gaussians in Section 3 and for a nonconjugate
linear regression in Appendix A.

CAVI can also be seen as a “message passing” algorithm (Winn and Bishop, 2005), iteratively
updating each random variable’s variational parameters based on the variational parameters
of the variables in its Markov blanket. This perspective enabled the design of automated
software for a large class of models (Wand et al., 2011; Minka et al., 2014). Variational
message passing connects variational inference to the classical theories of graphical models
and probabilistic inference (Pearl, 1988; Lauritzen and Spiegelhalter, 1988). It has been
extended to nonconjugate models (Knowles and Minka, 2011) and generalized via factor
graphs (Minka, 2005).

Finally, CAVI is closely related to Gibbs sampling (Geman and Geman, 1984; Gelfand and
Smith, 1990), the classical workhorse of approximate inference. The Gibbs sampler main-
tains a realization of the latent variables and iteratively samples from each variable’s com-
plete conditional. Equation (18) uses the same complete conditional. It takes the expected
log, and uses this quantity to iteratively set each variable’s variational factor.4

Derivation. We now derive the coordinate update in Equation (18). The idea appears
in Bishop (2006), but the argument there uses gradients, which we do not. Rewrite the
ELBO of Equation (13) as a function of the jth variational factor q j(z j), absorbing into a
constant the terms that do not depend on it,

ELBO(q j) = E j

�
E− j

�
log p(z j ,z− j ,x)

��−E j

�
log q j(z j)

�
+ const. (19)

We have rewritten the first term of the ELBO using iterated expectation. The second term we
have decomposed, using the independence of the variables (i.e., the mean-field assumption)
and retaining only the term that depends on q j(z j).

Up to an added constant, the objective function in Equation (19) is equal to the negative
KL divergence between q j(z j) and q∗j (z j) from Equation (18). Thus we maximize the ELBO

with respect to q j when we set q j(z j) = q∗j (z j).

4Many readers will know that we can significantly speed up the Gibbs sampler by marginalizing out some of
the latent variables; this is called collapsed Gibbs sampling. We can speed up variational inference with similar
reasoning; this is called collapsed variational inference. It has been developed for the same class of models
described here (Sung et al., 2008; Hensman et al., 2012). These ideas are outside the scope of our review.
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2.5 Practicalities

Here, we highlight a few things to keep in mind when implementing and using variational
inference in practice.

Initialization. The ELBO is (generally) a non-convex objective function. CAVI only guar-
antees convergence to a local optimum, which can be sensitive to initialization. Figure 2
shows the ELBO trajectory for 10 random initializations using the Gaussian mixture model.
The means of the variational factors were randomly initialized by drawing from a factorized
Gaussian calibrated to the empirical mean and variance of the dataset. (This inference is
on images; see Section 3.4.) Each initialization reaches a different value, indicating the
presence of many local optima in the ELBO. In terms of KL(q||p), better local optima give
variational densities that are closer to the exact posterior.
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Figure 2: Different initializations may lead CAVI to find different local optima of the ELBO.

This is not always a disadvantage. Some models, such as the mixture of Gaussians (Section 3
and appendix B) and mixed-membership model (Appendix C), exhibit many posterior
modes due to label switching: swapping cluster assignment labels induces many symmetric
posterior modes. Representing one of these modes is sufficient for exploring latent clusters
or predicting new observations.

Assessing convergence. Monitoring the ELBO in CAVI is simple; we typically assess
convergence once the change in ELBO has fallen below some small threshold. However,
computing the ELBO of the full dataset may be undesirable. Instead, we suggest computing
the average log predictive of a small held-out dataset. Monitoring changes here is a proxy to
monitoring the ELBO of the full data. (Unlike the full ELBO, held-out predictive probability
is not guaranteed to monotonically increase across iterations of CAVI.)

Numerical stability. Probabilities are constrained to live within [0,1]. Precisely ma-
nipulating and performing arithmetic of small numbers requires additional care. When
possible, we recommend working with logarithms of probabilities. One useful identity is
the “log-sum-exp” trick,

log

�∑
i

exp(x i)

�
= α+ log

�∑
i

exp(x i −α)
�

. (20)

The constant α is typically set to maxi x i . This provides numerical stability to common
computations in variational inference procedures.

3 A complete example: Bayesian mixture of Gaussians

As an example, we return to the simple mixture of Gaussians model of Section 2.1. To review,
consider K mixture components and n real-valued data points x1:n. The latent variables

11



are K real-valued mean parameters µ= µ1:K and n latent-class assignments c= c1:n. The
assignment ci indicates which latent cluster x i comes from. In detail, ci is an indicator
K-vector, all zeros except for a one in the position corresponding to x i ’s cluster. There is
a fixed hyperparameter σ2, the variance of the normal prior on the µk ’s. We assume the
observation variance is one and take a uniform prior over the mixture components.

The joint density of the latent and observed variables is in Equation (7). The variational
family is in Equation (16). Recall that there are two types of variational parameters—
categorical parameters ϕi for approximating the posterior cluster assignment of the ith
data point and Gaussian parameters mk and s2

k for approximating the posterior of the kth
mixture component.

We combine the joint and the mean-field family to form the ELBO for the mixture of Gaussians.
It is a function of the variational parameters m, s2, and ϕ,

ELBO(m, s2,ϕ) =
K∑

k=1

E
�
log p(µk); mk, s2

k

�

+
n∑

i=1

�
E [log p(ci);ϕi] +E

�
log p(x i | ci ,µ);ϕi ,m, s2

��

−
n∑

i=1

E [log q(ci;ϕi)]−
K∑

k=1

E
�
log q(µk; mk, s2

k)
�

.

(21)

In each term, we have made explicit the dependence on the variational parameters. Each
expectation can be computed in closed form.

The CAVI algorithm updates each variational parameter in turn. We first derive the update
for the variational cluster assignment factor; we then derive the update for the variational
mixture component factor.

3.1 The variational density of the mixture assignments

We first derive the variational update for the cluster assignment ci . Using Equation (18),

q∗(ci;ϕi)∝ exp
�
log p(ci) +E

�
log p(x i | ci ,µ);m, s2

�	
. (22)

The terms in the exponent are the components of the joint density that depend on ci . The
expectation in the second term is over the mixture components µ.

The first term of Equation (22) is the log prior of ci . It is the same for all possible values
of ci , log p(ci) = − log K . The second term is the expected log of the cith Gaussian density.
Recalling that ci is an indicator vector, we can write

p(x i | ci ,µ) =
K∏

k=1

p(x i |µk)
cik .

We use this to compute the expected log probability,

E [log p(x i | ci ,µ)] =
∑

k

cikE
�
log p(x i |µk); mk, s2

k

�
(23)

=
∑

k

cikE
�−(x i −µk)

2/2; mk, s2
k

�
+ const. (24)

=
∑

k

cik

�
E
�
µk; mk, s2

k

�
x i −E

�
µ2

k; mk, s2
k

�
/2
�
+ const. (25)
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In each line we remove terms that are constant with respect to ci . This calculation requires
E [µk] and E

�
µ2

k

�
for each mixture component, both computable from the variational

Gaussian on the kth mixture component.

Thus the variational update for the ith cluster assignment is

ϕik ∝ exp
�
E
�
µk; mk, s2

k

�
x i −E

�
µ2

k; mk, s2
k

�
/2
	

. (26)

Notice it is only a function of the variational parameters for the mixture components.

3.2 The variational density of the mixture-component means

We turn to the variational density q(µk; mk, s2
k) of the kth mixture component. Again we

use Equation (18) and write down the joint density up to a normalizing constant,

q(µk)∝ exp
�
log p(µk) +

∑n
i=1E

�
log p(x i | ci ,µ);ϕi ,m−k, s2

−k

�	
. (27)

We now calculate the unnormalized log of this coordinate-optimal q(µk). Recall ϕik is the
probability that the ith observation comes from the kth cluster. Because ci is an indicator
vector, we see that ϕik = E [cik;ϕi]. Now

log q(µk) = log p(µk) +
∑

i E
�
log p(x i | ci ,µ);ϕi ,m−k, s2

−k

�
+ const. (28)

= log p(µk) +
∑

i E [cik log p(x i |µk);ϕi] + const. (29)

= −µ2
k/2σ

2 +
∑

i E [cik;ϕi] log p(x i |µk) + const. (30)

= −µ2
k/2σ

2 +
∑

i ϕik

�−(x i −µk)2/2
�
+ const. (31)

= −µ2
k/2σ

2 +
∑

i ϕik x iµk −ϕikµ
2
k/2+ const. (32)

=
�∑

i ϕik x i

�
µk −

�
1/2σ2 +

∑
i ϕik/2

�
µ2

k + const. (33)

This calculation reveals that the coordinate-optimal variational density of µk is an exponen-
tial family with sufficient statistics {µk,µ2

k} and natural parameters {∑n
i=1ϕik x i ,−1/2σ2 −∑n

i=1ϕik/2}, i.e., a Gaussian. Expressed in terms of the variational mean and variance, the
updates for q(µk) are

mk =

∑
i ϕik x i

1/σ2 +
∑

i ϕik
, s2

k =
1

1/σ2 +
∑

i ϕik
. (34)

These updates relate closely to the complete conditional density of the kth component in the
mixture model. The complete conditional is a posterior Gaussian given the data assigned
to the kth component. The variational update is a weighted complete conditional, where
each data point is weighted by its variational probability of being assigned to component
k.

3.3 CAVI for the mixture of Gaussians

Algorithm 2 presents coordinate-ascent variational inference for the Bayesian mixture of
Gaussians. It combines the variational updates in Equation (22) and Equation (34). The
algorithm requires computing the ELBO of Equation (21). We use the ELBO to track the
progress of the algorithm and assess when it has converged.

Once we have a fitted variational density, we can use it as we would use the posterior. For
example, we can obtain a posterior decomposition of the data. We assign points to their
most likely mixture assignment ĉi = arg maxkϕik and estimate cluster means with their
variational means mk.
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Algorithm 2: CAVI for a Gaussian mixture model

Input: Data x1:n, number of components K , prior variance of component means σ2

Output: Variational densities q(µk; mk, s2
k) (Gaussian) and q(ci;ϕi) (K-categorical)

Initialize: Variational parameters m= m1:K , s2 = s2
1:K , and ϕ = ϕ1:n

while the ELBO has not converged do

for i ∈ {1, . . . , n} do
Set ϕik ∝ exp{E �µk; mk, s2

k

�
x i −E

�
µ2

k; mk, s2
k

�
/2}

end

for k ∈ {1, . . . , K} do

Set mk ←−
∑

i ϕik x i

1/σ2 +
∑

i ϕik

Set s2
k ←−

1
1/σ2 +

∑
i ϕik

end

Compute ELBO(m, s2,ϕ)
end

return q(m, s2,ϕ)

We can also use the fitted variational density to approximate the predictive density of new
data. This approximate predictive is a mixture of Gaussians,

p(xnew | x1:n)≈
1
K

K∑
k=1

p(xnew |mk), (35)

where p(xnew |mk) is a Gaussian with mean mk and unit variance.

3.4 Empirical study

We present two analyses to demonstrate the mixture of Gaussians algorithm in action. The
first is a simulation study; the second is an analysis of a data set of natural images.

Simulation study. Consider two-dimensional real-valued data x. We simulate K = 5
Gaussians with random means, covariances, and mixture assignments. Figure 3 shows the
data; each point is colored according to its true cluster. Figure 3 also illustrates the initial
variational density of the mixture components—each is a Gaussian, nearly centered, and
with a wide variance; the subpanels plot the variational density of the components as the
CAVI algorithm progresses.

The progression of the ELBO tells a story. We highlight key points where the ELBO develops
“elbows”, phases of the maximization where the variational approximation changes its shape.
These “elbows” arise because the ELBO is not a convex function in terms of the variational
parameters; CAVI iteratively reaches better plateaus.

Finally, we plot the logarithm of the Bayesian predictive density as approximated by the
variational density. Here we report the average across held-out data. Note this plot is
smoother than the ELBO.

Image analysis. We now turn to an experimental study. Consider the task of grouping
images according to their color profiles. One approach is to compute the color histogram
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1

Figure 3: A simulation study of a two dimensional Gaussian mixture model. The ellipses
are 2σ contours of the variational approximating factors.

15



of the images. Figure 4 shows the red, green, and blue channel histograms of two images
from the imageCLEF data (Villegas et al., 2013). Each histogram is a vector of length 192;
concatenating the three color histograms gives a 576-dimensional representation of each
image, regardless of its original size in pixel-space.

We use CAVI to fit a Gaussian mixture model with thirty clusters to image histograms. We
randomly select two sets of ten thousand images from the imageCLEF collection to serve
as training and testing datasets. Figure 5 shows similarly colored images assigned to four
randomly chosen clusters. Figure 6 shows the average log predictive accuracy of the testing
set as a function of time. We compare CAVI to an implementation in Stan (Stan Development
Team, 2015), which uses a Hamiltonian Monte Carlo-based sampler (Hoffman and Gelman,
2014). (Details are in Appendix B.) CAVI is orders of magnitude faster than this sampling
algorithm.5
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Figure 4: Red, green, and blue channel image histograms for two images from the imageCLEF

dataset. The top image lacks blue hues, which is reflected in its blue channel histogram.
The bottom image has a few dominant shades of blue and green, as seen in the peaks of its
histogram.

4 Variational inference with exponential families

We described mean-field variational inference and derived CAVI, a general coordinate-ascent
algorithm for optimizing the ELBO. We demonstrated this approach on a simple mixture of
Gaussians, where each coordinate update was available in closed form.

5This is not a definitive comparison between variational inference and MCMC. Other samplers, such as a
collapsed Gibbs sampler, may perform better than Hamiltonian Monte Carlo sampling.
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(a) Purple (b) Green & White (c) Orange (d) Grayish Blue

Figure 5: Example clusters from the Gaussian mixture model. We assign each image to its
most likely mixture cluster. The subfigures show nine randomly sampled images from four
clusters; their namings are subjective.
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Figure 6: Comparison of CAVI to a Hamiltonian Monte Carlo-based sampling technique.
CAVI fits a Gaussian mixture model to ten thousand images in less than a minute.

The mixture of Gaussians is one member of the important class of models where each
complete conditional is in the exponential family. This includes a number of widely used
models, such as Bayesian mixtures of exponential families, factorial mixture models, matrix
factorization models, certain hierarchical regression models (e.g., linear regression, probit
regression), stochastic blockmodels of networks, hierarchical mixtures of experts, and a
variety of mixed-membership models (which we will discuss below).

Working in this family simplifies variational inference: it is easier to derive the correspond-
ing CAVI algorithm, and it enables variational inference to scale up to massive data. In
Section 4.1, we develop the general case. In Section 4.2, we discuss conditionally conjugate
models, i.e., the common Bayesian application where some latent variables are “local” to a
data point and others, usually identified with parameters, are “global” to the entire data set.
Finally, in Section 4.3, we describe stochastic variational inference (Hoffman et al., 2013), a
stochastic optimization algorithm that scales up variational inference in this setting.

4.1 Complete conditionals in the exponential family

Consider the generic model p(z,x) of Section 2.1 and suppose each complete conditional is
in the exponential family:

p(z j |z− j ,x) = h(z j)exp{η j(z− j ,x)
>z j − a(η j(z− j ,x))}, (36)

where z j is its own sufficient statistic, h(·) is a base measure, and a(·) is the log normal-
izer (Brown, 1986). Because this is a conditional density, the parameter η j(z− j ,x) is a
function of the conditioning set.

Consider mean-field variational inference for this class of models, where we fit q(z) =
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∏
j q j(z j). The exponential family assumption simplifies the coordinate update of Equa-

tion (17),

q(z j)∝ exp
�
E
�
log p(z j |z− j ,x)

�	
(37)

= exp
¦

log h(z j) +E
�
η j(z− j ,x)

�>
z j −E

�
a(η j(z− j ,x))

�©
(38)

∝ h(z j)exp
¦
E
�
η j(z− j ,x)

�>
z j

©
. (39)

This update reveals the parametric form of the optimal variational factors. Each one is in
the same exponential family as its corresponding complete conditional. Its parameter has
the same dimension and it has the same base measure h(·) and log normalizer a(·).
Having established their parametric forms, let ν j denote the variational parameter for
the jth variational factor. When we update each factor, we set its parameter equal to the
expected parameter of the complete conditional,

ν j = E
�
η j(z− j ,x)

�
. (40)

This expression facilitates deriving CAVI algorithms for many complex models.

4.2 Conditional conjugacy and Bayesian models

One important special case of exponential family models are conditionally conjugate models
with local and global variables. Models like this come up frequently in Bayesian statistics
and statistical machine learning, where the global variables are the “parameters” and the
local variables are per-data-point latent variables.

Conditionally conjugate models. Let β be a vector of global latent variables, which
potentially govern any of the data. Let z be a vector of local latent variables, whose ith
component only governs data in the ith “context.” The joint density is

p(β ,z,x) = p(β)
n∏

i=1

p(zi , x i |β). (41)

The mixture of Gaussians of Section 3 is an example. The global variables are the mixture
components; the ith local variable is the cluster assignment for data point x i .

We will assume that the modeling terms of Equation (41) are chosen to ensure each complete
conditional is in the exponential family. In detail, we first assume the joint density of each
(x i , zi) pair, conditional on β , has an exponential family form,

p(zi , x i |β) = h(zi , x i)exp{β> t(zi , x i)− a(β)}, (42)

where t(·, ·) is the sufficient statistic.

Next, we take the prior on the global variables to be the corresponding conjugate prior (Di-
aconis et al., 1979; Bernardo and Smith, 1994),

p(β) = h(β)exp{α>[β ,−a(β)]− a(α)}. (43)

This prior has natural (hyper)parameter α = [α1,α2]>, a column vector, and sufficient
statistics that concatenate the global variable and its log normalizer in the density of the
local variables.

With the conjugate prior, the complete conditional of the global variables is in the same
family. Its natural parameter is

α̂=
�
α1 +

∑n
i=1 t(zi , x i), α2 + n

�>
. (44)
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Turn now to the complete conditional of the local variable zi . Given β and x i , the local
variable zi is conditionally independent of the other local variables z−i and other data x−i .
This follows from the form of the joint density in Equation (41). Thus

p(zi | x i ,β ,z−i ,x−i) = p(zi | x i ,β). (45)

We further assume that this density is in an exponential family,

p(zi | x i ,β) = h(zi)exp{η(β , x i)
>zi − a(η(β , x i))}. (46)

This is a property of the local likelihood term p(zi , x i |β) from Equation (42). For ex-
ample, in the mixture of Gaussians, the complete conditional of the local variable is a
categorical.

Variational inference in conditionally conjugate models. We now describe CAVI for
this general class of models. Write q(β |λ) for the variational posterior approximation on
β; we call λ the “global variational parameter”. It indexes the same exponential family
density as the prior. Similarly, let the variational posterior q(zi |ϕi) on each local variable
zi be governed by a “local variational parameter” ϕi . It indexes the same exponential
family density as the local complete conditional. CAVI iterates between updating each local
variational parameter and updating the global variational parameter.

The local variational update is

ϕi = Eλ [η(β , x i)] . (47)

This is an application of Equation (40), where we take the expectation of the natural
parameter of the complete conditional in Equation (45).

The global variational update applies the same technique. It is

λ=
�
α1 +

∑n
i=1Eϕi

[t(zi , x i)] , α2 + n
�>

. (48)

Here we take the expectation of the natural parameter in Equation (44).

CAVI optimizes the ELBO by iterating between local updates of each local parameter and
global updates of the global parameters. To assess convergence we can compute the ELBO

at each iteration (or at some lag), up to a constant that does not depend on the variational
parameters,

ELBO =
�
α1 +

∑n
i=1Eϕi

[t(zi , x i)]
�>Eλ [β]− (α2 + n)Eλ [a(β)]−E [log q(β ,z)] . (49)

This is the ELBO in Equation (13) applied to the joint in Equation (41) and the corresponding
mean-field variational density; we have omitted terms that do not depend on the variational
parameters. The last term is

E [log q(β ,z)] = λ>Eλ [t(β)]− a(λ) +
n∑

i=1

ϕ>i Eϕi
[zi]− a(ϕi). (50)

CAVI for the mixture of Gaussians model (Algorithm 2) is an instance of this method. Ap-
pendix C presents another example of CAVI for latent Dirichlet allocation (LDA), a probabilistic
topic model.

4.3 Stochastic variational inference

Modern applications of probability models often require analyzing massive data. However,
most posterior inference algorithms do not easily scale. CAVI is no exception, particularly in
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the conditionally conjugate setting of Section 4.2. The reason is that the coordinate ascent
structure of the algorithm requires iterating through the entire data set at each iteration. As
the data set size grows, each iteration becomes more computationally expensive.

An alternative to coordinate ascent is gradient-based optimization, which climbs the ELBO by
computing and following its gradient at each iteration. This perspective is the key to scaling
up variational inference using stochastic variational inference (SVI) (Hoffman et al., 2013), a
method that combines natural gradients (Amari, 1998) and stochastic optimization (Robbins
and Monro, 1951).

SVI focuses on optimizing the global variational parameters λ of a conditionally conjugate
model. The flow of computation is simple. The algorithm maintains a current estimate of
the global variational parameters. It repeatedly (a) subsamples a data point from the full
data set; (b) uses the current global parameters to compute the optimal local parameters for
the subsampled data point; and (c) adjusts the current global parameters in an appropriate
way. SVI is detailed in Algorithm 3. We now show why it is a valid algorithm for optimizing
the ELBO.

The natural gradient of the ELBO. In gradient-based optimization, the natural gradient
accounts for the geometric structure of probability parameters (Amari, 1982, 1998). Specifi-
cally, natural gradients warp the parameter space in a sensible way, so that moving the same
distance in different directions amounts to equal change in symmetrized KL divergence. The
usual Euclidean gradient does not enjoy this property.

In exponential families, we find the natural gradient with respect to the parameter by
premultiplying the usual gradient by the inverse covariance of the sufficient statistic, a′′(λ)−1.
This is the inverse Riemannian metric and the inverse Fisher information matrix (Amari,
1982).

Conditionally conjugate models enjoy simple natural gradients of the ELBO. We focus on
gradients with respect to the global parameter λ. Hoffman et al. (2013) derive the Euclidean
gradient of the ELBO,

∇λELBO = a′′(λ)(Eϕ [α̂]−λ), (51)

where Eϕ [α̂] is in Equation (48). Premultiplying by the inverse Fisher information gives
the natural gradient g(λ),

g(λ) = Eϕ [α̂]−λ. (52)

It is the difference between the coordinate updates Eϕ [α̂] and the variational parameters λ
at which we are evaluating the gradient. In addition to enjoying good theoretical properties,
the natural gradient is easier to calculate than the Euclidean gradient. For more on natural
gradients and variational inference see Sato (2001) and Honkela et al. (2008).

We can use this natural gradient in a gradient-based optimization algorithm. At each
iteration, we update the global parameters,

λt = λt−1 + εt g(λt−1), (53)

where εt is a step size.

Substituting Equation (52) into the second term reveals a special structure,

λt = (1− εt)λt−1 + εtEϕ [α̂] . (54)

Notice this does not require additional types of calculations other than those for coordinate
ascent updates. At each iteration, we first compute the coordinate update. We then adjust
the current estimate to be a weighted combination of the update and the current variational
parameter.
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Though easy to compute, using the natural gradient has the same cost as the coordinate
update in Equation (48); it requires summing over the entire data set and computing
the optimal local variational parameters for each data point. With massive data, this is
prohibitively expensive.

Stochastic optimization of the ELBO. Stochastic variational inference solves this problem
by using the natural gradient in a stochastic optimization algorithm. Stochastic optimiza-
tion algorithms follow noisy but cheap-to-compute gradients to reach the optimum of an
objective function. (In the case of the ELBO, stochastic optimization will reach a local
optimum.) In their seminal paper, Robbins and Monro (1951) proved results implying that
optimization algorithms can successfully use noisy, unbiased gradients, as long as the step
size sequence satisfies certain conditions. This idea has blossomed (Spall, 2003; Kushner
and Yin, 1997). Stochastic optimization has enabled modern machine learning to scale to
massive data (Le Cun and Bottou, 2004).

Our aim is to construct a cheaply computed, noisy, unbiased natural gradient. We expand
the natural gradient in Equation (52) using Equation (44)

g(λ) = α+
�∑n

i=1Eϕ∗i [t(zi , x i)] , n
�> −λ, (55)

where ϕ∗i indicates that we consider the optimized local variational parameters (at fixed
global parameters λ) in Equation (47). We construct a noisy natural gradient by sampling
an index from the data and then rescaling the second term,

t ∼ Unif(1, . . . , n) (56)

ĝ(λ) = α+ n
�
Eϕ∗t [t(zt , x t)] , 1

�> −λ. (57)

The noisy natural gradient ĝ(λ) is unbiased: Et [ ĝ(λ)] = g(λ). And it is cheap to compute—
it only involves a single sampled data point and only one set of optimized local parameters.
(This immediately extends to minibatches, where we sample B data points and rescale
appropriately.) Again, the noisy gradient only requires calculations from the coordinate
ascent algorithm. The first two terms of Equation (57) are equivalent to the coordinate
update in a model with n replicates of the sampled data point.

Finally, we set the step size sequence. It must follow the conditions of Robbins and Monro
(1951),

∑
t

εt =∞ ;
∑

t

ε2
t <∞. (58)

Many sequences will satisfy these conditions, for example εt = t−κ for κ ∈ (0.5, 1]. The full
SVI algorithm is in Algorithm 3.

We emphasize that SVI requires no new derivation beyond what is needed for CAVI. Any
implementation of CAVI can be immediately scaled up to a stochastic algorithm.

Probabilistic topic models. We demonstrate SVI with a probabilistic topic model. Prob-
abilistic topic models are mixed-membership models of text, used to uncover the latent
“topics” that run through a collection of documents. Topic models have become a popular
technique for exploratory data analysis of large collections (Blei, 2012).

In detail, each latent topic is a distribution over terms in a vocabulary and each document
is a collection of words that comes from a mixture of the topics. The topics are shared
across the collection, but each document mixes them with different proportions. (This is the
hallmark of a mixed-membership model.) Thus topic modeling casts topic discovery as a
posterior inference problem. Posterior estimates of the topics and topic proportions can be
used to summarize, visualize, explore, and form predictions about the documents.
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Figure 7: Topics found in a corpus of 1.8M articles from the New York Times. Reproduced
with permission from Hoffman et al. (2013).

One motivation for topic modeling is to get a handle on massive collections of documents.
Early inference algorithms were based on coordinate ascent variational inference (Blei
et al., 2003) and analyzed collections in the thousands or tens of thousands of documents.
(Appendix C presents this algorithm). With SVI, topic models scale up to millions of
documents; the details of the algorithm are in Hoffman et al. (2013). Figure 7 illustrates
topics inferred using the latent Dirichlet allocation model (Blei et al., 2003) from 1.8M
articles from the New York Times. This analysis would not have been possible without
SVI.

5 Discussion

We described variational inference, a method that uses optimization to make probabilistic
computations. The goal is to approximate the conditional density of latent variables z given
observed variables x, p(z |x). The idea is to posit a family of densitiesQ and then to find the
member q∗(·) that is closest in KL divergence to the conditional of interest. Minimizing the
KL divergence is the optimization problem, and its complexity is governed by the complexity
of the approximating family.

We then described the mean-field family, i.e., the family of fully factorized densities of
the latent variables. Using this family, variational inference is particularly amenable to
coordinate-ascent optimization, which iteratively optimizes each factor. (This approach
closely connects to the classical Gibbs sampler (Geman and Geman, 1984; Gelfand and
Smith, 1990).) We showed how to use mean-field VI to approximate the posterior density of
a Bayesian mixture of Gaussians, discussed the special case of exponential families and con-
ditional conjugacy, and described the extension to stochastic variational inference (Hoffman
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Algorithm 3: SVI for conditionally conjugate models
Input: Model p(x,z), data x, and step size sequence εt

Output: Global variational densities qλ(β)
Initialize: Variational parameters λ0

while TRUE do
Choose a data point uniformly at random, t ∼ Unif(1, . . . , n)
Optimize its local variational parameters ϕ∗t = Eλ [η(β , x t)]
Compute the coordinate update as though x t was repeated n times,

λ̂= α+ nEϕ∗t [ f (zt , x t)]

Update the global variational parameter, λt = (1− εt)λt + εt λ̂t

end

return λ

et al., 2013), which scales mean-field variational inference to massive data.

5.1 Applications

Researchers in many fields have used variational inference to solve real problems. Here we
focus on example applications of mean-field variational inference and structured variational
inference based on the KL divergence. This discussion is not exhaustive; our intention is to
outline the diversity of applications of variational inference.

Computational biology. VI is widely used in computational biology, where probabilis-
tic models provide important building blocks for analyzing genetic data. For example,
VI has been used in genome-wide association studies (Carbonetto and Stephens, 2012;
Logsdon et al., 2010), regulatory network analysis (Sanguinetti et al., 2006), motif detec-
tion (Xing et al., 2004), phylogenetic hidden Markov models (Jojic et al., 2004), population
genetics (Raj et al., 2014), and gene expression analysis (Stegle et al., 2010).

Computer vision and robotics. Since its inception, variational inference has been important
to computer vision. Vision researchers frequently analyze large and high-dimensional data
sets of images, and fast inference is important to successfully deploy a vision system.
Some of the earliest examples included inferring non-linear image manifolds (Bishop and
Winn, 2000) and finding layers of images in videos (Jojic and Frey, 2001). As other
examples, variational inference is important to probabilistic models of videos (Chan and
Vasconcelos, 2009; Wang and Mori, 2009), image denoising (Likas and Galatsanos, 2004),
tracking (Vermaak et al., 2003; Yu and Wu, 2005), place recognition and mapping for
robotics (Cummins and Newman, 2008; Ramos et al., 2012), and image segmentation with
Bayesian nonparametrics (Sudderth and Jordan, 2009). Du et al. (2009) uses variational
inference in a probabilistic model to combine the tasks of segmentation, clustering, and
annotation.

Computational neuroscience. Modern neuroscience research also requires analyzing
very large and high-dimensional data sets, such as high-frequency time series data or
high-resolution functional magnetic imaging data. There have been many applications of
variational inference to neuroscience, especially for autoregressive processes (Roberts and
Penny, 2002; Penny et al., 2003, 2005; Flandin and Penny, 2007; Harrison and Green, 2010).
Other applications of variational inference to neuroscience include hierarchical models of
multiple subjects (Woolrich et al., 2004), spatial models (Sato et al., 2004; Zumer et al.,
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2007; Kiebel et al., 2008; Wipf and Nagarajan, 2009; Lashkari et al., 2012; Nathoo et al.,
2014), brain-computer interfaces (Sykacek et al., 2004), and factor models (Manning et al.,
2014; Gershman et al., 2014). There is a software toolbox that uses variational methods for
solving neuroscience and psychology research problems (Daunizeau et al., 2014).

Natural language processing and speech recognition. In natural language processing,
variational inference has been used for solving problems such as parsing (Liang et al.,
2007, 2009), grammar induction (Kurihara and Sato, 2006; Naseem et al., 2010; Cohen
and Smith, 2010), models of streaming text (Yogatama et al., 2014), topic modeling (Blei
et al., 2003), and hidden Markov models and part-of-speech tagging (Wang and Blunsom,
2013). In speech recognition, variational inference has been used to fit complex coupled
hidden Markov models (Reyes-Gomez et al., 2004) and switching dynamic systems (Deng,
2004).

Other applications. There have been many other applications of variational inference.
Fields in which it has been used include marketing (Braun and McAuliffe, 2010), optimal
control and reinforcement learning (Van Den Broek et al., 2008; Furmston and Barber,
2010), statistical network analysis (Wiggins and Hofman, 2008; Airoldi et al., 2008),
astrophysics (Regier et al., 2015), and the social sciences (Erosheva et al., 2007; Grimmer,
2011). General variational inference algorithms have been developed for a variety of
classes of models, including shrinkage models (Armagan et al., 2011; Armagan and Dunson,
2011; Neville et al., 2014), general time-series models (Roberts et al., 2004; Barber and
Chiappa, 2006; Archambeau et al., 2007b,a; Johnson and Willsky, 2014; Foti et al., 2014),
robust models (Tipping and Lawrence, 2005; Wang and Blei, 2015), and Gaussian process
models (Titsias and Lawrence, 2010; Damianou et al., 2011; Hensman et al., 2014).

5.2 Theory

Though researchers have not developed much theory around variational inference, there are
several threads of research about theoretical guarantees of variational approximations. As
we mentioned in the introduction, one of our purposes for writing this paper is to catalyze
research on the statistical theory around variational inference.

Below, we summarize a variety of results. In general, they are all of the following type:
treat VI posterior means as point estimates (or use M-step estimates from variational EM)
and confirm that they have the usual frequentist asymptotics. (Sometimes the research
finds that they do not enjoy the same asymptotics.) Each result revolves around a single
model and a single family of variational approximations.

You et al. (2014) study the variational posterior for a classical Bayesian linear model. They
put a normal prior on the coefficients and an inverse gamma prior on the response variance.
They find that, under standard regularity conditions, the mean-field variational posterior
mean of the parameters are consistent in the frequentist sense. Ormerod et al. (2014)
build on their earlier work with a spike-and-slab prior on the coefficients and find similar
consistency results.

Hall et al. (2011a,b) examine a simple Poisson mixed-effects model, one with a single
predictor and a random intercept. They use a Gaussian variational approximation and
estimate parameters with variational EM. They prove consistency of these estimates at
the parametric rate and show asymptotic normality with asymptotically valid standard
errors.

Celisse et al. (2012) and Bickel et al. (2013) analyze network data using stochastic blockmod-
els. They show asymptotic normality of parameter estimates obtained using a mean-field
variational approximation. They highlight the computational advantages and theoretical
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guarantees of the variational approach over maximum likelihood for dense, sparse, and
restricted variants of the stochastic blockmodel.

Westling and McCormick (2015) study the consistency of VI through a connection to M-
estimation. They focus on a broader class of models (with posterior support in real coordinate
space) and analyze an automated VI technique that uses a Gaussian variational approxima-
tion (Kucukelbir et al., 2015). They derive an asymptotic covariance matrix estimator of
the variational approximation and show its robustness to model misspecification.

Finally, Wang and Titterington (2006) analyze variational approximations to mixtures of
Gaussians. Specifically, they consider Bayesian mixtures with conjugate priors, the mean-
field variational approximation, and an estimator that is the variational posterior mean.
They confirm that CAVI converges to a local optimum, that the VI estimator is consistent,
and that the VI estimate and maximum likelihood estimate (MLE) approach each other at a
rate of O (1/n). In Wang and Titterington (2005), they show that the asymptotic variational
posterior covariance matrix is “too small”—it differs from the MLE covariance (i.e., the
inverse Fisher information) by a positive-definite matrix.

5.3 Beyond conditional conjugacy

We focused on models where the complete conditional is in the exponential family. Many
models, however, do not enjoy this property. A simple example is Bayesian logistic regres-
sion,

βk ∼N (0,1),

yi | x i ,β ∼ Bern(σ(β>x i)),

where σ(·) is the logistic function. The posterior density of the coefficients is not in an
exponential family and we cannot apply the variational inference methods we discussed
above. Specifically, we cannot compute the expectations in the first term of the ELBO in
Equation (13) or the coordinate update in Equation (18).

Exploring variational methods for such models has been a fruitful area of research. An early
example is Jaakkola and Jordan (1997, 2000), who developed a variational bound tailored
to logistic regression. Blei and Lafferty (2007) later adapted their idea to nonconjugate topic
models, and researchers have continued to improve the original bound (Khan et al., 2010;
Marlin et al., 2011; Ermis and Bouchard, 2014). In other work, Braun and McAuliffe (2010)
derived a variational inference algorithm for the discrete choice model, which also lies
outside of the class of conditionally conjugate models. They developed a delta method to
approximate the difficult-to-compute expectations. Finally, Wand et al. (2011) use auxiliary
variable methods, quadrature, and mixture approximations to handle a variety of likelihood
terms that fall outside of the exponential family.

More recently, researchers have generalized nonconjugate inference, seeking recipes that
can be used across many models. Wang and Blei (2013) adapted Laplace approximations
and the delta method to this end, improving inference in nonconjugate generalized linear
models and topic models; this approach is also used by Bugbee et al. (2016) for semi-
parametric regression. Knowles and Minka (2011) generalized the Jaakkola and Jordan
(1997, 2000) bound in a message-passing algorithm and Wand (2014) further simplified
and extended their approach. Tan and Nott (2013, 2014) applied these message-passing
methods to generalized linear mixed models (and also combined them with SVI). Rohde
and Wand (2015) unified many of these algorithmic developments and provided practical
insights into their numerical implementations.

Finally, there has been a flurry of research on optimizing difficult variational objectives
with Monte Carlo (MC) estimates of the gradient. The idea is to write the gradient of the
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ELBO as an expectation, compute MC estimates of it, and then use stochastic optimization
with repeated MC gradients. This first appeared independently in several papers (Ji et al.,
2010; Nott et al., 2012; Paisley et al., 2012; Wingate and Weber, 2013). The newest
approaches avoid any model-specific derivations, and are termed “black box” inference
methods. As examples, see Kingma and Welling (2014); Rezende et al. (2014); Ranganath
et al. (2014, 2016); Salimans and Knowles (2014); Titsias and Lázaro-Gredilla (2014), and
Tran et al. (2016). Kucukelbir et al. (2016) leverage these ideas toward an automatic VI

technique that works on any model written in the probabilistic programming system Stan
(Stan Development Team, 2015). This is a step towards a derivation-free, easy-to-use VI

algorithm.

5.4 Open problems

There are many open avenues for statistical research in variational inference.

We focused on optimizing KL (q(z)||p(z |x)) as the variational objective function. A promising
avenue of research is to develop variational inference methods that optimize other measures,
such as α-divergence measures. As one example, expectation propagation (Minka, 2001) is
inspired by the KL divergence “in the other direction,” between p(z |x) and q(z). Other work
has developed divergences based on lower bounds that are tighter than the ELBO (Barber
and de van Laar, 1999; Leisink and Kappen, 2001). While alternative divergences may
be difficult to optimize, they may give better approximations (Minka, 2005; Opper and
Winther, 2005).

Though it is flexible, the mean-field family makes strong independence assumptions. These
assumptions help with scalable optimization, but they limit the expressibility of the vari-
ational family. Further, they can exacerbate issues with local optima of the objective and
underestimating posterior variances; see Figure 1. A second avenue of research is to develop
better approximations while maintaining efficient optimization.

As we mentioned above, structured variational inference has its roots in the early days of the
method (Saul and Jordan, 1996; Barber and Wiegerinck, 1999). More recently, Hoffman
and Blei (2015) use generic structured variational inference in a stochastic optimization
algorithm; Kucukelbir et al. (2016), Challis and Barber (2013), and Tan and Nott (2016)
take advantage of Gaussian variational families with non-diagonal covariance; Giordano
et al. (2015) post-process the mean-field parameters to correct for underestimating the
variance; and Ranganath et al. (2016) embed the mean-field parameters themselves in a
hierarchical model to induce variational dependencies between latent variables.

The interface between variational inference and MCMC remains relatively unexplored. Freitas
et al. (2001) used fitted variational distributions as a component of a proposal distribution
for Metropolis-Hastings. Mimno et al. (2012) and Hoffman and Blei (2015) studied MCMC as
a method of approximating coordinate updates, e.g., to include structure in the variational
family. Salimans et al. (2015) propose a variational approximation to the MCMC chain;
their method enables an explicit trade off between computational accuracy and speed.
Understanding how to combine these two strategies for approximate inference is a ripe
area for future research. A principled analysis of when to use (and combine) variational
inference and MCMC would have both theoretical and practical impact in the field.

Finally, the statistical properties of variational inference are not yet well understood, espe-
cially in contrast to the wealth of analysis of MCMC techniques. There has been some progress;
see Section 5.2. A final open research problem is to understand variational inference as an
estimator and to understand its statistical profile relative to the exact posterior.
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A Bayesian Linear Regression with Automatic Relevance
Determination

Consider a dataset of y = y1:n ∈ Rn outputs and x = x1:n ∈ R(n×D) D-dimensional inputs,
where each x i ∈ RD.

A linear regression model assumes a linear relationship between the inputs and the condi-
tional mean of the output given the inputs. The latent variable β ∈ RD is a vector of the
regression coefficients.

Automatic relevance determination (ARD) assigns a separate prior for each regression
coefficient; the idea is to automatically shrink irrelevant coefficients during inference
(MacKay, 1992; Neal, 2012; Tipping, 2001; Wipf and Nagarajan, 2008). ARD works by
pairing the prior precision of each regression coefficient with its own latent variable αd .
The hyper-prior on these relevance variables α encourages small values; this, in turn, selects
relevant regression coefficients.

Here we present a conditionally conjugate Bayesian linear regression model with an ARD

prior, based on Drugowitsch (2013). All Gaussian distributions below follow the precision
parameterization.

Define a Gaussian likelihood with precision parameter τ as

p(y | β ,τ ; x) =
n∏

i=1

N (yi | β>x i ,τ).

ARD then posits the following hierarchical prior

p(β ,τ | α) =N (β | 0,τdiag(α)) Gam(τ | a0, b0),

where α is a D-dimensional relevance variable

p(α) =
D∏

d=1

Gam(αd | c0, d0).

Here a0, b0, c0, and d0 are fixed hyper-parameters. The latent variable α determines the
relevance of each regression coefficient.

The posterior p(β ,τ,α | y ; x) is not available in closed form. A simpler model that does
not include α admits a closed form posterior because the normal-gamma distribution is
conjugate to a normal likelihood with unknown mean and precision.

We derive a CAVI algorithm for this model. First, factorize the variational approximation
as

q(β ,τ,α) = q(β ,τ)q(α).

Here we consider β and τ in a single factor.

Begin by applying Equation (18) to identify the optimal form of q(β ,τ) as

log q(β ,τ) = log p(y | β ,τ ; x) +Eα[log p(β ,τ | α)] + const.

=
�

D
2
+ a0 − 1+

n
2

�
logτ

− τ
2

�
β>
�
Eα[diagα] +

∑
i

x i x
>
i

�
β +

∑
i

y2
i − 2β>

∑
i

x i yi + 2b0

�

+ const.

= logN (β | β∗,τV−1
∗ ) + logGam(τ | a∗, b∗).
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The optimal variational approximation to the regression coefficients and the precision is
thus a normal-gamma with the following parameters:

V−1
∗ = Eα[diagα] +

∑
i

x i x
>
i ,

β∗ = V∗
∑

i

x i yi ,

a∗ = a0 +
n
2

,

b∗ = b0 +
1
2

�∑
i

y2
i − β>∗ V−1

∗ β∗

�
.

Next consider the optimal form of the relevance variables α. Again, apply Equation (18) to
identify the optimal form of q(α) =

∏D
d=1 q(αd) as

log q(αd) = Eβ ,τ[log p(β ,τ | αd)] + log p(αd) + const.

=
�

c0 − 1+
D
2

�
logαd −αd

�
d0 +

1
2
Eβ ,τ[τβ

2
d ]
�
+ const.

= logGam(αd | c∗, d∗d).

The optimal variational approximation to the relevance variable is thus a Gamma with the
following parameters:

c∗ = c0 +
1
2

,

d∗d = d0 +
1
2
Eβ ,τ[τβ

2
d ].

Finally, compute the expectations as

Eα[diagα] = c∗ diag1/d∗,

Eβ ,τ[τβ
2
d ] = β

2
∗d a∗/b∗ + [V∗]d ,

where [·]d indicates the dth diagonal entry of a matrix.

Iteratively updating a∗, b∗, c∗, d∗, V−1
∗ , and β∗ defines CAVI for this model. These quantities

also define the ELBO; Drugowitsch (2013) presents the additional algebra that computes
the ELBO.
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B Gaussian Mixture Model of Image Histograms

We present a multivariate (D-dimensional), diagonal covariance Gaussian mixture model
(GMM). Denote a dataset of n observations as x = x1:n ∈ R(n×D), where each x i ∈ RD.
Assume K mixture components.

The cluster assignment latent variables are z= z1:n ∈ R(n×K) where each zi is a K-indicator
vector. The cluster assignments depend on the mixing vector latent variable π, which lives
in a K-simplex.

The mean latent variables are µ = µ1:K ∈ R(K×D), where each µk ∈ RD, and the precision
latent variables are τ = τ1:K ∈ R(K×D), where each τk ∈ RD

>0.

The joint density of the model factorizes as

p(x,z,π,µ,τ) = p(x | z,µ,τ)p(z | π)p(π)p(µ | τ)p(τ).

The likelihood is Gaussian with precision parameterization

p(x | z,µ,τ) =
n∏

i=1

K∏
k=1

�
D∏

d=1

N (x id | µkd ,τkd)

�znk

.

The marginal over cluster assignments is a categorical distribution,

p(z | π) =
n∏

i=1

K∏
k=1

π
zik
k .

The prior over the mixing vector is a Dirichlet distribution with fixed hyperparameters
a0,

p(π) = Dir(π | a0) = C(a0)
K∏

k=1

π
a0−1
k .

The prior over mean and precision parameters is a normal-gamma distribution with hyper-
parameters m0, b0, α0, β0,

p(µ | τ)p(τ) =
K∏

k=1

D∏
d=1

N (µkd | m0, b0τkd)×
K∏

k=1

D∏
d=1

Gam(τkd | α0,β0)

=
K∏

k=1

D∏
d=1

N (µkd | m0, b0τkd)Gam(τkd | α0,β0).

We use the following values for the hyperparameters

a0 =
1
K

, m0 = 0.0, b0 = 1.0, α0 = 1.0, β0 = 1.0.

Bishop (2006, Chapter 10.2) derives a CAVI algorithm for this model.

Figure 8 presents Stan code that implements this model. Since Stan does not support
discrete latent variables, we marginalize over the assignment variables.
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data {
int < lower=0> N; // number o f data po in t s in data s e t
int < lower=0> K; // number o f mixture components
int < lower=0> D; // dimension
vec to r [D] x [N ] ; // o b s e r v a t i o n s

}

trans formed data {
vector < lower =0>[K] alpha0_vec ;
f o r ( k in 1 :K) { // convert the s c a l a r d i r i c h l e t p r i o r 1/K

alpha0_vec [ k ] < - 1 .0/K; // to a vec to r
}

}

parameters {
s implex [K] theta ; // mixing propor t i ons
vec to r [D] mu[K ] ; // l o c a t i o n s o f mixture components
vector < lower =0>[D] sigma [K ] ; // standard d e v i a t i o n s o f mixture components

}

model {
// p r i o r s
theta ~ d i r i c h l e t ( alpha0_vec ) ;
f o r ( k in 1 :K) {

mu[ k ] ~ normal ( 0 . 0 , 1 .0/ sigma [ k ] ) ;
sigma [ k ] ~ inv_gamma ( 1 . 0 , 1 . 0 ) ;

}

// l i k e l i h o o d
f o r (n in 1 :N) {

r e a l ps [K ] ;
f o r ( k in 1 :K) {

ps [ k ] < - l og ( theta [ k ] ) + normal_log ( x [ n ] , mu[ k ] , sigma [ k ] ) ;
}
increment_log_prob ( log_sum_exp ( ps ) ) ;

}
}

Figure 8: Stan code for the GMM of image histograms.
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C Latent Dirichlet Allocation

Probabilistic topic models are mixed-membership models of text, used to uncover the latent
“topics” that run through a collection of documents. Topic models have become a popular
technique for exploratory data analysis of large collections (Blei, 2012).

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a conditionally conjugate topic model
(Section 4.2). It treats documents as containing multiple topics, where a topic is a distribution
over words in a vocabulary.

Following the notation of Hoffman et al. (2013), let K be a specific number of topics and V
the size of the vocabulary. LDA defines the following generative process:

1. For each topic in k = 1, . . . , K ,

(a) draw a distribution over words βk ∼ DirV (η).

2. For each document in d = 1, . . . , D,

(a) draw a vector of topic proportions θd ∼ DirK(α).

(b) For each word in n= 1, . . . , N ,

i. draw a topic assignment zdn ∼Mult(θd), then

ii. draw a word wdn ∼Mult(βzdn
).

Here η ∈ R>0 is a fixed parameter of the symmetric Dirichlet prior on the topics β , and
α ∈ RK

>0 are fixed parameters of the Dirichlet prior on the topic proportions for each
document. Similar to the GMM example in Section 3, we encode categorical variables as
indicator vectors. Thus zdn is a K-vector where zk

dn = 1 indicates the nth word in document
d is assigned to the kth topic. Similarly, wdn is a V -vector where wv

dn = 1 indicates that the
nth word in document d is the vth word in the vocabulary. We occasionally abuse these
indicator vectors as indices—for example, if zk

dn = 1, then βzdn
is the kth topic, denoted by

βk.

The posterior p(β ,θ , z | w) is not available in closed form. While the topic assignments
z and their proportions θ enjoy a conjugate relationship, the introduction of the topics β
renders this posterior analytically intractable.

We derive a CAVI algorithm for this model, based on Hoffman et al. (2013). Posit a mean-field
variational family

q(β ,θ , z) =
K∏

k=1

q(βk ; λk)
D∏

d=1

�
q(θd ; γd)

N∏
n=1

q(zdn ; φdn)

�
.

Since LDA is a conditionally conjugate model, we can directly identify the family of each
factor (Section 4.2).

Begin with the complete conditional of the topic assignment. This is a multinomial,

p(zdn = k | θd ,β , wdn)∝ exp
�
logθdk + logβk,wdn

�
.

The variational approximation to the topic assignments is also a multinomial distribution,
with parameters φdn.

Follow with the complete conditional of the topic proportions. This is a K-dimensional
Dirichlet

p(θd | zd) = DirK

�
α+

N∑
n=1

zdn.

�
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The variational approximation to the topic proportions is also a K-dimensional Dirichlet
with parameters γd .

End with the complete conditional of the topics. This is a V -dimensional Dirichlet

p(βk | z, w) = DirV

�
η+

D∑
d=1

N∑
n=1

zk
dnwdn

�
.

In words, the vth element of the kth topic is a Dirichlet with parameter equal to the sum of
the fixed scalar η and the number of times term v (denoted by wdn) was assigned to topic k
(denoted by zk

dn). The variational approximation to the topic proportions is a V -dimensional
Dirichlet with parameters λk.

The CAVI updates for the topic assignment and topic proportions require iterating over the
following for each word within each document until convergence:

φk
dn∝ exp

�
E [logθdk] +E

�
logβk,wdn

��

∝ exp

�
Ψ(γdk) +Ψ(λk,wdn

)−Ψ
�∑

v

λkv

��
(59)

γd = α+
N∑

n=1

φdn (60)

This is a direct application of Equation (47) to the complete conditionals above.

The updates for φ and γ depend on the variational parameters for the topics λ. The update
for the topics, in turn, depends on the variational parameters for the topic proportions. That
update is

λk = η+
D∑

d=1

N∑
n=1

φk
dnwdn. (61)

This update only depends on the variational parameter for the topic assignments φdn.

Algorithm 4 presents the full CAVI algorithm for LDA. A similar computation defines the
ELBO for LDA; Hoffman et al. (2013) present the additional algebra for the ELBO.

Algorithm 4: CAVI for LDA

Input: LDA model and a set of words in documents w.

Output: Variational parameters λ,γ,φ.

Initialize: Variational parameters λ,γ randomly.

while the ELBO has not converged do

repeat

for each document d do

for each word n do
Compute updates to φ and γ via Equations (59) and (60).

end

end

until φ and γ have converged;

Compute update to λ via Equation (61).
end
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