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In this chapter we will introduce the simplest Bayesian machine learning
approach, namely Bayesian linear regression. Under a Gaussian likeli-
hood model for observations, the solution can be computer analytically,
requiring a matrix inversion from a computational perspective. We will
start by an introduction to Gaussian distributions, Bayesian inference
and linear regression (to fix notation). Then we will dig into Bayesian
regression, discuss the role of model evidence or marginal likelihood
and briefly touch upon model comparison.

�.� Gaussian Distribution

We are going to view in detail a number of useful properties of Multi-
variate Gaussian Distribution, which will be very useful in the following
sections and chapters.

�.�.� Definition

Let’s start by defining the probability density of the d-dimensional
Multivariate Gaussian, denoted by#(G |⇠,⌃), where ⇠ is a d-dimensional
vector and represents the mean of the Gaussian and ⌃ is a 3 ⇥ 3 positive
definite matrix, called Covariance matrix

N(G |⇠,⌃) = ((2�)3det(⌃))� 1
2 · exp

✓
�1

2
(G � ⇠))⌃�1(G � ⇠)

◆

Sometimes ⌃�1 = �, called the Precision matrix, is used instead of
the covariance matrix in the definition of a Gaussian. We also refer to
(G � ⇠))⌃�1(G � ⇠) as the Mahalanobis distance. Notice that having
⌃ = � one obtains the euclidean distance.

�.�.� Principal components

Since ⌃ is positive definite, we can diagonalize it and decompose it in
⌃ = ⇢⇤⇢) where ⇤ = 3806(⌫1 , . . . ,⌫=) is a diagonal matrix composed
of the eigenvalues of ⌃ and ⇢ is an orthogonal matrix (i.e. such that
⇢⇢

) = � holds) whose rows are eigenvectors of ⌃.

We can do a change of coordinate in this way:

H = ⇤� 1
2⇢

)(G � ⇠)

Then we have that

(G � ⇠))⌃�1(G � ⇠) = (G � ⇠))⇢⇤� 1
2 ⇤� 1

2⇢
)(G � ⇠) = H

)
H
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Practically, we obtain a Gaussian distribution with mean zero and Co-
variance distribution equal to the identity, N(G |0, �). Geometrically we
are roto-translating the ellipsoids describing the level sets of a Gaussian
Distribution into a sphere centered in the axis, such that points at one
standard from the mean have distance � from the origin. This linear
change of basis can always be performed.

�.�.� Completing the square

Suppose that we have a probability density like

?(G) = 2 · exp
✓
�1

2
G
)
�G � 1)G

◆

This is actually a Gaussian distribution; to show it we need to do some
algebra on log ?(G). The following identity can be proved:

�1
2
G
)
�G � 1)G =

1
2
(G � ��1

1))�(G � ��1
1) � 1

2
1
)
�

�1
1

Therefore we can use the properties of the exponential to get

2·exp(�1
2
G
)
�G�1)G) = N(G |��1

1 ,�
�1)

p
(2�)3det��1 · exp(�1

2
1
)
�

�1
1) · 2|                                        {z                                        }

=1

which means that
?(G) = N(G |��1

1 ,�
�1).

Staten otherwise: every distribution which is an exponential of a
quadratic form is a Gaussian distribution.

�.�.� Further closure properties

The following properties will not be proved. You can find more details in
the Bishop book

I Linear transformation Suppose to have H = "G + ◆ where G ⇠
N(⇠G ,⌃G), ◆ ⇠ N(⇠,⌃), G ?? ◆. Then H is Gaussian, H ⇠ N("⇠G +
⇠,"⌃G") +⌃). This means that Gaussians are closed under linear
transformations.

I Marginals and conditionals Assume that

I =

G

H

�
I ⇠ N(⇠,⌃)

⇠ =

⇠G
⇠H

�
⌃ =


⌃GG ⌃GH
⌃HG ⌃HH

�

The marginal distribution is pretty easy to obtain:

G ⇠ N(⇠G ,⌃GG)
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While the conditional distribution is just a little more complicated

?(G |H) = N(G |⇠G + ⌃GH⌃�1
HH
(H � ⇠H),⌃GG � ⌃GH⌃�1

HH
⌃HG)

I Product of Gaussians The product of two Gaussians densities is
still a Gaussian

N(G |⇠1 ,⌃1)N(G |⇠2 ,⌃2) = N(G |⇠,⌃) ·  

where

( = ⌃1 + ⌃2

⇠ = ⌃1(
�1⇠2 + ⌃2(

�1⇠1

⌃ = ⌃1(
�1⌃2

 =
exp

�� 1
2 (⇠1 � ⇠2))(�1(⇠1 � ⇠2)

�
p

det(2�()

I Bayesian Theorem Supposing to have

G ⇠ N(G |⇠,��1), ?(H |G) = N(H |"G + 1 , !�1)

Then the joint distribution of G and H is still a Gaussian

I =

G

H

�

In fact

ln ?(I) = ln ?(G) + ln ?(H |G) =

const � 1
2
(G � ⇠))�(G � ⇠) � 1

2
(H �"G � 1))!(H �"G � 1)

By completing the square we obtain a Gaussian with the following
mean and covariance

I ⇠ N
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And then we can apply the marginalization and the conditional
distributions formula that we have seen before to compute ?(H)
and ?(G |H).

�.� Bayesian Estimation

Consider = observations of i.i.d. random variables G = G1 , . . . , G= and a
family of models ?(G |), corresponding to our likelihood distribution, in
which we are looking for the model that best fits our data.
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x
#

In the Bayesian context, we also have a prior distribution ?() and we
can compute the posterior distribution

?( |G) = ?(G |)?()
?(G)

The problem in this scenario, as usual, is computing the marginal likeli-
hood, because ?(G) =

Ø
?(G |)?()3 is a hard integral to approximate

in a high dimensional setting.

Now, we could compute the maximum a-posteriori, i.e.map = max ?( |G),
but in this way, from the estimated parameters, we would obtain only
point estimates as output. Instead, we want to get the entire distribution
in order to have a complete representation of uncertainty. So, it’s more
convenient to compute the predictive distribution of G by using all the
information contained in the posterior

?(G |G) =
π

?(G |)?( |G)3

Which is obtained by the usual factorization
π

?(G ,  |G)3 =
π

?(G |, G)?( |G)3 =
π

?(G |)?( |G)3

Let’s study an example: suppose to have G1 , . . . , G= 2 {0, 1} so that
?(G |) = Bernoulli(), and that we observed (�) : times and (�) = � :

times. A good choice for our prior in this scenario is

?() = Beta( |�, �) = 1
⌫(�, �)

��1(1 � )��1

Where ⌫ is the Beta function. It represents a family of distributions
having domain in [0, 1], which can be skewed more toward 0 or 1 by
playing with the parameters. It can be showed that

EBeta(�,�)[] =
�

� + �

By using the prior and the likelihood we can compute the logarithm of
the posterior

log ?( |G) = !() + log ⌫( |�, �) � log ?(G)
= : log + (= � :) log(1 � ) + (� � 1) log + (� � 1) log(1 � ) + ⇠

= ⇠ + (: + � � 1) log + (# � : + � � 1) log(1 � )

where the term ⇠ incorporates all the terms that are independent of .
By recognising the functional form of a Beta distribution we arrive at the
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last equality

log ?( |G) = log Beta( |: + �,# � : + �)

The predictive distribution is then defined through the following expec-
tation:

?(G = 1|G) =
π

?(G = 1|)?( |G)3 =
π 1

0
Beta( |:+�,#�:+�)3 =

: + �
# + � + �

The Bernoulli and the Beta distribution are an example of conjugate
priors.

Definition �.�.� We say that the prior distribution and the likelihood

distribution are conjugate priors if the corresponding posterior distribution

has the the same functional form of the prior.

�.� Introduction to Linear Regression

We will start with an introduction to linear regression. This will serve as
a recap of notions that will be expanded in a Bayesian setting later on.

We are moving from the problem of describing probabilistic models and
performing inference on them, to the problem of supervised learning.

We have data, in the form of G , H : (G8 , H8) where 8 = 1, . . .# , i.e we
have pairs of inputs and outputs. Assume that ?(H |G) = ?(H |G , ) is
a parametric model of our random variables. At first, we are going to
choose "! with a maximum likelihood approach

"! = argmax ?(H |G , )

Therefore what we need to do is to identify our parametric model, which
in linear regression is just

?(H |G , ) = N(H | 5 (G ,F), ��1)

Notice that in this case  = (F , �). We can equivalently rewrite this with
the (perhaps more familiar) notation

H = 5 (G ,F) + & & ⇠ N(0, ��1)

In particular, in linear regression, we will have that our function 5 is
linear with respect to our weights F, that is

5 (G ,F) = F0)0(G) + . . . + F"�1)"�1(G)

Notice that ) can be, and usually are, non-linear functions of the input
data. They are the basis function for our regression model. They can be
monomials, Gaussian RBF, sigmoids, . . ..
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This means that the log likelihood of our model is, in fact

log ?(H |G , ) / �⇢⇡(F) = �1
2

#X
8=1

⇣
H8 � F))(G8)

⌘2

Minimizing the sum of squares ⇢⇡ means maximizing the likelihood,
hence, taking the gradient of the function we get

rF⇢⇡(F) =
#X
8=1

⇣
H8 � F))(G8)

⌘
))(G8) = 0

Which yields the following close form for our weights

F" =
⇣
�)�

⌘�1
�) H

Definition �.�.� �8 9 = ) 9(G8) is called the design matrix, it is the 9 � C⌘
feature (basis function) evaluated on the i-th datum.

If M is large, solving the direct problem might be computationally difficult,
but we can rely on optimization algorithms, such as gradient descent, to
actually find the minimum of our negative log-likelihood, exploiting the
fact that we are dealing with a quadratic form here.

In order to avoid overfitting, especially if the chosen basis functions are
enough complex and expressive, we seldom introduce further regular-
ization terms in the loss function, such as

⇢, (F) =
(

1
2 | |F | |22 Ridge
1
2 | |F | |1 Lasso

Therefore we will minimize the quadratic loss plus one of the two penalty
terms above:

⇢⇡(F) + ⌫⇢, (F)

where ⌫ is the regularization coefficient.

�.�.� Example

As an example, we can generate synthetic datasets by adding Gaussian
noise to a set of points belonging to the curve H = B8=(2�G)

Figure �.�: On the left, the sinusoidal
function and the generated data points.
On the right, the true conditional distri-
bution ?(C |G) in which the green curve
denotes the mean and the shaded region
spans one standard deviation on each
side of the mean (Bishop)
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We build ��� data sets, each having �� data points, and we perform Linear
Regression using �� Gaussian basis functions on the datasets varying
the regularization coefficient ⌫.

Figure �.�: On the left, the result of fit-
ting the model to the different data sets
varying ;=(⌫). On the right, the average
of the fits on the ��� datasets (Bishop)

�.� Bayesian Linear Regression

By adding the regularization term, we are modifying the loss function
in order to obtain better results in terms of overfitting, but one of the
drawbacks is that we lose a nice probabilistic interpretation of our model:
the object we are minimizing is not a negative likelihood anymore. How
can we go back towards a more rigorous probabilistic setting?

The key point to observe in order to do this step is that the regularization
term is, in fact, a bias that we introduce in our data. What we can do
instead of adding a penalty term in the loss, is to encode the bias in a
prior distribution of our parameters, ?(F |�) and then treat our problem
in a Bayesian way. For example

?(F |�) = N(F |0, ��1
�)

where � is a hyper-parameter of our distribution (we will see some
methods to choose it). This is a typical choice for our bias since then our
weights will be forced to be small (which is the goal of regularization).

For the moment let’s suppose we have fixed our �. Since we have a
likelihood of our observation, we can compute the posterior. Let’s also
introduce a Gaussian noise in the observations with precision �.

We can visualize the model in graphical terms as:
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x

y w
#

�

�

Applying Bayes theorem, the posterior is

?(F |G , H , �, �) =
?(H |G ,F , �)?(F |�)

?(H |G , �, �)

In this scenario, choosing a Gaussian prior and having the Gaussian
likelihood of the linear regression problem, we have an analytical form
for our posterior distribution, as we are about to see.

Let’s consider the logarithm of the posterior first

log ?(F |G , H , �, �) = ��
2

#X
9=1

⇣
H8 � F))(G8)

⌘2
� �F)F + const

The logarithm of the marginal likelihood does not depend on F and
is treated as a constant. The trick is to notice that we have a quadratic
function ofF, and, as we have seen in the first paragraph, if the logarithm
of a distribution is a quadratic function then that distribution is a
Gaussian.

?(F |G , H , �, �) = N(F |<# , (# )

where

<# = �(#�) H

(
�1
#

= �� + ��)�

which is very similar (but not equal) to what we get as a solution in Ridge
Regression.

If we use a general Gaussian prior instead, of the form ?(F |<0 , (0) =
N(F |<0 , (0), then our posterior becomes

?(F |G , H , �, �) = N(F |<# , (# )

with

<# = (#
h
(
�1
0 <0 + ��) H

i
(
�1
#

= (�1
0 + ��)�
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So, in Bayesian regression, we treat our parameters probabilistically,
placing a prior distribution over them, computing the posterior given
the observation that we have and we using it to make predictions. We
have seen that for a Gaussian prior we have a Gaussian posterior, and we
also have an analytically computable posterior, given that we know how
to invert matrices.

Figure �.�: Samples from the posterior
distribution of a Bayesian regression
model on the dataset shown in section
�.�.�. Increasing the size of the dataset,
the predictive distribution approximates
better the true data distribution (Bishop)

�.�.� Online Learning

There is an extra feature which is typical of Bayesian learning. When we
first pick a prior distribution we are basically having random weights,
corresponding to random lines in the data space (remember what the
weights actually represent!). Once we compute the posterior, we are
reshaping the Gaussian distribution from which we sample our weights,
up until it becomes highly centered towards a point once we get a lot of
observations. In this process, nothing forbids us to start from a prior that
already takes into account some observations! This is a general principle
of Bayesian learning: when we observe new data points, we use as new
prior the posterior relative to the previous observations. Hence, Bayesian
linear regression, is, naturally, an online method, which means that every
time we observe new data we can easily incorporate them into our model
without retraining the model from the start!

Example

In order to visualize how the posterior distribution is updated when
including new training data, we consider the simple example reported
in the Bishop’s book. We want to fit a linear model of the form 5 (G ,w) =
F0 +F1 · G, assuming � and � known. The columns of Figure �.� show:

I First column: the likelihood of the last data point (G , H) added to
the training set as a function of w, i.e. ?(H |G ,w)

I Second column: the posterior distribution obtained multiplying the
prior (which is the posterior of the previous row) by the likelihood
reported in the same row

I Third column: some samples of the regression function obtained
by drawing samples of w from the posterior distribution

The first row corresponds to the situation before any data points are
observed: the prior distribution of F0 ,F1 is a multivariate standard
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normal distribution. In the next rows this distribution is reshaped by
the information contained in the dataset and the posterior distribution
becomes sharper and centred on the true parameter values.

Figure �.�: Illustration of sequential
Bayesian learning for a simple linear
model of the form 5 (G ,w) = F0 + F1 · G
(Bishop)

�.� Predictive distribution

Remember that the probability distribution is just the prediction of a new
point given our observations.

?(H |G , G , H , �, �)

In Bayesian learning we average over all possible models

?(H |G , G , H , �, �) =
π

?(H |G ,F , �, �)?(F |G.H , �, �)3F

Since in the linear regression setting we have that both these distributions
are Gaussians, we know that the product of Gaussians densities is a
Gaussian, and also the marginal of a Gaussian is a Gaussian. Therefore it
can be shown that the probability above is

?(H |G , G , H , �, �) = N

⇣
H |<)

#
)(G), �2

#
(G)

⌘

�2
#
(G) = 1

�
+ ))(G)(#)(G)

�2
#
(G) � �2

#+1(G), �2
#
! 1

�
,# ! 1

The prediction is a Gaussian centered on an average prediction and
having a variance which has two terms: one takes into account the
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noise of observations, while the second one takes into account the
epistemic uncertainty of our model. As we increase our knowledge, the
epistemic uncertainty goes to zero and we are left with just the aleatoric
uncertainty.

As such, we can see, graphically, that the credibility interval of our model
shrinks the more we add observations.

Figure �.�: Example of the predictive
distribution for a Bayesian linear regres-
sion model on the dataset shown in
section �.�.�. Increasing the number of
data points, the red curve (which rep-
resents the mean of the predictive dis-
tribution) approximates better the sinu-
soidal function and the standard devia-
tion (the shaded region) decreases. Note
that the predictive uncertainty is smallest
in the neighbourhood of the data points
(Bishop)

We can represent the Bayesian linear regression model including the
predictive with the following probabilistic graphical model:

x

y w

Ĥ

#

�

� Ĝ

Potentially we could treat this problem also as an inference in a PGM
(even though this does not make much sense in practice since we have
an analytical solution for the problem).

�.� Model Evidence

How can we deal with the hyper-parameters � and �? Remember that
��1 represents the variance of the prior distribution whereas ��1 is the
noise of the observations. The tool to estimate them is to use the marginal
likelihood

?(H |G , �, �) =
π

?(H |G ,F , �, �)?(F |�)3F
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as the posterior is

?(F |H , G , �, �) =
?(H |G ,F , �, �)?(F |�)

?(H |G , �, �)

If we would treat the hyper-parameters in a Bayesian way then we
would need to place a prior over them, and this would mean having
a hyperprior ?(�, �) and then computing the posterior distribution
?(�, � |H , G) / ?(H |G , �, �)?(�, �).

This is doable, but then we would need to introduce other hyper-hyper
parameters and this would lead us into a hierarchy of hyper parameters.

An alternative instead is to make an approximation at this level. We need
two approximations in fact:

�. First of all, we ask for an uninformative prior ?(�, �), it can be a
uniform distribution over an interval, or a Gaussian with a very
broad variance. Let’s suppose then that ?(�, �) = const

�. The posterior should be sharply peaked around the Maximum a
Posteriori (MAP) of � and �. Hence ?(�, � |H , G) ⇡ ⇣

"�%(�,�)

In fact, these two approximations means that we can fix � and � with
Maximum Likelihood, which means that we can find our best hyper-
parameters by maximizing the Marginal Likelihood.

How to compute the marginal likelihood? Again, we rely on the closure
properties of the Gaussian distribution. Since we have computed the
posterior, and we already know the likelihood and the prior, we can
just take the logarithm of the left and right term of Bayes’ Theorem and
solve the equation, else we can compute it directly (it is an integral of a
Gaussian).

Therefore it can be proved that the marginal likelihood has the form

log ?(H |G , �, �) = "

2
log � + #

2
log � � ⇢(<# ) �

1
2

log |(�1
#
| � #

2
log 2�

⇢(<# ) =
�
2
| |H ��<# | |2 +

�
2
<
)

#
<=

<# = �(#� · H
(
�1
#

= �� + ��)�

where N is the size of the dataset and M is the number of parameters. In
order to maximize this we can of course compute the gradient with respect
to � and � and do gradient ascent on the expression, for example.

�.�.� Fixed-point algorithm (*)

Here we will consider an alternative approach via a fixed-point algorithm.
The general idea is to take r log ?(H |G , �, �) = 0 and to derive fix point
equations

� = 6�(�, �)
� = 6�(�, �)
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The algorithm works like this:

�. Fix �0 and �0
�. Compute

�=+1 = 6�(�= , �=)
�=+1 = 6�(�= , �=)

�. Iterate step � until convergence, i.e. up until

| |�=+1 � �= | | + ||�=+1 � �= | | < &

Therefore we just need to compute

r log ?(H |G , �, �) = "

2
log �+ #

2
log ��⇢(<# )�

1
2

log |(�1
#
|� #

2
log 2�

Let’s start from the term

;>6 |(�1
#
|

(
�1
#

= �� + ��)�

In order to compute this determinant we first need to compute the
eigenvalues ⌫8 of ��)�. Then

|(�1
#
| =

<�1Y
8=0

(� + ⌫8)

Notice that ⌫8 does not depend on �. Which means that

%
%�

log |(�1
#
| = %

%�

X
log(� + ⌫8) =

<�1X
8=1

1
� + ⌫8

Moreover
%
%�

⌫8 =
⌫8
�

In the end, by also deriving all the other terms we get

� =
✏

<
)

#
<#

= 6�(�, �), ✏ =
<�1X
8=0

⌫8
� + ⌫8

1
�
=

1
# � ✏

#X
==1

⇣
H= � <)

#
)(G=)

⌘2
=

1
6�(�, �)

�.�.� Effective number of parameters

Let’s focus on the parameter

✏ =
"�1X
8=0

⌫8
� + ⌫8

where ⌫8 are the eigenvalues of ��)� and they give us information
about the maximum Likelihood solution for F. In fact, they give us the
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curvature of the likelihood function (they represent the Hessian of the
likelihood). Small ⌫8 means a large curvature of the likelihood function
which implies a large uncertainty on F8 and vice versa. When we have a
large uncertainty on F8 , it means that taking the Maximum Likelihood
solution of that particular weight is not very sensible. That’s because
introducing a prior on the parameter would likely change this value
a lot (the Bayesian estimation would be different than the maximum
likelihood estimation). The effective number of parameters gives us the
effective number of parameters which Maximum Likelihood estimation
is close to their Maximum a Posteriori estimation.

In fact, we have that

⌫8 << � ! ⌫8
⌫8 + �

⇡ 0

⌫8 >> � ! ⌫8
⌫8 + �

⇡ 1

and by definition of ✏ we have the meaning that we have been introducing
before.

Notice also that in the regime of large data # >> ", then ✏ ⇡ ". Here
the equation for � and � are also simplified.

In this scenario, the theorem of Bernstein-von Mises implies that the prior
has no asymptotic influence on the posterior and that posterior inference
is consistent with the frequentist approach (i.e. Maximum Likelihood
estimation). Of course, there are some assumptions for this theorem to
hold: the key assumption is that the "true" value of the parameter is
interior to the parameters space.

Thus, the effective number of parameters in Bayesian estimation is
adaptive: parameters will be “included" (in the sense that their uncertainty
is low) in the model only if there is enough evidence in the data to justify
their use. In a certain sense, a Bayesian model can say “I don’t know"
when needed. This has the effect of avoiding overfitting and giving a
more correct estimation of the error when doing predictions.

�.� Model Comparison

Imagine that we are doing linear regression and we pick two different
sets of basis functions. Which of the two models should we choose?

To answer this question, we can leverage the marginal likelihood.

Suppose that we have two models M1 and M2 which are different (in the
linear regression context, this means having two different sets of basis
functions). Which one is the best to explain the data ⇡ = {G , H}?

Since we want to be Bayesian, let’s place a prior distribution on the
models, ?(M9). The posterior distribution, by Bayes’ theorem, is

?(M9 |⇡) =
?(⇡ |M9)?(M9)P
9
?(⇡ |M9)?(M9)



�.� Model Comparison ��

Notice that ?(⇡ |M9) =
Ø
?M9

(⇡ , M9
|M9)3M9

is the marginal likelihood
with respect to the parameters of M9 . In fact, since we are not looking at
a specific configuration of the parameters of the model M9 , we have to
marginalize them, obtaining the marginal likelihood. We also assume
that hyper-parameters are fixed in this scenario.

How to perform model selection? We have two choices

�. Model averaging (a fully Bayesian approach): instead of choosing
one model we consider both of them, weighted according to the
posterior distribution. The predictive distribution then is

?(H |G ,⇡) =
X
9

?(H |G ,⇡ ,M9) · ?(M9 |⇡)

�. Choose the best model by computing

?(⇡ |M1)
?(⇡ |M2)

which is known as the Bayes Factor (of M1 versus M2). It is basically
a ratio of the evidences of the two models. The model M9 to choose
is the one with the largest Bayes factor.
Given that π

?(⇡ |M1) log
?(⇡ |M1)
?(⇡ |M2)

3⇡ > 0

since this is a Kullback-Leibler divergence, we observe that if M1 is
the true model (i.e.⇡ ⇠ ?(⇡ |"1)), the expectation of the logarithm
of the Bayes Factor log ?(⇡ |M1)

?(⇡ |M2) will be positive. Hence, on average,
the correct model will have the largest Bayes factor.

Example. Let M1 and M2 be two models s.t. M1 is nested in M2, i.e,
the set of parameters of M1 is a subset of the parameters of M2 (for
example, linear models where the set of basis functions of M1 is
contained in the one of M2). This implies M2 is a more complex
model than M1, and that the distribution ?(⇡ |M2) is more spread
than ?(⇡ |M1) since the model can explain more data instances.
Nevertheless, if M1 generated the data, then the Bayes factor will
be in favor of M1, since ?(⇡ |M1) is more concentrated on the few
data instances that it can explain. Hence we can see the Occam’s
Razor principle emerging from the use of the Bayes factor, since
the simpler model will be favored in absence of enough evidence
to accept the more complex one.




