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�.� Introduction

The goal in (Bayesian) Linear Classification is (as the name suggests)
to learn linear models for classification, meaning models in which the
decision boundaries of the input space are linear functions of the input
points.

This scenario is somehow more complicated than Bayesian Linear Regres-
sion, because, due to a different model for the noise in the observations,
the posterior distribution is not analytically tractable. Hence the challenge
is to find a good approximation of the posterior of interest.

Consider a dataset⇡ = (G= , H=) with = = 1, . . . ,# , where H= are categor-
ical. There are various ways of representing class labels H= , depending
on the problem at hand:

I 2-class problems: H= 2 {0, 1}.
I  -class problem ( > 2): H= = (H=9)9=1,..., such that H=9 2 {0, 1},P

9
H= 9 = 1. This is called one-hot-encoding convention, essentially

H= is represented as a boolean vector of  numbers, with the
constraint that only one entry is 1 and all the others are 0.

We have three possible approaches to classification:

I Discriminant function 5 (G) 2 {1, . . . ,  }: the goal is to learn a
function that maps each input to a specific class (e.g. random forest
classification is based on this approach).

I Discriminative approach ?(⇠: |G) = 5 (⌘(G)): the goal is to model
explicitly the class posterior (e.g. logistic regression, where ?(⇠: |G) =
5 (F))(G))). In this context 5 is called activation function, 5 �1 is
called link function.

I Generative approach ?(⇠: |G) = ?(G |⇠: )?(⇠: )
?(G) : the goal is to model the

class conditional probability ?(G |⇠:) from data, then, considering
a prior over classes ?(⇠:), plug the Bayes’ theorem to compute
class posterior ?(⇠: |G).

�.� Logistic Regression

As already mentioned, Logistic Regression is a discriminative model.

Given data (G= , H=), = = 1, . . . ,# , we want to learn ?(⇠: |G) = 5 (F))(G)),
where )(G) = ()0(G), . . . , )"�1(G)) are the basis functions.

The activation function is usually chosen to be either the Logit (logistic,
sigmoid) function:

�(0) = 1
1 + 4�0
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or the Probit function (i.e. the cumulative distribution function of the
standard Gaussian distribution):

#(0) =
π

0

�1
N( |0, 1)3

Consider the binary classification scenario, i.e. H= 2 {0, 1}, with logit
activation function. Call B= = �(F))(G=)) = ?(⇠1 |G=) (i.e. probability of
assigning input G to class 1). For a fixed F, we use a Bernoulli model of
noise:

?(H= |G=) = B
H=

=
(1 � B=)1�H=

Hence the likelihood is:

?(H |G) =
#Y
==1

B
H=

=
(1 � B=)1�H=

Once we have the likelihood, we can compute the cross-entropy error
function as:

⇢(F) = � 1
#

log ?(H |G) = � 1
#

#X
==1

H= log B= + (1 � H=) log(1 � B=)

Remark: in this case the dependency on the weights F is highly non-
linear, indeed it is through log B= , being B= the sigmoid function.

The gradient of the cross-entropy reads as:

r⇢(F) = 1
#

#X
==1

(B= � H=))(G=)

The equation r⇢(F) = 0 has no analytic solution, hence we need to
resort to a numerical optimization method in order to find the maximum
likelihood solution F"! = argmin

F
⇢(F) (note that ⇢(F) is a convex

function).

One possibility is to use stochastic gradient descent for online training,
using the update rule for F:

F=+1 = F= � ◆=r⇢(F=)

where ◆= is called learning rate.

Remark: if the data are linearly separable in the feature space, then any
separating hyperplaneF)

"!
)(G) = 0 is a solution, hence we have1-many

solutions and the optimization problem is ill-defined. To overcome this
issue, we typically introduce a penalty term in the function that should
be optimized (forcing the weights to be as small as possible), such that
the problem remains convex, e.g. we might minimize ⇢(F) + �F)F.

The same ideas described so far can be recasted to the case of multi-class
classification. In this scenario data are (G= , H=) with H= = (H=1 , . . . , H= ),
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i.e. one-hot-encoding over  classes, and class-conditional distributions
are:

?(⇠: |G) = �:(,))(G))
where,) is a  ⇥" matrix, and

�:(0) =
exp(0:)P
9
exp(09)

is called softmax function (intuitively it turns a vector of real numbers
into a vector of probabilities).

Explicitly, this corresponds to:

8>>><
>>>:

01 = F)1 )(G)
...

0: = F)
:
)(G)

and

?(⇠: |G) = �:(,))(G)) = �:(01 , ..., 0:)

In this case the cross-entropy is:

⇢(F) = � 1
#

#X
==1

 X
9=1

H=9 log B=9

with B=9 = �9(,))(G=)).

Hence the gradient for class 9 weights is:

rF9
⇢(F) = 1

#

#X
==1

(B=9 � H=9))(G=)

�.� Laplace Approximation

The idea behind Laplace Approximation is to approximate an (unknown)
distribution with a Gaussian. Notice that it is a local approximation and
does not capture the properties of the global distribution. Intuitively this
technique consists in centering a Gaussian in a mode of the distribution,
and use information from the Hessian (i.e. we match the curvature) in
order to identify the variance of the Gaussian.

This approximation is often used when we want to approximate some
posterior distribution, which is known up to a normalization constant.

In the 1-dimensional case, the form of the distribution that we want to
approximate is ?(I) = 1

/
5 (I), with / =

Ø
5 (I)3I. The idea is to:

I find a mode I0 of 5 (I), i.e. a point such that 3

3I
5 (I0) = 0 and I0 is a

point of maximum;
I match the curvature of 5 at I0 with a normal distribution.
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We can rely on the fact that the logarithm of a Gaussian density is a
quadratic function and Taylor expand log 5 (I) around I0:

log 5 (I) ⇡ log 5 (I0) �
1
2
�(I � I0)2

with � = � 3
2

3I
2 log 5 (I0), � > 0 (since I0 is a mode).

Hence taking the exponential:

5 (I) ⇡ 5 (I0) · exp
✓
� 1

2
�(I � I0)2

◆

Since we seek to approximate ?(I) with a Gaussian @(I), this is given
by:

@(I) ⇠ N(I |I0 ,�
�1)

i.e. � takes the role of the precision of the approximating Gaussian
distribution. More explicitly:

@(I) =
✓
�

2�

◆ 1
2

exp
✓
� 1

2
�(I � I0)2

◆

Since ?(I) = 1
/
5 (I) ⇡ 1

/
5 (I0) exp

� � 1
2�(I � I0)2

�
, we also have an

approximation of the marginal likelihood:

/ ⇡ 5 (I0)
✓
�

2�

◆� 1
2

In the =-dimensional case we proceed in the same way: given a density
?(I) = 1

/
5 (I), we find a mode I0 (s.t. r log 5 (I0) = 0) and approximate

log 5 (I) around I0 by Taylor expansion:

log 5 (I) ⇡ log 5 (I0) �
1
2
(I � I0))�(I � I0)

with � = �rr log 5 (I0).

This gives a Gaussian approximation around I0 by:

@(I) = N(I |I0 ,�
�1)

Furthermore the normalization constant can be approximated as:

/ =
(2�) 1

2

|�| 1
2
5 (I0)

and for the multivariate case:

/ =
(2�) :2
|�| 1

2
5 (I0)



�.� Laplace Approximation ��

Remark: if the distribution ? is very skewed, the Laplace approximation
is not very effective; if the distribution ? is multimodal, we should take the
dominant mode (if present) as mean of the approximating Gaussian.

Figure �.�: Illustration of the Laplace ap-
proximation applied to the distribution
?(I) / exp(�I2/2)�(20I+4) where �(I)
is the logistic sigmoid function. The left
plot shows the normalized distribution
?(I) in yellow, together with the Laplace
approximation centred on the mode I0
of ?(I) in red. The right plot shows the
negative logarithms of the correspond-
ing curves.

�.�.� Laplace approximation for model comparison

It is possible to use Laplace approximation for the marginal likelihood in
a model comparison framework.

Consider data ⇡ and a parametric model " depending on parameters
. We fix a prior ?() over , and we plug the Bayes’ theorem to get
?( |⇡) = ?(⇡ |)?()

?(⇡) .

Typically the marginal likelihood ?(⇡) =
Ø
?(⇡ |)?()3 is hard to

compute. This fits the previous framework if we set 5 () = ?(⇡ |)?()
and / = ?(⇡).
By Laplace approximation around the maximum-a-posteriori (MAP)
estimate "�% we get:

?(⇡) ⇡ (2�)"2
|�| 1

2
5 ("�%) =

(2�)"2
|�| 1

2
?(⇡ |"�%)?("�%)

So,

log ?(⇡) ⇡ log ?(⇡ |"�%) + log ?("�%) +
"

2
log(2�) � 1

2
log |�|

with " = | | (number of parameters) and � = �rr
⇥
log ?(⇡ |"�%) +

log ?("�%)
⇤

Remark: the marginal likelihood is a trade off between model complexity
and fit to the data (indeed the last three terms in the previous sum
penalize the log-likelihood in terms of model complexity).

The Bayesian Information Content (BIC) index is defined as:

log ?(⇡) ⇡ log ?(⇡ |"�%) �
1
2
" log#

and it is a further approximation of the marginal likelihood. It can be used
to penalize log-likelihood w.r.t. model complexity, to compare different
models.
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�.� Bayesian Logistic Regression

Given observations (G= , H=) with = = 1, . . . ,# , consider a set of basis
functions )(G) = )0(G), . . . , )"�1(G) and the logit activation function
�(F))(G)).

To recast logistic regression in a Bayesian framework, we place a Gaussian
prior over F, ?(F) = N(F |<0 , (0), with <0 , (0 fixed or computed via
marginal likelihood optimization. The posterior is then:

?(F |G , H) =
?(H |F , G)?(F)

?(H |G) / ?(H |F , G)?(F)

Recall that, in the 2-class problem with a Bernoulli model of noise, the
likelihood reads as ?(H |F , G) = Q

#

8=1 B
H8

8
(1 � B8)1�H8 , being B8 = B8(F) =

�(F))(G8)).

Hence the log-posterior is now:

log ?(F |H , G) = log ?(F) + log ?(H |F) + ⇠

= �1
2
(F � <0))(�1

0 (F � <0)+

+
#X
8=1

⇥
H8 log B8(F) + (1 � H8) log(1 � B8(F))

⇤
+ ⇠

Remark: as already mentioned, B8(F) is not quadratic on F, it is actually
an exponential dependency on F (hence not analytically tractable).

We can perform Laplace approximation of the posterior, the steps are the
following:

�. findF"�% = argmax
F

log ?(F |H) = argmax
F

log ?(F)+log ?(H |F)
by running a numerical optimization (we can ignore the constant
which does not change the location of the maximum).

�. Compute the Hessian at F"�% and invert it: this will give the
precision matrix of the Gaussian

(
�1
#

= (�1
0 +

#X
==1

B=(F"�%)(1 � B=(F"�%)))(G=)))(G=)

Hence, the Laplace approximation of the posterior is ?(F |H) ⇡ @(F)
with

@(F) = N(F |F"�% , (# )

Given this posterior, we need to marginalize it to compute the predictive
distribution (which will allow us to do model averaging).

In the binary classification scenario, the predictive distribution for class
⇠1 is given by (plugging the previous approximation):

?(⇠1 |G8, H , G) =
π

?(⇠1 |G8,F , G , H)?(F |H , G)3F ⇡
π

�(F))(G8))@(F)3F
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Figure �.�: These plots show the predic-
tive distribution for an increasing num-
ber of points in the training set. The more
intense the colour, the more confident is
the prediction (close to � or �). As a con-
sequence of using a Bayesian approach,
the confidence of predictions increases
with the number of observations.

This is in principle an "-dimensional integral. However, � depends on
F only through the 1-dimensional projection 0 = F

))(G8), which is a
linear combination of Gaussians, because F are normally distributed and
) are fixed. Hence @ restricted to the dimension identified by 0 is still
a Gaussian distribution: @(0) ⇠ N(0 |⇠0 , �2

0
), with ⇠0 = F)

"�%
)(G8) and

�2
0
= ))(G8)(#)(G8), so that:

?(⇠1 |G8, H , G) =
π

�(0)@(0)30

At this point we can use the probit approximation trick, i.e. we can
approximate the previous integral by approximating the logistic function
with the probit �(0) ⇡ #(⌫0), such that ⌫2 = �

8 and �0(0) = #0(0)
Hence:π

#(⌫0)@(0)30 =
π

#(⌫0)N(0 |⇠0 , �2
0
)30 =  

✓
⇠0

(⌫�2 + �2
0
) 1

2

◆

so that, approximating back to the logistic, we get:

?(⇠1 |G8, H , G) ⇡ �(�(�2
0
)⇠0)

being �(�2
0
) =

✓
1 + ��2

0

8

◆� 1
2

In this way, the predictive distribution depends from ⇠0 but it is rescaled
by the variance:

I if �2
0
= 0 then ?(⇠1 |G8, H , G) ⇡ �(⇠0)

I if �2
0
� 0 then ?(⇠1 |G8, H , G) ! 1

2 which represents the maximum
level of uncertainty on the prediction

Remark: the dominating cost of this procedure is identifying the MAP.




