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In this chapter, we discuss the theoretical foundations of machine learn-
ing, presenting the framework of empirical risk minimization (Sec. �.�) in
which to frame learning problems, the notion of inductive bias, and the
main results of algorithmic learnability, encapsulated in the definition of
PAC learning (Sec. �.�) and of complexity of a set of hypothesis, namely
VC-dimension and Rademacher complexity (Sec. �.�.� and �.�.�). We will
finish the chapter with an introduction to the information theoretical no-
tion of Kullback-Leibler divergence (Sec. �.�) and its link with maximum
likelihood and empirical risk. The presentation of this chapter follows
[�] and [�].

�.� Empirical Risk Minimization

�.�.� Notation and problem formalization

Consider the supervised learning scenario, in which there are an input
and an output space. We will use the following notation:

I input space: - ✓ R= (real features or one-hot-encoding of categori-
cal variables)

I output space: . = R, or {0, 1}, or {0, . . . , :} depending on the
problem at hand (i.e. regression, binary classification, multi-class
classification).

We will work in a probabilistic framework. They key ingredient is the
joint probability distribution between inputs and outputs ?(G , H) 2
⇡8BC(- ⇥ .) (with G 2 - , H 2 .), called data generating distribution.

We assume that there is a functional relationship between inputs and out-
puts that we want to understand, given by a labelling function 5 : - ! ..
Re-writing the data generating distribution as ?(G , H) = ?(G)?(H |G), it is
sometimes the case that ?(H |G) = ?(H | 5 (G)) (e.g. in classification prob-
lems, or in regression problems in which an additive measurement error
is assumed).

The input to our learning algorithm is a dataset ⇡, where |⇡ | = # , sam-
pled from a probability distribution ⇡ ⇠ ?

# (G , H), i.e. it is a set of input-
output pairs ⇡ = {(G8 , H8)|8 = 1, . . . ,#} such that (G8 , H8) ⇠ ?(G , H). We
assume these pairs to be independent (this is not true in general, however
it is not a very restrictive assumption). Ideally we would like to recover
5 , starting from ⇡.

A key point in Machine Learning is that, whenever we want to learn
something, we need to make hypotheses on good candidate models for
our task. So, since we are going to learn a function mapping inputs to
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outputs (possibly phrased in probabilistic terms), we need to choose a
set of functions that are likely to contain our true model, or at least to
approximate it well.
This set is called hypothesis class, defined as H= {⌘ : - ! .}. Typically
these functions are chosen to be parametric, i.e. ⌘ = ⌘ with  2 ⇥ ⇢ R:

for some :.

Remark: restricting the set of models to consider is actually what enables
us to learn (without any assumption, we cannot learn anything)!

Hencodes our inductive bias, that is, the assumptions made to learn the
target function and to generalize beyond training data. We stress once
again that without inductive bias there is no learning.

�.�.� Risk and empirical risk

Consider our set of hypotheses H, a function ⌘ 2 H and the joint
probability distribution ?(G , H).

Definition �.�.� The loss function ;(G , H , ⌘) 2 R�0, measures the error

that we commit in using ⌘ to predict H from G. Intuitively, the higher its

value, the worst our prediction.

Examples:

I 0 � 1 loss: ;(G , H , ⌘) ⌘ I(⌘(G) < H), with H 2 {0, 1}. That is, we
have no error if we predict correctly the label of G, an error of 1
otherwise.

I squared loss ;(G , H , ⌘) ⌘ (⌘(G) � H)2, with H 2 R.

Remark: the loss function acts on a single input-output pair.

Definition �.�.� The risk (or generalization error) is defined as

'(⌘) = E
G ,H⇠?(G ,H)[;(G , H , ⌘)]

The risk is therefore a property of the hypothesis function ⌘, i.e. each
⌘ comes with an associated risk. Our goal is to find a function ⌘ that
minimizes the risk.

Remark: the risk depends on the true data distribution (which is un-
known).

Definition �.�.� The empirical risk (or training error) is defined as :

'̂(⌘) = 1
#

#X
8=1

;(G8 , H8 , ⌘)

It is an empirical approximation, according to our sample, of the actual
risk. This is what we can practically optimize.

Risk minimization principle: find ⌘
8 2 H s.t. ⌘8 = argmin

⌘2H'(⌘).
That is, we need to find the hypothesis that minimizes the risk.
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Definition �.�.� If ; is the 0 � 1 loss and 9⌘ 2 H s.t. ?(⌘(G) = 5 (G)) = 1
(with 5 (G) true class), then Hhas the realizability property and'(⌘8) = 0.

Hypothesis sets with the realizability property contain the true model
(in general this is not the case in practice).

Empirical risk minimization principle: find ⌘8
⇡
= argmin

⌘2H '̂(⌘). This
minimum can be combinatorially hard to achieve, so sometimes we relax
this framework and we only find a good solution. In what follows, we are
going to address the problem of computing '(⌘8

⇡
), i.e. risk associated to

the optimal solution.

�.�.� Bias-Variance Trade-off

In this section, we want to analyze the generalization error and decom-
pose it according to the sources of error that we are going to commit.

In what follows, we will use the squared loss (hence we will focus on
regression problems). Considering ⌘ 2 H, an explicit expression of the
generalization error committed when choosing hypothesis ⌘ is:

'(⌘) = E?[;(G , H , ⌘)] =
∫

(⌘(G) � H)2?(G , H)3G3H

Theorem �.�.� The minimizer of the generalization error ' is:

6(G) = E[H |G] =
π

H?(H |G)3H

so that 6 = argmin
⌘
'(⌘), if 6 2 H.

Proof. We can prove it by rewriting our risk as:

'(⌘) =
∫

(⌘(G) � H)2?(G , H)3G3H =

=
∫

(⌘(G) + 6(G) � 6(G) � H)2?(G , H)3G3H =

=
∫

[(⌘(G) � 6(G))2 + (6(G) � H)2 + 2(⌘(G) � 6(G))(6(G) � H)]?(G , H)3G3H

Consider the term: ∫
2(⌘(G) � 6(G))(6(G) � H)?(G , H)3G3H =

=
π

2(⌘(G) � 6(G))?(G)
π

(6(G) � H)?(H |G)3H3G = 0

since π
(6(G) � H)?(H |G)3H = 6(G) �

π
H?(H |G)3H = 0
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by definition of 6. So that:

'(⌘) =
π

(⌘(G) � 6(G))2?(G)3G +
∫

(6(G) � H)2?(G , H)3G3H

where the second term does not depend on ⌘ and expresses the idea of
how noisy is our regression problem (this is something intrinsic to the
problem).
The first term depends on ⌘ (actually it is the only thing that we can
optimize when we minimize w.r.t. ⌘), and it holds that:

π
(⌘(G) � 6(G))2?(G)3G = 0 $ ⌘(G) = 6(G)

and so we proved that 6(G) is a minimizer.

Remark: our goal is to to evaluate '(⌘8
⇡
), with ⇡ ⇠ ?

# (G , H).

By previous computations (evaluated at the solution of the empirical risk
minimization problem), it holds that:

'(⌘8
⇡
) =

π
(⌘8
⇡
(G) � 6(G))2?(G)3G + =>8B4

Consider now the average over all possible datasets:

E⇡['(⌘8
⇡
)] =

π
E⇡[(⌘8

⇡
(G) � 6(G))2]?(G)3G =

=
π

E⇡[(⌘8
⇡
(G) + E⇡[⌘8

⇡
(G)] � E⇡[⌘8

⇡
(G)] � 6(G))2]?(G)3G

Carrying on the same computations as before and observing that:

E⇡[⌘8
⇡
(G) � E⇡[⌘8

⇡
(G)]] = 0

we get that the expected generalization error of our empirical risk
minimizer is:

E⇡['(⌘8
⇡
)] =

π
(E⇡[⌘8

⇡
(G) � 6(G)])2?(G)3G

|                                 {z                                 }
180B

2

+
π

E⇡[(⌘8
⇡
(G) � E⇡[⌘8

⇡
(G)])2]?(G)3G

|                                          {z                                          }
E0A80=24

+
∫

(6(G) � H)2?(G , H)3G3H
|                            {z                            }

=>8B4

The first term
Ø
(E⇡[⌘8

⇡
(G) � 6(G)])2?(G)3G captures the squared differ-

ence between the average predictor across all datasets (that we obtain
from empirical risk minimization) and the optimal predictor. If this
difference is small, on average across all datasets our empirical risk
minimization is going to work well; if it is large, across all datasets our
empirical risk minimization is going to work bad. We call this term
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3.2. The Bias-Variance Decomposition 151

Figure 3.6 Plot of squared bias and variance,
together with their sum, correspond-
ing to the results shown in Fig-
ure 3.5. Also shown is the average
test set error for a test data set size
of 1000 points. The minimum value
of (bias)2 + variance occurs around
ln � = �0.31, which is close to the
value that gives the minimum error
on the test data.

ln �

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15
(bias)2

variance

(bias)2 + variance
test error

fit a model with 24 Gaussian basis functions by minimizing the regularized error
function (3.27) to give a prediction function y(l)(x) as shown in Figure 3.5. The
top row corresponds to a large value of the regularization coefficient � that gives low
variance (because the red curves in the left plot look similar) but high bias (because
the two curves in the right plot are very different). Conversely on the bottom row, for
which � is small, there is large variance (shown by the high variability between the
red curves in the left plot) but low bias (shown by the good fit between the average
model fit and the original sinusoidal function). Note that the result of averaging many
solutions for the complex model with M = 25 is a very good fit to the regression
function, which suggests that averaging may be a beneficial procedure. Indeed, a
weighted averaging of multiple solutions lies at the heart of a Bayesian approach,
although the averaging is with respect to the posterior distribution of parameters, not
with respect to multiple data sets.

We can also examine the bias-variance trade-off quantitatively for this example.
The average prediction is estimated from

y(x) =
1

L

L�

l=1

y(l)(x) (3.45)

and the integrated squared bias and integrated variance are then given by

(bias)2 =
1

N

N�

n=1

{y(xn) � h(xn)}2 (3.46)

variance =
1

N

N�

n=1

1

L

L�

l=1

�
y(l)(xn) � y(xn)

�2
(3.47)

where the integral over x weighted by the distribution p(x) is approximated by a
finite sum over data points drawn from that distribution. These quantities, along
with their sum, are plotted as a function of ln � in Figure 3.6. We see that small
values of � allow the model to become finely tuned to the noise on each individual

Figure �.�: Bias-variance tradeoff. ln⌫
is a proxy for model complexity. Taken
from Bishop.

squared bias because it essentially captures the distortion of our empirical
risk minimization predictor, hence of our set of hypothesis H.

The second term
Ø
E⇡[(⌘8

⇡
(G) � E⇡[⌘8

⇡
(G)])2]?(G)3G encodes the vari-

ance, across all datasets, of our predictor, that is, how far each single
instance of the empirical risk minimizer differs from the average pre-
dictor. We call this the variance term. The larger the variance, the more
the intrinsic variability of the dataset is going to impact on what we can
reconstruct.

The third term
∞

(6(G)� H)2?(G , H)3G3H is the noise (as observed before).

Remark: high variance essentially means that we are in a region of
overfitting, high bias means that we are in a region of underfitting.

Since our goal is to minimize the empirical risk, we face a trade-off,
called the bias-variance trade-off. On one hand, choosing H to be a
very rich class might lead to overfitting (increasing the variance). On the
other hand, choosing H to be a very small set might lead to underfitting
(increasing the bias). A visual depiction of the trade-off is shown in
Figure �.�.

�.� PAC Learning

�.�.� Basic definitions

In what follows, our goal is to measure how much we can learn as
a function of the model complexity. This results in the PAC (Probably
Approximately Correct) learning framework, which encodes the notion of
model complexity and gives also bounds on the error that we commit.

We are going to explore this framework in the context of (binary) classifi-
cation, i.e. H 2 {0, 1}, using the 0 � 1 loss.

Consider an hypothesis set Hwith the realizability property, i.e. 9⌘̄ 2 �
s.t. ?G ,H(⌘̄(G) = H) = 1, since H 2 {0, 1} then 9 5 : - ! . s.t. ?G ,H(⌘̄(G) =
5 (G)) (that is, our hypothesis set contains the true function).

Definition �.�.� A realizable hypothesis set His PAC-learnable iff8⌘, ⇣ 2
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(0, 1), 8?(G , H), 9<⌘,⇣ 2 N s.t. 8< � <⌘,⇣ ,8⇡ ⇠ ?
<
, |⇡ | = < then

?⇡('(⌘8
⇡
)  ⌘) � 1 � ⇣.

This means that, fixing two parameters ⌘, ⇣ 2 (0, 1), governing our
precision, and a data generating distribution ?(G , H), we can find a
number <⌘,⇣ of observations (as a function of the parameters ⌘, ⇣), such
that we are guaranteed to learn the true function with error bounded by
⌘ (assuming that the true function is in H) with high probability (1 � ⇣),
provided we have at least <⌘,⇣ data points in ⇡. Note that the probability
here is over the dataset ⇡, meaning that our learning will succeed for a
fraction 1 � ⇣ of sampled datasets.

In the following, we consider a more general setting, in which we relax
the realizability assumption, and furthermore we assume that we have
at our disposal an algorithm � that takes ⇡ as input and returns a
function ⌘ of H as output, ideally the minimizer of the empirical risk,
but practically a good solution.

Definition �.�.� Given an hypothesis set H (not necessarily realizable) and

an algorithm �, H is agnostic PAC-learnable iff 8⌘, ⇣ 2 (0, 1), 8?(G , H),
9<⌘,⇣ 2 N s.t. 8⇡ ⇠ ?

<
, |⇡ | = < � <⌘,⇣

?⇡

⇣
'(⌘�

⇡
)  <8=⌘2�'(⌘) + ⌘

⌘
� 1 � ⇣

being ⌘
�

⇡
the result of applying � to Hand ⇡.

In other words, there exists a number <⌘,⇣ of data points such that the
algorithm learns a function having error close ( ⌘) to the minimum
with high probability (1 � ⇣).

In both definitions, we have a bound on the generalization error in terms
of ⌘ and ⇣ and, in order for this bound to hold, we need to have enough
data points. Typically:

I <⌘,⇣ depends polynomially on 1
⌘ ,

1
⇣ (since we want the number of

observations to increase moderately with the complexity of the
problem);

I � should run in polynomial time.

�.�.� Finite hypotheses sets

An hypothesis set is said to be finite if H is s.t. |H| < 1.
Using combinatorial arguments, we can prove that finite hypothesis sets
are agnostic PAC-learnable with:

<⌘,⇣ 
⇠2 log

� 2|H|
⇣

�
⌘2

⇡

hence with polynomial dependency on ⌘ and ⇣. In this framework,
log(|H|) is a measure of the complexity of the set H.

Remark: if H is described by 3 parameters of type double when repre-
sented in a computer (64 bits), it holds that |H|  23·64, so we have a finite
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set of hypothesis, hence we can provide a bound on every implementable
set of hypothesis functions. In this case

<⌘,⇣ 
1283 + 2 log( 2

⇣ )
⌘2 ,

i.e. we have linear dependency on the number of parameters.

�.�.� Pac learning example

We consider an example introduced by Kearns and Vazirani in the book
"An Introduction to Computational Learning Theory".

The goal is to learn a target axis-aligned rectangle ' lying in R2 using a
sample of m labeled training examples (x, I) with x 2 R2 and I 2 {�1, 1}
distributed according to a distribution ?(x, I). The hypothesis set H is
the set of all axis-aligned rectangles lying in R2. We assume there is a
true rectangle of this kind such that all positive points are inside it, and
all negative points are outside.

Figure �.�: The target rectangle ' with
a sample of positive and negative exam-
ples

We consider our hypothesis h to be the axis-aligned rectangle '0 with the
smallest area that includes all of the positive examples and none of the
negative ones.

What is the minimum number <⌘,⇣ of training examples so that, with
probability at least 1� ⇣, ⌘ has en error at most ⌘ with respect to the true
rectangle and the distribution ?(x, I)?

Solution

We have to find an <⌘,⇣ such that 8< > <⌘,⇣ %(error(⌘<) > ⌘)  ⇣. First
of all, let’s notice that the error error(⌘<) is equal to the area of the target
rectangle ' minus the area of the internal rectangle '0 = ⌘< that we
found.

Then, given an arbitrary error bound ⌘, we build within ' � rectangles
having each one an area of ⌘/4, on the sides of ' (see Figure �.�).
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Figure �.�: The � rectangles of area ⌘/4

Let’s consider the < observations drawn from ?(x, H). If each of the four
rectangles defined above contains at least one point, we have error(⌘<) 
⌘, because the area difference between ' and '0 would be fully covered
by the � rectangles (see Figure �.�).

Figure �.�: Configuration showing event
⌫

If we call this event ⌫, we have:

⌫ =) error(⌘<)  ⌘

equivalently, by modus tollens:

error(⌘<) > ⌘ =) ¬⌫

This implies:
%(¬⌫) � %(error(⌘<) > ⌘)

%(¬⌫) is the probability that at least one of the � rectangles doesn’t
contain any of the < points. This is probability is (1 � ⌘/4)< for a single
rectangle, hence we have %(¬⌫)  4(1 � ⌘/4)< . Thus the following chain
of inequalities holds:

4(1 � ⌘/4)< � %(¬⌫) � %(error(⌘<) > ⌘)

Now, let <⌘,⇣ be such that:

⇣ � 4(1 � ⌘/4)<⌘,⇣ � %(¬⌫) � %(error(⌘<) > ⌘)

Finding<⌘,⇣ that satisfy this inequality would prove that8< > <⌘,⇣ %(error(⌘<) >
⌘)  ⇣. We then require:

4(1 � ⌘/4)<⌘,⇣  ⇣
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and we use the inequality (1 � :)  4
�: to obtain:

<⌘,⇣ � (4/⌘) · ;=(4/⇣)

In summary, provided a sample of at least (4/⌘) · ;=(4/⇣) examples in
order to choose an hypothesis rectangle '0, we can assert that with proba-
bility at least 1�⇣, '0 will misclassify a new point (drawn according to the
same distribution from which the sample was chosen) with probability
at most ⌘.

This proves that our hypothesis set H is PAC-learnable.

�.�.� VC Dimension (Vapnik–Chervonenkis)

Consider a class of hypotheses functions H = {⌘ : - ! {0, 1}} and a
subset ⇠ = {21 , . . . , 2<} ✓ - of input points.

Define H⇠ = {(⌘(21), . . . , ⌘(2<))|⌘ 2 H}, the set of all tuples of Booleans
obtained by applying all possible hypothesis functions ⌘ 2 Hto all points
in ⇠. We say that Hshatters the set ⇠ iff |H⇠ | = 2< .

Practically, this means that for any label assignment to points in ⇠, we
have a function in our hypothesis set which is able to match such an
assignment. Namely, we can exactly describe every possible dataset with
inputs in ⇠.

Definition �.�.� The VC dimension of H is defined as:

+⇠38<(H) = <0G{< |9⇠ ✓ - , |⇠ | = < B .C . H B⌘0CC4AB ⇠}

Remark: In calculating the VC dimension , it is enough that we find one

set of m points that can be shattered, it is not necessary that we are able
to shatter any m points.

Examples:

I H0 = {⌘ : R ! {0, 1}|⌘ = �0 , 0 2 R} (threshold functions) has
+⇠38<(H0) = 1

I H0+ = { �0 , 0 |0 2 R} has +⇠38<(H0+) = 2
I H� = { [0 ,1] |0  1 , 0 , 1 2 R} (intervals) has +⇠38<(H�) = 2
I +⇠38<(H� [ (1 � H�)) = 3
I H✓ = { 0G+1H+2�0(G , H)|0 , 1 , 2 2 R} (lines inR2) has+⇠38<(H✓ ) =

3
I H⌫ = { ⌫(G) | ⌫ is an axis-aligned box inR2} has+⇠38<(H⌫) = 4
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Figure �.�: Proof that +⇠38<(H✓ ) � 3

�.�.� VC dimension and PAC learning

In what follows, we will explore the reasons why VC dimension is crucial
for PAC learnability.

Proposition �.�.� If H shatters ⇠, |⇠ | � 2<, then we cannot learn Hwith

< samples.

Hence, there will be an assignment of < samples to classes in which we
are going to commit a large error.

Figure �.�: Visual interpretation of the
theorem: it is impossible to train a model
of type H0+ with only a point A with
known classification (suppose �) because
the points different from A could have
any classification.

If the+⇠38<(H) = 1, then H is not (agnostic) PAC learnable, indeed:

Theorem �.�.� H is (agnostic) PAC-learnable iff +⇠38<(H) < 1.

In this case: 921 , 22 s.t.

21
+⇠38<(H) + ;>6( 1

⇣ )
⌘2  <⌘,⇣  22

+⇠38<(H) + ;>6( 1
⇣ )

⌘2

Hence VC dimension gives us control on what we can or cannot learn.
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�.�.� Rademacher Complexity *

Consider the data generating distribution ?(G , H), a dataset ⇡ ⇠ ?
< and

an hypotheses class H= {⌘ : - ! {�1, 1}}.

Definition �.�.� A distribution � = (�1 , . . . , �<) s.t. �8 2 {�1, 1} 88 and

?(�8 = 1) = 0.5 is called Rademacher distribution.

Definition �.�.� The data-dependent Rademacher complexity is defined

as:

R̂⇡(H) = E�


sup
⌘2H

1
<

<X
8=1

�8 ⌘(G8)
�

Remark: this is a property both of the function ⌘ and of the dataset ⇡.

Observation:P<

8=1 �8 ⌘(G8) = �·⌘(G) is the scalar product of the Rademacher
distribution � with the function ⌘ evaluated on our dataset, so that
1
<
� · ⌘(G) 2 [�1, 1] essentially is a measure of correlation of ⌘ with

random noise �.

Hence, for a specific choice of noise �, we are going to look at the dataset
and choose the best ⌘ that correlates with this noise; then we take the
expectation w.r.t. �.

Definition �.�.� The data-independent Rademacher complexity is

defined as:

R<(H) = E⇡⇠?< [R̂⇡(H)]

Remark: this definition takes into account the data generating mechanism
?.

Fix H and ?(G , H), then 8⇣ > 0 with probability at least 1 � ⇣, 8⇡ ⇠
?
<
, |⇡ | = < , 8⌘ 2 Hwe have:

'(⌘)  '̂⇡(⌘) +R<(H) +

s
;>6( 1

⇣ )
2<|                   {z                   }

⌘1

'(⌘)  '̂⇡(⌘) + R̂⇡(H) + 3

s
;>6( 2

⇣ )
2<|                    {z                    }

⌘2

Remark: computing the Rademacher complexity can be challenging, as
it requires the solution of an optimization problem for any possible value
of the Rademacher distribution.
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�.�.� Rademacher complexity and VC dimension *

Definition �.�.� The growth function ⇧H is defined as:

⇧H : N ! N, ⇧H(<) = max
⇠✓- ,|⇠ |=<

|H⇠ |

with H⇠ = {(⌘(21), . . . , ⌘(2<))|⌘ 2 H, ⇠ = {21 , . . . , 2<}}.

Hence the growth function describes how the complexity of what we can
explain with our hypothesis set H increases with the cardinality of the
data points that we have.

Figure �.�: Plot of the growth functions
of H0 (blue), H0+ (green) , H✓ (red) for
1  <  3

We can moreover define the+⇠38<(H) in terms of the growth function:

+⇠38<(H) = max{< |⇧H(<) = 2<}

Intuitively, this comes from the fact that if a set ⇠ is shattered by H, then
|H⇠ | = 2< .

Lemma �.�.� Sauer Lemma:

⇧H(<) 
3X
8=0

✓
<

8

◆


✓
4 · <
3

◆
3

 $(<3)

with 3 = +⇠38<(H)

Moreover it also holds that:

R<(H) 
r

2 log⇧H(<)
<

We can say that R<(H) and +⇠38<(H) are essentially equivalent, in
the sense that when the VC dimension is 1 then the upper bound on
the Rademarcher complexity is independent of < and greater than �
(if you substitute it into the PAC bound using Rademacher complexity,
you get an error which remains always large, no matter how large is <)
Otherwise, when the VC dimension is < 1, the bound tends to go to 0
as < grows to infinity.



�.� PAC Learning ��

Summarizing, we have ways to measure the complexity of our hypotheses
space: if this complexity is finite (in the sense of VC dimensionality), then
what we have as a result is that we can constrain the error and provide
bounds that tell us that this error is going towards 0, as we increase the
data points (i.e. we will eventually learn). Instead if the VC dimension is
infinite, no matter how many data points we have, we are not going to be
able to learn, because the complexity of our model is too high, hence it
can always overfit the data.

Hence, in order to be able to actually learn, we need to put some
constraints in our hypothesis set, and this formalizes our inductive
bias.

�.�.� ERM and Maximum Likelihood

In the maximum likelihood framework:

I we have a dataset ⇡ = {(G8 , H8)}8=1,...,< s.t. ⇡ ⇠ ?
<
, ? = ?(G , H)

I we factorize the data generating distribution as: ?(G , H) = ?(G)?(H |G)
and we make hypothesis on ?(H |G), trying to express this condi-
tional probability in a parametric form ?(H |G) = ?(H |G , )

I we consider the log-likelihood !(;⇡) = P
<

8=1 log ?(H8 |G8 , )
Then we apply the maximum likelihood principle, according to which:

"! = argmax


!(;⇡) = argmin


�!(;⇡)

It holds that:

argmin


�!(;⇡) = argmin


� 1
<

<X
8=1

log ?(H8 |G8 , )

⇡ argmin


E
?(G ,H)[� log ?(H |G , )]

since the average is an empirical approximation of the expectation.

Definition �.�.� � 1
<

P
<

8=1 log ?(H8 |G8 , ) is known as cross entropy.

Essentially, in the maximum likelihood framework, the loss function is
;(G , H , ) = � log ?(H |G , ), so we can recast the maximum likelihood
principle as a minimization of the (empirical) risk.

For what concerns the space of hypotheses functions H, typical choices
are:

I for regression problems: ⌘(G , ) = EH[?(H |G , )]
I for classification problems: ⌘(G , ) = argmax

H
?(H |G , ) (i.e. the

Bayes decision rule)

A typical choice of ?(H |G , ) in case of regression problems is:N(⌘(G), �2)
so that � log(?(H |G , )) / (H� log(G))2, that is, the loss as sum of squares
comes from the probabilistic assumption that the noise model on the
data is Gaussian, centered around the true value.
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�.� KL divergence

Consider a probability distribution ?(G), than � log ?(G) is a measure
of self-information. Indeed, if ?(G) = 1 then � log ?(G) = 0 (no self-
information), describing substantially our (lack of) surprise in observing
the event. If instead ?(G) = 0 then � log ?(G) = 1. In general, the more
rare the event is, i.e. the lower is ?(G), the more self-information it carries
(the more surprise its occurrence brings), i.e. the larger is � log ?(G).

In an information-theoretic sense, the entropy is a measure of the in-
formation that is carried by a random phenomenon, expressed as the
expected amount of self-information that is conveyed by a realization of
the random phenomenon.

Entropy is formally defined as:

�[?] = E?[� log ?(G)] = �
π

?(G) log ?(G)3G

for the continuous case, and:

�[?] = �
X
8

?(G8) log ?(G8)

for the discrete case.

In the discrete case, the maximum entropy is achieved for the uniform
distribution and it is equal to log , with  number of events that can
happen. In the continuous case, for a fixed variance, the distribution that
maximizes entropy is the Gaussian. The entropy is always 0 if we have a
deterministic distribution.

Definition �.�.� Consider two distribution ? , @; the Kullback-Leibler
divergence (also called relative entropy) is defined as:

 ![@ | |?] =
π

@(G) log
@(G)
?(G) 3G

 ![@ | |?] = 0 iff @ = ?.

Intuitively, we are taking a sort of expected difference between ? and
@, expressed in terms of a log odds ratio. It tells us how different two
distributions are: the larger  ! the more different are ? and @.

Some properties of the  ! divergence:

I  ![@ | |?] is a convex function of @ and ? and  ![@ | |?] � 0
I  ! is non-symmetric, i.e.  ![@ | |?] <  ![? | |@]
I  ![@ | |?] = ��[@] � E@[log ?], where the first term is the entropy

and the second term is known as cross-entropy between @ and ?.

Suppose ? is fixed but unknown, @ = @ can vary: what we usually do is
trying to find the best @ that approximates ?.



�.� KL divergence ��

We can do this by finding 8 = argmin  ![@ | |?]. This is at the basis of
variational inference techniques.

The mutual information between G and H is defined as:

�[G , H] =  ![?(G , H)| |?(G)?(H)]

 ![?(G , H)| |?(G)?(H)] = 0 iff ?(G) and ?(H) are independent.
Moreover, the more dependent they are, the more different is ?(G , H)
from the product of the marginals, the more information G carries about
H and viceversa.
In other words, the higher the mutual information is, the more knowing
H will tell us about G, the less residual uncertainty on G we will have.

Consider a dataset: G : G1 , . . . , G# :

Definition �.�.� The empirical distribution is defined as:

?4<?(G) =
1
#

#X
8=1

I(G = G8)

It is an approximation of the input data generating function ?(G).
Practically, the more observations we have, the more the empirical distri-
bution will look like ?(G).

Given a distribution @, we can compute:

 ![?4<? | |@] = E?4<? [� log @(G)]��(?4<?) = � 1
#

X
log @(G8)��(?4<?)

If @ = @, this is � 1
#
!() plus a constant. Hence maximizing !() is

essentially equivalent to minimizing the  ! between ?4<? and @.
This means that we can always rephrase maximum likelihood in terms
of cross-entropy.




