
Sampling-based Inference �
�.� Introduction ��
�.� Approximate sampling . . ��
�.�.� Rejection sampling ��
�.�.� Importance sampling . . . ��
�.� Markov chain ��
�.�.� Introduction ��
�.�.� Detailed Balance ��
�.� Markov Chain Monte

Carlo ��
�.�.� Metropolis Hastings . . . ��
�.�.� Gibbs Sampling ��
�.�.� Sampling based inference

in PGM ��
�.�.� Convergence Diagnostics ��
�.�.� Effective sample size . . . ��
�.� Hamiltonian Monte Carlo ��

�.� Introduction

Our focus in this chapter is on solving inference problems by sampling
strategies. This is needed because in the context of Bayesian Networks
we are only able to perform inference if our network satisfies certain
structural properties; in particular it has to be a tree or a poli-tree.

Even a simple example like

Cloudy

RainSprinkler

Wet Grass

does not satisfy the property that makes our belief propagation algorithm
work.

Therefore we need to change our strategy. One possibility is to rely on sam-
pling to perform approximate inference of the probability distributions
we are interested in.

The question then is how to sample from ?(G |H = H̄)?

To do this we notice that we can generally compute the unnormalized
probability distribution ?̃(G) such that

?(G) = 1
/

?̃(G) (�.�)

The typical scenario where this happens is given by Bayes Theorem

?(G |H) = ?(H |G)?(G)
?(H) (�.�)

where ?(H) is hard to compute (can be a complicated high dimensional
integral)

Our sampling problem than boils down to generate samples G1 , . . . , G=
from ?(G) knowing ?̃(G), as independent as possible among them. Once

�� � Sampling-based Inference

we have this set of samples we are also able to estimate quantities like

EG[5 (G)] =
π

5 (G)?(G)3G ⇡ 1
#

#X
8=1

5 (G8) (�.�)

We are going to see two main ways to perform this:

I Sample from @(G) ⇡ ?(G) and then correct. These are very common
methods but they may suffer from efficiency issues.

I Markov Chain Monte Carlo (MCMC), which allows us to generate
a set of samples from an unnormalized distribution.

Remark. Sampling is a computational intensive tasks and vanilla methods
are not scalable to high dimensional probability distributions.

�.� Approximate sampling

We are going to explore methods that allow us to sample from a surrogate
@(G) ⇡ ?(G).

�.�.� Rejection sampling

Suppose to have a distribution ?(G) and another distribution 6(G) from
which it is easy to sample, called the proposal distribution, such that
9" > 0 : "6(G) � ?(G),8G, which of course implies that ?(G)

"6(G) 1

Rejection sampling consists in the following algorithm:

�. Sample Ĝ from 6(G)
�. Accept Ĝ with probability ?(Ĝ)

"6(Ĝ)
�. If reject, then repeat the algorithm until acceptance

Graphically, once we samples Ĝ, the acceptance mechanism corresponds
to sample uniformly a number � between � and �, multiply it by "6(G)
and accept if and only if �"6(G) falls below the original distribution at
the point Ĝ. We reject if the opposite happens.

Figure �.�: In the rejection sampling
method, samples are drawn from a sim-
ple distribution 6(G) and rejected if they
fall in the grey area between the distri-
bution ?(G) and the scaled distribution
"6(G). The resulting samples are dis-
tributed according to ?(G). (Bishop)

Remark. We can actually compute the expected number of samples
from g to accept a single sample on p, and this expectation is in fact
". Therefore, if " is large, this method becomes inefficient. Rejection

�.� Approximate sampling ��

sampling is especially inefficient in high dimension (you need a large M
to "cover" p).

Remark. If we consider the unnormalized distribution ?̃(G) in place of
?(G) in the rejection sampling scheme, then we can use the fraction of
rejected points to estimate the normalization constant /. In fact,

/ =
π

?̃(G)3G = "

π
?̃(G)

"6(G) 6(G)3G = " · ?(accept)

�.�.� Importance sampling

The goal in importance sampling is to evaluate

E?[5 (G)] =
π

5 (G) 1
/

?̃(G)3G =

Ø
5 (G)?̃(G)3GØ
?̃(G)3G

(�.�)

where 5 is an integrable function.

We consider a proposal distribution 6(G) from which we know how to
sample from, and we turn the expectation on ? into an expectation on
6.

Ø
5 (G)?̃(G)3GØ

?̃(G)
=

Ø
5 (G)?̃(G) 6(G)

6(G)Ø
?̃(G) 6(G)

6(G)
=

E6[5 ?̃

6
]

E6[?̃
6
]

(�.�)

Then we sample G1 , . . . , G= from 6(G) and replace the expectation with
sums

E6[5 (G) ?
6
]

E6[?
6
]

=
1
#

P
#

8=1 5 (G8)F(G8)
1
#

P
#

8=1 F(G8)
(�.�)

where
F(G8) :=

?̃(G8)
6(G8)

(�.�)

are known as the importance weights.

If 5 ?̃

6
is approximately constant, then estimates can be very good. If

weights vary a lot instead, we have a large variance and consequently a
poor estimate. So, the quality of the result depends from the choice of
g(x).

Notice that 1
#

P
#

8=1 F(G8) ⇡ /, so we also have an approximation of the
partition function.

Remark. This technique can be used to estimate functions of rare events,
increasing the probability that the event happens and then correcting
it.

Example. If we want to compute E?[5 (G)] where ?(G) = N(G; 0, 1) and
5 (G) = G

20, using samples from ?(G) would be inefficient, as the expected
value is mostly influenced by extreme values of G. One can then use

�� � Sampling-based Inference

importance sampling with a Gaussian with larger variance as proposal
distribution.

Figure �.�: Importance sampling exam-
ple. Sampling from ?(G) = N(G; 0, 1)
to compute E?[5 (G)] with 5 (G) = G

20

would be inefficient, as most of the contri-
bution to the integral is given by values of
G that are rare (|G | > 3�?). Using as pro-
posal distribution a Gaussian with larger
variance allows us to sample from the
region that contributes to the expected
value.

�.� Markov chain

�.�.� Introduction

A Markov Chain is a stochastic process, denoted as

{-C}C�0 (�.�)

with C 2 N, -0 ,-1 , . . . ,-C 2 Xwhere Xcan be discrete or continuous.

It can be described as a dynamical system, i.e. a system in which we
start from a certain state G0 with a given probability ?0(G) and that
changes state according to a dynamic described by the transition kernel

?(G= |G=�1).

Remark. Markov Chains satisfy the memoryless property, which corre-
sponds to the assumptions encoded into the following probabilistic
graphical model:

Therefore we have that

?(G= |G=�1 , . . . , G0) = ?(G= |G=�1) (�.�)

which is known as the memoryless or Markov property.

We also require the time homogeneity property that states that

?(G= |G=�1) = ?(G1 |G0), 8= � 1 (�.��)

which means that the probability to jump from a certain state to another
state stays the same for every time step.

�.� Markov chain ��

Definition �.�.� ?(G= |G=�1) satisfying the time homogeneity property is

called the (one step) transition kernel.

For a discrete state space we would have a transition matrix, while
for a continuous state space, ?(G= |G=�1) is a probability density on G=

depending continuously on G=�1.

Since we are interested at the behaviour of the Markov Chain as the index
= progresses, i.e. for large times, we need to define few more concepts.

Definition �.�.� A Markov Chain is ergodic iff 8G , H 2 X, 9C � 0 :
?(GC = H |G0 = G) > 0.

If a Markov Chain is ergodic, it means that there is always the possibility
of going from a given state G to another given state H if we are patient
enough. This means that the entire state space is reachable, no matter
where we start exploring.

Definition �.�.� A stationary distribution⇧(H) is such that

�.

⇧(H) =
π

?(H |G)⇧(G)3G (�.��)

which means that ⇧ is an invariant measure with respect to the

Markov Chain dynamics defined by the Transition Kernel ?(H |G).
�. ?=(G) = ?(G= |G0) ����!

=!1
⇧(G)

�. ⇧ is unique

�.�.� Detailed Balance

The following condition is sufficient to guarantee that⇧(G) is a stationary
distribution.

Definition �.�.� We say that a Markov Chain is reversible (or it satisfies

the balance condition) iff 9⇧(G), probability distribution such that

?(G |H)⇧(H) = ?(H |G)⇧(G) (�.��)

Proposition �.�.� If an ergodic Markov Chain is reversible with respect to

the distribution⇧(G), then⇧(G) is a stationary distribution.

Proof. If the Markov Chain is reversible then we can write
π

?(H |G)⇧(G)3G =
π

?(G |H)⇧(H)3G = ⇧(H)
π

?(G |H)3G = ⇧(H)
(�.��)

Remark It is not true that the existence of a stationary distribution implies
that our Markov Chain is reversible.

�� � Sampling-based Inference

We are now ready to tackle Markov Chain Monte Carlo: by requiring that
the Markov Chain we are going to define satisfies the detailed balance
condition for a given distribution ⇧(G), we will be eventually (C �! 1)
able to sample from distribution of interest, i.e.⇧(G).

�.� Markov Chain Monte Carlo

�.�.� Metropolis Hastings

Intuitively, the idea is that we want to sample from a distribution and
we build an ergodic Markov Chain with a transition kernel such that the
stationary distribution coincides with the one we want to sample from.

Assume that we want to sample from ?(G) = 1
/
?̃(G), where we know the

unnormalized distribution ?̃(G) but the normalization constant is too
complicated to compute. We fix @(G |H), the proposal kernel of our Markov
Chain, such that

�. It is easy to sample from @(G |H)
�. It makes our Markov Chain ergodic.

A typical choice for our proposal kernel is to use a Gaussian distribution,
in which the variance is chosen in such a way that makes it quick to reach
the stationary distribution.

Suppose that we start from a certain state G at the time step C.

The algorithm works as follows:

�. We sample H from @(H |G)
�. Borrowing from rejection sampling, we are going to accept/reject

the new sampled point based on the following rule

GC+1 =

(
H , with probability �(H |G) = <8=

n
1, ?̃(H)@(G |H)

?̃(G)@(H |G)

o
G , otherwise

(�.��)

The criterion for defining

�(H |G) = <8=

⇢
1,

?̃(H)@(G |H)
?̃(G)@(H |G)

�
(�.��)

is called the Metropolis-Hastings criterion; for symmetric transition
kernels @(G |H) = @(H |G), it becomes the Metropolis criterion.

Observe that

?̃(H)
?̃(G) =

?(H)
?(G) (�.��)

and so the regions with higher probability ?(H) > ?(G) are more likely to
be visited.

�.� Markov Chain Monte Carlo ��

Notice that we haven’t defined in a full mathematical way the transition
kernel of our Markov Chain here, but it can be derived by the operational
procedure given above.

Lemma �.�.� The Metropolis-Hastings acceptance criterion satisfies the

detailed balance condition.

Proof. Let’s start from the full transition kernel in an implicit form and
suppose that H < G. Then we need to prove that

?(H |G)?(G) = ?(G |H)?(H) (�.��)

If H < G, the first term reduces to the product of the probability to sample
H given G, which is given by @(H |G), times the probability to accept H,
which is given by �(H |G). Therefore

?(H |G)?(G) = @(H |G)�(H |G)?(G) = min
⇢
1,

?(H)@(G |H)
?(G)@(H |G)

�
· @(H |G)?(G)

(�.��)

Notice that
?(H)
?(G) =

?̃(H)
?̃(G) (�.��)

Performing some calculations we obtain

min
⇢
1,

?(H)@(G |H)
?(G)@(H |G)

�
· @(H |G)?(G) = min {@(H |G)?(G), ?(H)@(G |H)} =

(�.��)

min
⇢
?(G)@(H |G)
?(H)@(G |H) , 1

�
· @(G |H)?(H) = �(G |H)@(G |H)?(H) = ?(G |H)?(H)

(�.��)

There might still be issues: if we pick a bad @ the algorithm may take a
lot of steps before reaching the stationary distribution. We say that the
mixing time is high. This time can be estimated by some statistics on the
chain that is being sampled, that form a sort of diagnostics tools. However,
there is not a way to determine the exact moment in which the steady
state is reached. Moreover, another issue is that the samples G= , G=+1 are
not independent.

Another good property that we may want to have in our proposal kernel
is to have a good balance in between exploration and exploitation, which
becomes especially important in multimodal distribution.

�.�.� Gibbs Sampling

This time, let’s write the probability distribution from which we want to
sample from as ?(G) = ?(G1 , . . . , G=) and suppose that we know how to
sample from the �-dimensional conditionals, i.e. from ?(G8 |G�8) where
G�8 = (G1 , . . . , G8�1 , G8+1 , . . . , G=).

�� � Sampling-based Inference

The main loop of Gibbs sampling algorithm is the following:

�. Pick : 2 {1, . . . , =}
�. Set G(C+1)

9
= G

(C)
9

for 9 < : (the j-th component of the t+� state)

�. Sample G
(C+1)
:

from ?̃(G: |G(C)�:)

Therefore we are choosing a coordinate and sample along that coordinate,
keeping everything else fixed. We have different ways to choose k:

�. Round-Robin strategy, i.e. sample starting from �, go up to k on the
first k steps and then repeat.

�. Choose uniformly at random.

Lemma �.�.� The transition kernel of Gibbs Sampling is exactly the same as

Metropolis-Hastings algorithm

Proof. In fact, for Gibbs Sampling we have

@:(H |G) =
(
?(H: |G�:), when H�: = G�:
0 otherwise

(�.��)

Which means that �:(H |G) = 1 because

�:(H |G) =
?(H)@(G |H)
?(G)@(H |G) =

?(H: |H�:)?(H�:)
?(G: |G�:)?(G�:)

· ?(G: |H�:)
?(H: |G�:)

(�.��)

Where the equality is given by the standard conditional probability
expansion. Also notice that G�: = H�: , otherwise there would be no jump
according to the definition of our proposal kernel. Then

?(H: |H�:)?(H�:)
?(G: |G�:)?(G�:)

· ?(G: |H�:)
?(H: |G�:)

= 1 (�.��)

Gibbs Sampling algorithm can be generalized, for example, by sampling
blocks instead of a single variable, i.e. we can sample G9 . . . , G: ✓ G.
Moreover, we could apply this even if we don’t know explicitly how to
sample from ?(G8 |G�8), for example by applying rejection sampling, or
even a Metropolis-Hastings MCMC to sample our conditional distribution
(the latter strategy is called "Metropolis within Gibbs").

Remark.

I We may not satisfy ergodicity in Gibbs sampling, since it may not
always be possible to find a path between two states which is only
made of "single component" steps.
Example: Consider the bivariate distribution ?(G , H) = 2 if (G 2
[0, 0.5] ^ H 2 [0, 0.5]) _ (G 2 [0.5, 1] ^ H 2 [0.5, 1), 0 otherwise. In
this case, we cannot sample from an "island" different from the one
where we start sampling.

�.� Markov Chain Monte Carlo ��

I If variables are strongly correlated, then our mixing time can be
very high.

�.�.� Sampling based inference in PGM

Cloudy

RainSprinkler

Wet Grass

Suppose that we observe the variables "Sprinkler" and "Wet grass", but
we don’t observe "Cloudy" and "Rain".

More generally, suppose to have a set of variables (could be vector of
random variables), G and H that are described by a PGM and we know
that H is observed, H = Ĥ. We want to make inference on G, which
typically means computing ?(G |H = Ĥ). We aim at sampling from this
probability, but we do not have access to such a conditional distribution.
We only know ?̃(G) = ?(G , H = Ĥ), but not the normalization constant
/ = ?(H = Ĥ).

Here are some strategies then to generate samples from this distribu-
tion:

I Rejection sampling: sample from the full joint ?(G , H) which can be
done by ancestral sampling (which is fast) and then reject if H < Ĥ.
If we observe a lot of variables then this becomes very inefficient.

I A better strategy is to use MCMC. We can sample from ?(G , H =
Ĥ) using some proposal distribution (which will depend on the
variables that we are trying to sample). Although the state of the
art of MCMC (Hamiltonian Monte Carlo, explained later on) is
generally good, in the framework of Bayesian Networks we can do
better.

�� � Sampling-based Inference

I If we can compute efficiently the one dimensional conditional dis-
tribution, i.e. ?(G8 |G�8 , H) = ?(G8 |"⌫8), where "⌫8 is the Markov
Blanket of G8 , we can use Gibbs sampling. This is especially efficient
with discrete, and relatively small state spaces.

�.�.� Convergence Diagnostics

How can we check that our Markov Chain has reached the steady state?
We will put forward a set of tools that can monitor one or more trajectories
and roughly tell us whether we reached it or not. Notice that since we
are interested in sampling the stationary probability distributions, we
shall start keeping the samples only when we actually reached the steady
state.

Let’s define some notation for the rest of the section. We are going to
denote a general function over a state of the MCMC trajectory (-C)C�0
as : X! R. This function can be a lot of different things, depending
on what we are interested in computing, e.g. a projection on single
coordinate.

We will assume that has values in R, and not just in a subset of it,
and, if it does, we transform the function to make it compliant to this
assumption (taking the logarithms of quantities in between (0,1) for
example). Let’s fix some further notation:

I G1 , . . . , G= is our sampled trajectory
I 9 := (G9)
I ̄ := 1

#

P
9
 9 is the estimate of E[] =

Ø
 (G)?(G)3G

On a high level, the idea is to look at more than one chain and compare
the distribution of the samples that we obtain and see if they look more
or less the same.

Practically,

�. we sample <

2 � 1 trajectories from overdispersed initial points. We
try to start from different states that are far away in our state space

�. Sample for 4= steps
�. we throw away the first half of every trajectory so that we have only

2= points left. This phase is known as the burn-in or warm-up
phase. We do this because it takes time to reach the steady state
(notice this is an heuristic: convergence to the stationary distribution
can happen faster or slower than 2= steps).

�. Then we split in � parts the remain trajectories, so that we are left
with < different trajectories each of length =.

From now on we will denote each sample as G89 where 8 2 [1, =] and
9 2 [1,<], where this notation describes the 8C⌘ sample of the 9C⌘ trajectory.
We will also denote (G89) = 8 9 and define

(
 ̄9 B 1

=

P
=

8=1 8 9

 ̄ B 1
<

P
<

9=1 ̄9

(�.��)

Hence, ̄9 is the average within the trajectory 9 and ̄ the average over
all the trajectories, respectively. We are also interested in the variance
of ̄, but since our samples are not independent, we don’t have that

�.� Markov Chain Monte Carlo ��

VAR[̄] = 1
=

VAR[], i.e. the variance of the estimator in this case is
not just the variance of our random variable divided by the number of
samples. If you think about two consecutive points in the chain, there is
a high chance that the correlation between them is higher than that of
two points which are sampled distantly in time from one another.

Let’s define these two quantities:

, B
1
<

<X
9=1

B
2
9
, B

2
9
=

1
= � 1

=X
8=1

(8 9 � ̄9)2 (�.��)

⌫ B
=

< � 1

<X
9=1

(̄9 � ̄)2 (�.��)

, is called the within variance while ⌫ is called the between variance.

We know by definition that

, VAR[],

because when sampling single trajectories we have not necessarily ex-
plored and visited the full space. Increasing the number of samples we
will converge to the true variance. Moreover, as long as the initial states
are overdispersed, it can be shown that

VAR[] VAR+[] B = � 1
<

, + 1
=

⌫

Then we have both a lower and an upper bound for our variance, both
converging to the true variance. Therefore we can compute the statistics

'̂ B

r
VAR+[]

,

(�.��)

which can be monitor while running the MCMC simulations. Notice that
'̂ > 1 and that '̂ ����!

=!1
1. Heuristically, we can say that when '̂ 1.1

we have converged to our stationary distribution.

�.�.� Effective sample size

We may want to have some measure of efficiency of our statistics, i.e. we
may want to compute VAR[̄]. Notice the following: if < · = samples are
independent then we know that

VAR[̄] = VAR[]
= · < (�.��)

but unfortunately this is not the case as we have already seen.

The correlations among nearby points (when positive as typically the
case) are increasing the variance of the estimator ̄, in a way which can

�� � Sampling-based Inference

be expressed by this formula:

=<VAR[̄] ⇡

1 + 2

1X
:=1

⌧:

!
VAR[] (�.��)

Where ⌧: is the autocorrelation of lag k, which is, by definition

⌧: B Corr[(G8), (G8+:)] (�.��)

So it is the correlation in between two points in the same chain which are
k steps apart.

If we compare the formula above (�.��) with what we would have in case
of independence (�.��), we can find the effective number of samples
produced by our chain

=eff =
=<

(1 + 2P1
:=1 ⌧:)

< =< (�.��)

And we can also write

VAR[̄] = VAR[]
=eff

(�.��)

A typical rule of thumb here is to reach at least =eff = 100 effective
samples.

The question now is: how do we compute the autocorrelation? We know
that this identity holds (no proof given)

E[(8 � 2
8�:)] = 2(1 � ⌧:)VAR[] (�.��)

and since we can estimate both the left hand side term and VAR[] from
our data, we can also estimate ⌧: by inverting the formula.

The expectation above is named Variogram at lag k and can be estimated
as

+: =
1

<(= � :)
<X
9=1

=X
8=:+1

(8 , 9 � 8�: , 9)2 (�.��)

So that
⌧̂: = 1 � +:

2VAR+[] (�.��)

We still have problems in the limit of large k because we would have few
samples and very noisy estimates. Therefore we will stop the sum over k
in (�.��) when the following condition is satisfied

) = min{: |: is odd, ⌧̂:+1 + ⌧̂:+2 < 0} (�.��)

When this condition is satisfied we are in a regime where our summation
is not relevant any more.

Therefore, we approximate the sum as

1X
:=1

⌧: ⇡
)X
:=1

⌧̂: (�.��)

�.� Hamiltonian Monte Carlo ��

In conclusion, we have two different diagnostics tool to detect convergence:
either we look at an estimate of the variance and compute the factor '̂ or
we look at the number of effective samples and have an estimate of how
decent our approximation is going to be.

�.� Hamiltonian Monte Carlo

Hamiltonian Monte Carlo can be considered as the state of the art
method for doing Markov Chain Monte Carlo. It falls into the category
of augmented variables Monte Carlo methods.

The idea is to turn the problem into an Hamiltonian, augmenting the
state space with momentum variables that provide a sort of "kinetic
energy" that allows the algorithm to move along the surface of the energy
corresponding to our probability distribution. This scheme improves a
lot the mixing time, hence the efficiency of MCMC algorithms. Moreover,
it can be used in the case of high-dimensional multimodal distributions
because it does not remain stuck in a single mode.

As usual, we start in a situation in which we want to sample from
?(G) = 1

/
?̃(G), and now we express our distribution as

1
/

?̃(G) = 1
/G

exp(�G(G)) (�.��)

This procedure is called the Boltzmann Trick and it is always possible
(just take the logarithm of the distribution) and turns our probability
distribution in the form of an energy.

Then, we introduce momentum variables H, as many as the number of G
variables that we have, and we assign to them the probability distribution
?(H) = 1

/H

4G?(�H(H)), where is typical to make the assumption

�H(H) =
1
2
H
)
H (�.��)

i.e. to consider ?(H) a standard Gaussian.

We are going to sample from the joint distribution, exploiting the inde-
pendence of our variables

?(G , H) = ?(G)?(H) = 1
/G/H

exp(�G(G) + �H(H)) =
1
/

exp(�(G , H))
(�.��)

The idea of the algorithm is to sample from ?(G , H) and then forget about
H. But how do we sample? We are going to sample according to the force
field defined by the Hamiltonian, i.e. along lines which keep the energy
constant. This means that, given some velocity, we follow a trajectory on
the probability distribution space accordingly to the equations of motion
in order to explore the space without losing energy. In fact, we would
like to preserve energy because we want to move between regions with
high probability.

Hence we have the following algorithm:

�� � Sampling-based Inference

�. We start from point G8
�. We sample H ⇠ ?(H), i.e. we randomize the momentum
�. We choose a random direction in time, i.e. we sample from {�1, 1}

uniformly. This makes our problem reversible and provides ergod-
icity.

�. We move according to Hamiltonian dynamics from (G8 , H) to a
candidate (G0, H0) doing ! steps

�. We introduce the following rejection criterion: we accept if�(G0, H0) >
�(G , H), otherwise we accept with probability 4G?(�(G0, H0) �
�(G , H))

Moving accordingly to Hamiltonian dynamics means to move from (G , H)
to (G0, H0) keeping �(G0, H0) = �(G , H). At each step we set (G0, H0) =
(G + �G , H + �H) and Taylor expand the Hamiltonian

�(G + �G , H + �H) ⇡ �(G , H) + rG�G(G))�G + rH�H(H))�H (�.��)

Then, enforcing the condition �(G0, H0) = �(G , H), we can derive the
equations for our movement:

�G = &rH�H(H) (�.��)
�H = �&rG�G(G) (�.��)

and we do L steps of this dynamics to find (G0, H0)

Notice that, even if in principle we require the Hamiltonian to stay con-
stant (and in that case we would always accept because 4G?(�(G0, H0) �
�(G , H)) = 4G?(0) = 1), the are still numerical integration errors intro-
duced by the approximation above which actually let us change the value
of the Hamiltonian, hence we need to define the acceptance criterion as
above to ensure that the dynamics compensate this error.

Remark Since we are required to compute gradients, Hamiltonian Monte
Carlo works only for continuous variables. The advantage of exploiting
gradient information is similar to the one in gradient based optimizers
(gradient descent).

Remark Our acceptance criterion is, in fact, Metropolis acceptance crite-
rion

� = min
⇢
1,

?(G0, H0)
?(G , H)

�
= min{1, exp(�(G0, H0) � �(G , H))} (�.��)

Additional heuristics, like the no-u-turn Hamiltonian Monte Carlo, are
the state of the art of Monte Carlo methods.

Remark The number of effective samples is higher than standard MCMC,
because with Hamiltonian Monte Carlo we take larger steps

�.� Hamiltonian Monte Carlo ��

