Estremi vincolati. Vincoli di uguaglianza

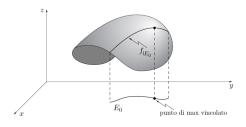
Siano $f, g \in C^1(X)$, con X aperto di \mathbb{R}^2 , due funzioni in due variabili.

Obiettivo: vogliamo determinare gli estremi di f (funzione obiettivo) ristretta all'insieme (vincolo):

$$E_0 = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 0\}$$

Esempi:

- Qual è il rettangolo di area massima tra quelli che hanno perimetro assegnato p?
- ② Avendo a disposizione 12 m² di cartone, qual è il volume massimo di una scatola rettangolare priva di coperchio che si può costruire?



La situazione più favorevole è quella in cui dall'equazione g(x,y) = 0 si può esplicitare y = y(x) o x = x(y), oppure più in generale quella in cui E_0 coincide con una curva γ di equazioni parametriche:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad t \in I, \quad \text{con I intervallo contenuto in \mathbb{R}}$$

In quest'ultimo caso il problema allora è ricondotto alla ricerca degli estremi della funzione reale di variabile reale:

$$\phi(t) = f(x(t), y(t)), \quad t \in I$$

Esempio:

Vogliamo determinare gli estremi di $f(x,y)=x^2+3y$ con il vincolo $g(x,y)=\frac{x^2}{4}+\frac{y^2}{9}-1=0$.

Il vincolo rappresenta un'ellisse che ha equazioni parametriche:

$$\begin{cases} x(t) = 2\cos t \\ y(t) = 3\sin t \end{cases} \quad t \in I, \quad [0, 2\pi] = \boxed{\bot}$$

Il problema equivale a determinare gli estremi di:

$$\phi(t) = 4(\cos t)^2 + 9\sin t$$
 in $[0, 2\pi]$

Abbiamo che:

$$\phi'(t) = \cos t(-8\sin t + 9) = 0 \Leftrightarrow \cos t = 0 \Leftrightarrow t = \frac{\pi}{2}, \ t = \frac{3\pi}{2}$$

Poiché $\phi''(t) = -\sin t(-8\sin t + 9) - 8(\cos t)^2$, abbiamo che $\phi''\left(\frac{\pi}{2}\right) = -1$ e $\phi''(t)\left(\frac{3\pi}{2}\right) = 17$. Quindi $t = \frac{\pi}{2}$ è un punto di massimo locale, $t = \frac{3\pi}{2}$ è un punto di minimo locale.

Dato che $\phi(0) = \phi(2\pi) = 4$ e $\phi(\frac{\pi}{2}) = 9$, $\phi(\frac{3\pi}{2}) = -9$, deduciamo che 9 e -9 sono massimo e minimo globali rispettivamente.

In generale non sarà possibile ridurre a una dimensione il problema. Come estendere la teoria sviluppata nel caso degli estremi liberi?

Definizione

Un punto (x_0, y_0) è **regolare** per il vincolo g(x, y) = 0 se:

$$g(x_0, y_0) = 0$$
 e $\nabla g(x_0, y_0) \neq \mathbf{0}$

Esempio:

Sia g(x,y)=y-x, con $x\in[0,1]$. Il vincolo rappresenta i punti della bisettrice y=x con $x\in[0,1]$. Poiché $\nabla g(x,y)=(-1,1)$, tutti i punti del vincolo sono regolari.

Esempio:

Sia $g(x,y) = x^2 + y^2 - 1$. Il vincolo rappresenta i punti del cerchio centrato nell'origine e di raggio 1. Poiché $\nabla g(x,y) = (2x,2y)$, tutti i punti del vincolo sono regolari (osserviamo che g(0,0) = -1 e quindi (0,0) non fa parte del vincolo).

Sia (x_0, y_0) un punto regolare. Supponiamo che E_0 coincida con una curva γ di equazioni parametriche:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

Possiamo scegliere il parametro t in modo che vari in un intorno I_0 di \mathbb{O} =t e che:

$$\begin{cases} x(0) = x_0 \\ y(0) = y_0 \end{cases}$$

Il vettore (x'(0), y'(0)) rappresenta un vettore tangente al vincolo nel punto (x_0, y_0) .

Consideriamo la funzione $\phi(t) = f(x(t), y(t))$.

Definiamo (x_0, y_0) punto critico vincolato se t = 0 è punto critico per ϕ , ovvero se $\phi'(0) = 0$. f è differenziabile. Quindi:

$$\phi'(t) = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t)$$

 $\phi'(0) = 0$ significherà $f_x(x_0, y_0)x'(0) + f_y(x_0, y_0)y'(0) = 0$ e quindi che la derivata di f in direzione tangente al vincolo in (x_0, y_0) è nulla.

Definizione

Siano $f, g \in C^1(X), X$ aperto di \mathbb{R}^2 . Il punto $(x_0, y_0) \in X$ si dice critico o stazionario condizionato al vincolo g(x, y) = 0 se:

- (x_0, y_0) è un punto regolare per il vincolo;
- ② la derivata di f in direzione tangente al vincolo si annulla in (x_0, y_0)

Teorema (caratterizzazione di un punto critico vincolato)

Siano $f, g \in C^1(X)$, X aperto di \mathbb{R}^2 e sia (x_0, y_0) un punto regolare per $E_0 = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 0\}$. Allora (x_0, y_0) è un punto critico vincolato a E_0 se e solo se esiste un numero reale λ_0 tale che

$$\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0)$$

Dimostrazione:

 \Rightarrow : Siano $(x(t), y(t)), t \in I_0$ le equazioni parametriche di E_0 in un intorno di (x_0, y_0) con $x(0) = x_0, y(0) = y_0$. Sia $\nabla f(x_0, y_0) \neq \mathbf{0}$. Se (x_0, y_0) è punto critico vincolato, vale

 $f_x(x_0,y_0)x'(0)+f_y(x_0,y_0)y'(0)=0.$ Quindi $\nabla f(x_0,y_0)$ è normale al vettore tangente.

Sappiamo anche che $\nabla g(x_0, y_0)$ è normale a E_0 in (x_0, y_0) . Quindi $\nabla f(x_0, y_0)$ e $\nabla g(x_0, y_0)$ sono paralleli, cioè esiste $\lambda_0 \in \mathbb{R}$ tale che $\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0)$.

⇐: Se vale $\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0)$, $\nabla f(x_0, y_0)$ è normale a E_0 in (x_0, y_0) e quindi vale $f_x(x_0, y_0)x'(0) + f_y(x_0, y_0)y'(0) = 0$. □

Segue immediatamente:

Teorema (condizione necessaria per gli estremi condizionati)

Siano $f, g \in C^1(X), X$ aperto di \mathbb{R}^2 e sia (x_0, y_0) un punto regolare per $E_0 = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 0\}$. Se (x_0, y_0) è un punto di estremo condizionato al vincolo g(x, y) = 0, allora è punto critico condizionato. In particolare esiste λ_0 tale che valga $\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0)$.

Dimostrazione:

 (x_0,y_0) è di estremo condizionato se e solo se t=0 è di estremo per $\phi(t)=f(x(t),y(t))$. Quindi $\phi'(0)=0$. \square

Definizione

Il numero λ_0 prende il nome di **Moltiplicatore di Lagrange**. La funzione $\mathcal{L} = \mathcal{L}(x, y, \lambda)$ si chiama **Lagrangiana** ed è definita come:

$$\mathcal{L}(x, y, \lambda) := f(x, y) - \lambda g(x, y)$$

Come possiamo tradurre:

Teorema (caratterizzazione di un punto critico vincolato)

Siano $f, g \in C^1(X), X$ aperto di \mathbb{R}^2 e sia (x_0, y_0) un punto regolare per $E_0 = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 0\}$. Allora (x_0, y_0) è un punto critico vincolato a E_0 se e solo se esiste un numero reale λ_0 tale che

$$\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0)$$

 (x_0, y_0) è un punto critico condizionato se e solo se esiste λ_0 tale che il punto (x_0, y_0, λ_0) sia punto critico libero per \mathcal{L} . Infatti i punti critici di \mathcal{L} sono soluzioni del sistema:

$$\begin{cases} \mathcal{L}_x = f_x - \lambda g_x = 0 \\ \mathcal{L}_y = f_y - \lambda g_y = 0 \\ \mathcal{L}_\lambda = -g = 0 \end{cases}$$

dove le prime due equazioni coincidono con l'equazione $\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0)$, mentre l'ultima esprime la **condizione di vincolo**.

Metodo:

Primo caso: il vincolo è esplicitabile, cioè una variabile si può scrivere in funzione dell'altra.

In questo caso il problema si riconduce a quello di risolvere un problema di massimo/minimo di una funzione definita in un intervallo.

Secondo caso: il vincolo non è esplicitabile.

In questo caso il problema si studia mediante la tecnica dei moltiplicatori di Lagrange.

- Si controlla se i punti del vincolo sono regolari. Quelli non regolari vanno esaminati a parte.
- Si cercano i punti critici condizionati di f o equivalentemente quelli liberi della lagrangiana risolvendo il sistema.
- Si determina la natura dei punti critici.

Esempio: si calcolino gli estremi di $f(x,y) = (x+y)^2$ col vincolo $g(x,y) = x^2 + 2y^2 - 1 = 0$.

Da $g(x,y)=x^2+2y^2-1$, ricaviamo che $\nabla g(x,y)=(2x,4y)$ che si annulla soltanto in (0,0) che, però, non fa parte del vincolo. Quindi tutti i punti sono regolari.

Sia $\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y) = (x + y)^2 - \lambda (x^2 + 2y^2 - 1)$. Risolviamo:

$$\begin{cases} 2(x+y) - \lambda(2x) = 0\\ 2(x+y) - \lambda(4y) = 0\\ x^2 + 2y^2 = 1 \end{cases}$$

Ricaviamo che $P_1 = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), P_2 = \left(-\frac{1}{\sqrt{3}}, +\frac{1}{\sqrt{3}}\right), P_3 = \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), P_4 = \left(-\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right).$

Possiamo vedere che $f(P_1)=0,\ f(P_2)=0,\ f(P_3)=\frac{3}{2},\ f(P_4)=\frac{3}{2}.$ Segue quindi che P_1 e P_2 sono minimi, mentre P_3 e P_4 sono massimi. Esempio: si calcolino gli estremi della funzione $f(x,y) = x^2 + 4y^2$ col vincolo $g(x,y) = x^2 + y^2 - 1 = 0$.

Poniamo $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 1 = 0\}$. Abbiamo che:

$$f|_C(x,y) = x^2 + 4y^2 = (x^2 + y^2) + 3y^2 = 1 + 3y^2$$

Poiché $y \in [-1,1]$ (il vincolo è il cerchio di centro (0,0) e raggio 1), $f|_C(x,y)$ ha minimo in y=0 e massimo in $y=\pm 1$. Segue quindi che la funzione $f|_C(x,y)$ ha minimi in $(\pm 1,0)$ e massimi in $(0,\pm 1)$.

Attenzione: si poteva applicare anche il metodo dei moltiplicatori di Lagrange. Fare per esercizio.

Esercizi

- 1. Si calcolino gli estremi della funzione $fx,y)=xy-y^2+3$ ristretta al vincolo $g(x,y)=x+y^2-1$.
- 2. Si calcolino gli estremi della funzione $fx,y)=x^2-2y^2$ ristretta al vincolo g(x,y)=x+y+2.
- 3. Si calcolino gli estremi della funzione fx,y)=xy ristretta al vincolo $g(x,y)=9x^2+4y-3$.
- 4. Si calcolino gli estremi della funzione fx,y)=4-x ristretta al vincolo $g(x,y)=x^2+y^2-1.$
- 5. Si calcolino gli estremi della funzione $f(x,y)=x^2+2y^2+3$ ristretta al vincolo $g(x,y)=2x^2+y^2-4$.
- 6. Si calcolino gli estremi della funzione f(x,y)=x-y ristretta al vincolo $g(x,y)=x^2+y^2-1$.
- 7. Si calcolino gli estremi della funzione $f(x,y)=x^2-y^2$ ristretta al vincolo $g(x,y)=x^2+y^2-1$.