
Exact Inference in Probabilistic
Graphical Models �

�.� Introduction ��
�.� Factor Graphs ��
�.�.� From Bayesian Networks

to Factor Graphs ��
�.�.� From Markov Random

Fields to Factor Graphs . . ��
�.� Sum Product algorithm . . ��
�.� Max Plus algorithm ��
�.� Inference in general

Probabilistic Graphical
Models ��

�.� Introduction

In the context of inference, our task is, given a joint distribution ?(G) =
?(G1 , . . . , G=), to compute marginals or conditionals of this distribution.

We formalize this by considering two disjoint subsets of r.v.: H ✓ G , I ✓ G

s.t. H \ I = ; and H [I ✓ G.
Given that we observe H (this is denoted by H = H̄), we want to compute
the conditional

?(I |H = H̄) =
X
G
0
?(I , G0 |H = H̄) discrete r.v.

=
π

?(I , G0 |H = H̄)3G0 continuous r.v.

being G0 s.t. G0 [H [I = G.

Remark this summation can be of the order of $(K<) (|G0 | = <), hence
obtaining this marginalization is computationally challenging!

Our goal is to carry out this computation efficiently, by leverage the
factorization implied by the PGM.

For example, consider a Markov Random Field where variables are
connected in a chain (colored rectangles represent the cliques):

G=G3G2G1

The factorization implied by this PGM is:

?(G) = 1
/

· 1,2(G1 , G2) · 2,3(G2 , G3) · · · · · G=�1 ,G= (G=�1 , G=)

Consider now the equivalent model in case of a Bayesian Network:

G=G3G2G1

The factorization in this case reads as:

?(G) = ?(G1) · ?(G2 |G1) · ?(G3 |G2) · · · · · ?(G= |G=�1)

�� � Exact Inference in Probabilistic Graphical Models

Note: chain structures like the previous are common because they repre-
sent temporal series (more specifically, they are Markov processes).

Suppose that, given the model above, we want to compute the marginal

?(G:) =
X

G1 ,...,G:�1 ,G:+1 ,G=

?(G1 , . . . , G=)

with 1 < : < =. In principle this has complexity $(K=�1).
However, plugging the factorization implied by the Markov Random
Field, we get (using the distributive laws of sum and product):

?(G:) =
X
G�:

1
/

 1,2(G1 , G2) · · · · · =�1,=(G=�1 , G=) =

=
1
/

X
G:�1

 :�1,:(G:�1 , G:) . . .
X
G2

 2,3(G2 , G3)
X
G1

 (G1 , G2)
� �
+

+
X
G:+1

 : ,:+1(G: , G:+1) . . .
X
G=�1

 =�2,=�1(G=�2 , G=�1)
X
G=

 =�1,=(G=�1,G=)
� �

Note that complexity is now $(= · :), i.e. linear in =.

We can define a dynamic programming algorithm, called message-
passing algorithm, in which the information from the graph is summa-
rized by local edge information.

We break the chain in two parts, the past and the future w.r.t. G: , and we
define the following:

I forward message: ⇠�(G:) =
P
G:�1 :�1,:(G:�1 , G:) · ⇠�(G:�1),

with base case ⇠�(G1) = 1
I backward message: ⇠�(G:) =

P
G:+1 : ,:+1(G: , G:+1) · ⇠�(G:+1),

with base case ⇠�(G=) = 1

In this algorithm, each node has a message:

G1

⇠�(G1)

G2

⇠�(G2)

G3

⇠�(G3)

G
:�1

⇠�(G:�1)

G:

⇠�(G:)

⇠�(G:)

G
:+1

⇠�(G:+1)

G=�1

⇠�(G=�1)

G=

⇠�(G=)

Once we have both ⇠�(G:) and ⇠�(G:), we can observe that:

?(G:) =
1
/:

· ⇠�(G:)⇠�(G:) / ⇠�(G:)⇠�(G:)

with the normalization constant /: computed as /: =
P
G:
⇠�(G:)⇠�(G:).

Summarizing, the idea behind this algorithm is to start from the ex-
tremes of the chain and pass messages (forward and backward) until the

�.� Factor Graphs ��

other end is reached. Once there, messages are combined to obtain an
(un)normalized marginal distribution.

�.� Factor Graphs

Our goal in what follows is to extend what we have done for chains to
more general graph structures, i.e. trees and politrees.
In order to do so, we need to introduce the formalism of Factor Graphs.

The idea behind Factor Graphs is to expose in a more clear way what are
the factors and what are the variables.
For this reason, Factor Graphs are bipartite graphs (i.e. nodes are divided
in two classes), in which we have:

I variable nodes, denoted by G

I factor nodes, denoted by
5

Consider the distribution (with 58 factors and G8 variables):

?(G) / 51(G1 , G2) 52(G2 , G3 , G4) 53(G3 , G4)

The canonical way of represent bipartite graphs is the following:

G1

G2

G3

G4

51

52

53

That is, all variable nodes are put on the left and all factor nodes on the
right.

�� � Exact Inference in Probabilistic Graphical Models

A more convenient, equivalent, representation could be:

G1 51 G2 52

G3

53

G4

�.�.� From Bayesian Networks to Factor Graphs

Consider the following Bayesian network:

G1 G2

G3 G4

G5

Which corresponds to the factorization:

?(G) = ?(G1)?(G2)?(G3 |G1 , G2)?(G4)?(G5 |G3 , G4)
⌘ 51(G1) 52(G2) 53(G1 , G2 , G3) 54(G4) 55(G3 , G4 , G5)

Fundamentally the idea is to have a factor node (connected to the proper
variable nodes) for each term of the factorization implied by the Bayesian
Network.
Formally: 8?(G9 |?09) ! 59 { {G9} [?09
Hence the Factor Graph equivalent to the Bayesian Network above is:

51 G1 G2 52

53

G3 G4 54

55

G5

�.� Sum Product algorithm ��

�.�.� From Markov Random Fields to Factor Graphs

Consider the following Markov Random Field (rectangles correspond to
the cliques):

G1

G2 G3

G4

Which implies the factorization:

?(G) = 1
/

 1(G1 , G2 , G3) 2(G3 , G4) =
1
/

51(G1 , G2 , G3) 52(G3 , G4)

This leads to the following Factor Graph:

G1

G2

51 G3 52 G4

Hence, the conversion from Markov Random Fields to Factor Graphs
works as: 82 2 C{ 52(G2) ⇡ 2(G2) (equality does not hold because of
the normalization constant).

So, whether we are starting from a Bayesian Network or from a Markov
Random Field, we can convert our PGM into a Factor Graph and perform
message passing on it, without loss of generality.

�.� Sum Product algorithm

Our goal is now to do inference in Factor Graphs, generalizing to more
general graph structures what we did with chains previously. Consider
the following Factor Graph:

�� � Exact Inference in Probabilistic Graphical Models

G1

G2

51

52

G3

G4

53 G5

leaf

leaf

leaf

root

The joint probability distribution implied by this Factor Graph is:

?(G) = 51(G1 , G3) 52(G2 , G3) 53(G3 , G4 , G5)

Since the above graph is actually a tree, we can identify the root node
(choice is arbitrary, here it is G5) and consequently the leaves (in the
example, G1 , G2 , G4). Recall that there is a unique path from the root to
any of the leaves and that following all those paths we visit all the nodes
in the tree.

The message passing algorithm that we are going to detail is called Belief
Propagation and works in Factor Graphs which are trees (i.e., without
any loop).

Assume that the root is the node of which we want to compute the
marginal (this is not necessarily the case, indeed after performing for-
ward and backward pass we have sufficient information to compute the
marginal w.r.t. each node in graph).

So, let’s consider the marginal probability w.r.t. G5:

?(G5) =
X

G1 ,G2 ,G3 ,G4

?(G1 , G2 , G3 , G4 , G5) =

=
X
G3 ,G4

53(G3 , G4 , G5)
X
G1

51(G1 , G3)
� X

G2

52(G2 , G3)
�

Take P
G1 51(G1 , G3): we can see this as a message going from factor 51 to

variable G3. We denote it by ⇠ 51!G3(G3).
Analogously, P

G2 52(G2 , G3) ⌘ ⇠ 52!G3(G3) is a message from factor 52 to
variable G3.

Their product is instead a message flowing from variable G3 to factor 53,
denoted by ⇠G3! 53(G2 , G3) ⌘

P
G1 51(G1 , G3) ·

P
G2 52(G2 , G3)

Finally, the full summation can be seen as a message going from factor 53 to
variable G5, i.e.⇠ 53!G5(G5) ⌘

P
G3 ,G4 53(G3 , G4 , G5)[

P
G1 51(G1 , G3)][

P
G2 52(G2 , G3)]

We can observe the following:

I messages from factors to variables include a summation (an integral
in the case of continuous r.v.) over all the variables on which the
factor depends, except for the one we are sending the message to;

�.� Sum Product algorithm ��

I messages from variables to factors collect via multiplication all the
incoming messages from the other factors, except from the one we
are sending the message to.

Formalizing, we call:

I set of neighboring nodes of variable G:

N(G) = { 51 , . . . , 5: | 58 is connected to G}

I set of neighboring nodes of factor 5 :

N(5) = {G1 , . . . , G: |G8 is connected to 5 }

The scenario is the following:

G1

G:

5 G

The red arrow in the figure above corresponds to the message ⇠ 5!G(G).
Following what we have seen before, this is computed as:

⇠ 5!G(G) =
X

G1 ,...,G:2N(5)\G
5 (G , G1 , . . . , G:) ·

Y
G82N(5)\G

⇠G8! 5 (G8)

(⇠G8! 5 (G8) are the blue arrows in the figure above).

Consider now the symmetric situation:

51

5:

G 5

In this case:
⇠G! 5 (G) =

Y
582N(G)\ 5

⇠ 58!G(G)

Base cases are defined as:

I G leaf:
5G

⇠G! 5 (G) = 1

I 5 leaf:
5 G

⇠ 5!G(G) = 5 (G)

The Sum-product algorithm works in two steps:

I forward pass: messages are sent from the leaves to the root;
I backward pass: messages are sent from the root back to the leaves.

�� � Exact Inference in Probabilistic Graphical Models

In this way each edge will be traversed both by a forward and a backward
message.

After these two passages, all possible messages are computed and we
can obtain marginals and conditionals.

Consider the problem of computing the marginals, there are two cases in
this scenario:

I computation of the marginal of a variable node G:

?(G) =
Y
5 2N(G)

⇠ 5!G(G)

I computation of the marginal of a factor node 5 (Ḡ) (i.e., ?(Ḡ) where
Ḡ = N(5)):

?(Ḡ) = 5 (Ḡ) ·
Y
G2N(5)

⇠G! 5 (G)

Note that both these computations can be carried out once we have all
the messages.

Moreover, the sum-product algorithm works also when the joint distri-
bution is not normalized, in that case the obtained marginals have to be
normalized.

Consider now the problem of computing conditionals on H = Ĥ , H ✓
{G1 , . . . , G=}, i.e. ?(G |H = Ĥ).

The first step is clamping H to Ĥ, that is ?(G , G1 , . . . , G: , H = Ĥ) (i.e. we
fix H = Ĥ in the joint).

Then we run the sum-product algorithm with H9 fixed to Ĥ9 8H9 2 H

(practically, when running the message passing algorithm, whenever we
have a variable in H we consider its corresponding state Ĥ, instead of
summing over it):

?(G , H = Ĥ) =
X

G1 ,...,G:

?(G , G1 , . . . , G: , H = Ĥ)

Finally, we compute the desired conditional as:

?(G |H = Ĥ) = ?(G , H = Ĥ)
?(Ĥ)

with ?(Ĥ) = P
G
?(G , H = Ĥ).

In this context, we can see ?(G , H = Ĥ) as an unnormalized conditional
and ?(Ĥ) as its normalization constant.

Example: consider the following factor graph:

�.� Sum Product algorithm ��

G1

G2

51

52

G3

G4

53 G5

leaf

leaf

leaf

root

that represents the unnormalized joint distribution

?(G1 , G2 , G3 , G4 , G5) / 51(G1 , G3) 52(G2 , G3) 53(G3 , G4 , G5)

. Variables are binary, i.e. G8 2 {0, 1} and factors are defined as:

51(G1 , G3) =

26666664

0.3
0.2
0.1
0.4

37777775
where (G1 , G3) =

(0, 0)
(0, 1)
(1, 0)
(1, 1)

52(G2 , G3) =

26666664

0.1
0.5
0.2
0.2

37777775
where (G2 , G3) =

(0, 0)
(0, 1)
(1, 0)
(1, 1)

53(G3 , G4 , G5) =

2666666666666664

0.1
0

0.1
0.1
0.1
0

0.2
0.4

3777777777777775

where (G3 , G4 , G5) =

(0, 0, 0)
(0, 0, 1)
(0, 1, 0)
(0, 1, 1)
(1, 0, 0)
(1, 0, 1)
(1, 1, 0)
(1, 1, 1)

After arbitrarily choosing G5 as root node, we can start by computing
forward messages edge by edge:

Forward pass

⇠G1! 51(G1) = 1

⇠G2! 52(G2) = 1

⇠ 51!G3(G3) =
P
G1 51(G1 , G3)⇠G1! 51(G1) =

0.4
0.6

�

⇠ 52!G3(G3) =
P
G2 52(G2 , G3)⇠G2! 52(G2) =

0.3
0.7

�

⇠G3! 53(G3) = ⇠ 51!G3(G3)⇠ 52!G3(G3) =

0.12
0.42

�

�� � Exact Inference in Probabilistic Graphical Models

⇠G4! 53(G4) = 1

⇠ 53!G5(G5) =
P
G3 ,G4 53(G3 , G4 , G5)⇠G3! 53(G3)⇠G4! 53(G4) =

=

0.12 · (0.1 + 0.1) + 0.42 · (0.1 + 0.2)

0.12 · (0 + 0.1) + 0.42 · (0 + 0.4)

�
=

0.15
0.18

�

Backward pass

⇠G5! 53(G5) = 1

⇠ 53!G4(G4) =
P
G3 ,G5 53(G3 , G4 , G5)⇠G5! 53(G5)⇠G3! 53(G3) =

=

0.12 · (0.1 + 0) + 0.42 · (0.1 + 0)
0.12 · (0.1 + 0.1) + 0.42 · (0.2 + 0.4)

�
=

0.054
0.276

�

⇠ 53!G3(G3) =
P
G4 ,G5 53(G3 , G4 , G5)⇠G5! 53(G5)⇠G4! 53(G4) =

0.3
0.7

�

⇠G3! 51(G3) = ⇠ 53!G3(G3)⇠ 52!G3(G3) =

0.3 · 0.3
0.7 · 0.7

�
=

0.09
0.49

�

⇠G3! 52(G3) = ⇠ 53!G3(G3)⇠ 52!G3(G3) =

0.3 · 0.4
0.7 · 0.6

�
=

0.12
0.42

�

⇠ 51!G1(G1) =
P
G3 51(G1 , G3)⇠G3! 51(G3) =

0.09 · 0.3 + 0.49 · 0.2
0.09 · 0.1 + 0.49 · 0.4

�
=

0.125
0.205

�

⇠ 52!G2(G2) =
P
G3 52(G2 , G3)⇠G3! 52(G3) ==

0.12 · 0.1 + 0.42 · 0.5
0.12 · 0.2 + 0.42 · 0.2

�
=

0.222
0.108

�

Having computed all the messages, we can calculate the marginal for all
the nodes, for example:

?(G5) / ⇠ 53!G5(G5) =

0.15
0.18

�
/

0.45
0.55

�

?(G3) / ⇠ 51!G3(G3)⇠ 52!G3(G3)⇠ 53!G3(G3) =

0.4 · 0.3 · 0.3
0.6 · 0.7 · 0.7

�
=

0.036
0.294

�
/

0.11
0.89

�

?(G2 , G3) / 52(G2 , G3)⇠G2! 52(G2)⇠G3! 52(G3) =

26666664

0.1 · 0.12
0.5 · 0.42
0.2 · 0.12
0.2 · 0.42

37777775
=

26666664

0.012
0.21
0.024
0.084

37777775
/

26666664

0.04
0.64
0.07
0.25

37777775
Notice that all marginals were normalized using the same constant
/ = 0.33 .

�.� Max Plus algorithm ��

�.� Max Plus algorithm

In what follows our task will be, given a joint density ?(G), to find the
tuple G" = argmax

G
?(G) (i.e. find a setting of the variables that has the

largest probability and the value of that probability).

To do so, we will use the max-plus algorithm.

As an example, consider a chain structure described by a Markov Random
Field:

G1 G2 G=

whose factorization reads as

?(G) = 1
/

 1,2(G1 , G2) · · · · · =�1,=(G=�1 , G=)

Our goal is to maximize ?(G) w.r..t G= .

It is possible to distribute the factorization so that only local computations
are required:

max
G

?(G) = max
G1

. . .max
G=

?(G) =

=
1
/

max
G1

max
G2
 1,2(G1 , G2) · · · · · max

G=�1
 =�2,=�1(G=�2 , G=�1)max

G=

 =�1,=(G=�1 , G=)

This happens because of the distributive properties of the max, indeed it
holds that, given 0 > 0:

I the max distributes over the product

max(01 , 02) = 0 · max(1 , 2)

I the max distributes over the sum

max(0 + 1 , 0 + 2) = 0 + max(1 , 2)

This allows us to take an approach similar to the one used in the sum-
product algorithm.

Actually we will maximize log ?(G), hence turning the product into sum
of logarithms (and this justifies the name max-plus), i.e. our objective is
to maximize

log ?(G) =
X
8

log 8 ,8+1(G8 , G8+1) � log/

This saves us from product of factors that are possibly very small, since
they are probabilities.

Max-plus algorithm is very similar to sum-product: essentially max
replaces sum and plus replaces product. This leads to the following

�� � Exact Inference in Probabilistic Graphical Models

scenarios:

G1

G:

5 G

⇠ 5!G(G) = max
G1 ,...,G:

log 5 (G , G1 , . . . , G:)+

+
X

G82N(H)\G
⇠G8! 5 (G8)

�

51

5:

G 5 ⇠G! 5 (G) =
X

582N(G)\ 5
⇠ 58!G(G)

With base cases:

I G leaf:
5G

⇠G! 5 (G) = 0

I 5 leaf:
5 G

⇠ 5!G(G) = log 5 (G)

In order to find the maximum of the joint distribution, that is

?<0G = max
GA>>C

 X
5 2N(GA>>C)

⇠ 5!GA>>C
(GA>>C)

�

we just need to run the forward pass of the algorithm (i.e. we propagate
messages from the leaves up to the root, as in the sum-product algorithm).

Remark: the result will be the same irrespective of which node is chosen
as the root.

However, we want to find also the configuration of the variables for
which this maximum is achieved. This can be done by applying a slight
variation in the forward pass, meaning that we also need to keep track
of which values of the variables gave rise to the maximum state of each
variable. So during the forward pass we will also store:

� 5!G(G) = argmax
G1 ,...,G:2N(5)\G

log 5 (G , G1 , . . . , G:) +

X
G82N(5)\G

⇠G8! 5 (G8)
�

Hence, since at the end of the forward pass we know the most probable
value of the root node

G
<0G

A>>C
= argmax

GA>>C

 X
5 2N(GA>>C)

⇠ 5!GA>>C
(GA>>C)

�

we can exploit the additional information that we stored to retrieve
the most probable state of the internal nodes by back-tracking, i.e. by
following �. For example, assuming the variable nodes connected to 5

�.� Max Plus algorithm ��

are G1 , . . . , G: , GA>>C , in the first backtracking step we will fix the value of
G1 , . . . , G: according to

� 5!GA>>C
(G<0G
A>>C

) =
8>><
>>:
G1 ! G

<0G

1
. . .

G: ! G
<0G

:

9>>=
>>;
,

and then propagate backwards following � from the other factor nodes
connected to G1 , . . . , G: .

Example: consider the following chain:

G1 51 G2 52 G3

in which variables are binary, i.e. G ⌘ G1 , G2 , G3 2 {0, 1} and factors are
defined as:

51(G1 , G2) =

26666664

0.3
0.2
0.1
0.4

37777775
where (G1 , G2) =

(0, 0)
(0, 1)
(1, 0)
(1, 1)

52(G2 , G3) =

26666664

0.1
0.5
0.2
0.2

37777775
where (G2 , G3) =

(0, 0)
(0, 1)
(1, 0)
(1, 1)

We start by computing forward messages edge by edge:

⇠G1! 51(G1) = 0

⇠ 51!G2(G2) = max
G1

⇥
log 51(G1 , G2) + ⇠G1! 51(G1)

⇤
=

log 0.3
log 0.4

�
where G2 =

0
1

⇠G2! 52(G2) = ⇠ 51!G2(G2)

⇠ 52!G3(G3) = max
G2

⇥
log 52(G2 , G3)+⇠G2! 52(G2)

⇤
=

log 0.2 + log 0.4
log 0.5 + log 0.3

�
where G3 =

0
1

as well as backtracking functions:

� 51!G2(G2) =

0
1

�
where G2 =

0
1

� 52!G3(G3) =

1
0

�
where G3 =

0
1

At this point, we can write down the lattice/trellis diagram:

G1 G2 G3

0

1

�� � Exact Inference in Probabilistic Graphical Models

This kind of diagram shows explicitly the (2 in this case) possible states
(one per row of the diagram) for each of the variables G8 in the model.
The two paths through the lattice correspond to configurations that give
the global maximum of the joint probability distribution.

If, for example, we get that:

max
G3

⇠ 52!G3(G3) = log 0.5 + log 0.3

argmax G3 = 1

then we can obtain the tuple that maximizes our joint density by follow-
ing the path backward in the diagram above (we are guaranteed that this
path is unique), starting from G3 = 1, i.e. (0, 0, 1) (red path in the figure).

Note: in the context of Hidden Markov Models, the max-plus algorithm
is called Viterbi algorithm.

�.� Inference in general Probabilistic Graphical
Models

In what follows, we want to extend what we have seen so far to general
probabilistic graphical models, meaning Factor Graphs which contain
loops.
In these cases, we cannot identify the root and the leaves, hence we don’t
have well defined forward and backward directions.

There are several possibilities:

I Junction Tree algorithm: it roughly builds a tree over the cliques
of the Factor Graph, then exact inference is done in this tree. The
worst case complexity of this algorithm is exponential in the size
of the largest clique (so possibly very heavy computationally);

I Loopy Belief Propagation: forward and backward pass of the
sum-product algorithm are iterated several times, until a fix point
is reached. Unfortunately there is no guarantee that the algorithm
will converge. When it does, it provides an approximate answer to
the inference problem;

I Monte Carlo Sampling: a general strategy for approximate infer-
ence based on sampling;

I Variational Inference: it approximates the posterior distribution
with a simpler distribution belonging to a pre-specified (parametric)
class, which is the closer one to the true posterior, minimizing the
KL-divergence.

