Expectation Maximization

9.1 Introduction

Expectation maximization is a method that allows us to perform max-
imum likelihood inference in scenarios where computing the likelihood
explicitly may not be possible because of the presence of latent vari-
ables.

9.1.1 Learning Bayesian Networks

We will start by focusing on a simpler problem to set the scene. Remember
that a BN is a way to factorize a joint distribution according to:

p(x) = l_[ p(xilpa(xi)).

We know how to compute inference, marginals etc... but how can we
learn Bayesian Networks from data? Here we focus on the problem of
learn parametric models of conditional distributions, for a fixed structure
of the BN.

We typically have that each factor p(x;|pa(x;), 0;) depends also on some
parameters 0; which can be estimated by Maximum Likelihood (ML)
from data.

Let’s start with the following example

S

P(x1, X2, X3) = P(x3|x1, xz)P(xl)P(xz)

and suppose that x; € {0,1}. Focus on learning the factor p(x3|x1, x2)
and consider all the possible values in the conditioning set. Therefore we
want to learn the following values

p(xs =1lx1 =0,x2 =0) = Ono
p(xz=1x1 =0,x2 =1) = Oy
plxs=1lx1 =1,x, =0) = 619
pxs=1lx1=1,x =1)=0n

Learning by maximum likelihood these parameters just means comput-

ing
_#xr=i,x0=j,x=1)

Q:: =
/ #(x1 =1,x2 =)
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9 Expectation Maximization

where the notation # returns the cardinality of the set of observations
satisfying the constraint in brackets.

Remark: In a continuous setting you may want to model p(x3|x1, x) as
a combination of values of x1, x,. The specific choice of the parametric
model depends on what is the phenomena you are trying to model.

In this context, as long as the number of parents of each x; is rela-
tively small, computations are feasible. What happens though if we
don’t observe, for example, x1? We cannot employ this model for latent
variables!

9.1.2 Problem formulation

Let’s consider a more general scheme like the following: we have a certain
number of variables x which are observed and a set of variables z which
is unobserved. Generally speaking, we will have a parametric model
p(x,z|0) and we would like to compute Opr.. In order to identify Opr
we need to optimize the marginalized likelihood on x:

p(x10) = > p(x,z|0)

If z is high-dimensional, we would need to sum over exponentially many
possible states, which makes our problem intractable.

The problem becomes even more complex when we have x = xq,...,x,
observations and z = z1, ..., z, latent states of observations since we
would like to work with the logarithm of our distribution for numerical
stability

p(x,z|6) = Typ(xn, 2,160)  logp(x,z]6) = > logp(xu, 24]6)

but then
log p(x]6) # > log p(x,|6)

because of the summation over z in the definition of p(x|6).

9.2 Evidence lower bound

Again, consider a joint model p(x, z) with x observed and z unobserved
with corresponding observations x, ..., x, and latent states zy, ..., z,.
Our goal is to compute p(x|0) = X, p(x, z|0) and we want to learn Op1,
i.e. 0 such that

argmax, p(x|0)

This problem is typically intractable for the reasons described before.



9.3 Expectation Maximization

We will introduce a key approximation which will also be useful for
variational inference. Consider

p(x,z|0) = p(x|0)p(z|x, 0)

The idea is to approximate p(z|x, 0) with the so called variational
approximation g(z) (which can be any distribution over z).

Let’s consider the Kullback-Leibler divergence of q and p

q(z) q(z)

,0 ,0
KL[qllp] = KL[g@)llp(z]x, 0)] = E,qz) [—log m] -~ 3 4(z)log PE% )

The trick now is to add and subtract the term |log p(x|6) in the loga-
rithm

—Zq<z>1g”(z'(")6) - ()[ plz '() ) 4 log p(x]0) - log p(x16)

And then we can start to aggregate these factors obtaining

KLlg@p(ek, 0] = - 3 0(z) 1og ()'9>+1ogp(x|9)

Definition 9.2.1

#(9,0) = 3 q(@)log plx (Z)'Q) ©.)
is the Evidence Lower Bound (also called ELBO).
From the expression above we can rewrite our log likelihood as
log p(x16) = £(q, 0) + KLIq(2)llp(z]x, 0)] (9.2)

Remark Since KL[g|p] = 0 then £(gq, 0) < log(p(x|0)) i.e. it is a lower
bound for the log likelihood.

Whenever we have a tractable form for p(x, z|0) then the ELBO is also
tractable. Expectation Maximization will actually optimize the ELBO with
respect to both 6 and g (since g is a distribution we are using the tools
of variational calculus to perform this optimization) in an "alternated"
fashion (optimize with respect to one and the other argument in two
different steps).

9.3 Expectation Maximization

Let’s start from this expression for the ELBO

[log p(x, IG)}
q

Z(q,0)=E e

E4llog p(x, z|0)] + E4[-log q(2)]
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9 Expectation Maximization

The first term is called the Energy term, while the second term is actually
the entropy of the q distribution (written H(g)).

The goal of the EM algorithm is to find 011 = argmax, log p(x|60) which,
since it is analitically intractable as we have seen, will lead us to maximize
the ELBO, in both g and 6.

The way in which we proceed is to maximize for each variable on different
steps. The maximization with respect to q is known as the expectation
step (or the e-step), the maximization with respect to 0 is known as the
maximization step (or the m-step).

9.3.1 E-step

Let’s fix 0 to Oorp. We need to solve an optimization problem in a
function space. This is easy though if we notice that £(g, 0) is maximum
whenever KL[4(z)||p(z|x, 0)] = 0, since log p(x|0) does not depend on
g and

2£(q,0) =log p(x|6) - KL[q(2)|[p(z|x, 6)]

Therefore
Jmax = P(Z|£r GOLD)

where

N
p(zlx, 0) = l_lp(zilx,-,e) if x1,...,x, areiid
i=1

Then we compute E
is completed.

[log p(x, z|6)] as a function of 6 and the e-step

Jnew

Remark: in order for the EM algorithm to work effectively, we need to be
able to evaluate analytically or numerically the conditional distribution

p(z|x, OoLD).

9.3.2 M-step

Now we need to maximize £(q, 0) keeping q fixed t0 § = Guew =
p(z|x, BorLp) which is tantamount to maximize w.r.t 6

[Eq;ww [log p(zl El 6)]

i.e. the energy term.

This maximization really depends on the problem at hand, but usually is
just about explicitly computing the gradient, setting it to zero, and find

Onew = argmaxy Ey,., [log p(x, z|0)]

The algorithm works by repeating these two steps until convergence
(i.e. whenever ||6orp — ONEw|| < €. The reason why this works is easily
explained in a graphical way.



9.3 Expectation Maximization

KL(g||lp) =0

E(q, oold) lnp(x|oold)

After setting the Kullback-Leibler divergence to zero, we close the gap
vertically and we make the log-likelihood equal to the lower bound.

KL(q||p)

SRS, ) OO I A

E(q, 0116\\’) lIlp(xlglle\\’)

In the M-step, since we are maximizing the lower bound, we are pushing
it up, but then also the log-likelihood will be pushed up, possibly of a
larger quantity than the lower bound, creating a new gap.

After both the E and M steps are completed, the log likelihood is always
increasing, until it gets really close to a local maximum and eventually
reaches it. So we can consider as the termination condition of the EM
algorithm the following: £(gnew, ONew) — £(goLp, BoLp) < O, where
0 is a chosen constant.

Remark In general the EM algorithm converges to a local optimum of
log p(x]0)-

Remark If p(z|x, 0) is not easily computable, we can use a g that is an
approximation. In this case EM iterations will reduce KL(g||p) but it will
not be set to zero, hence convergence is not guaranteed.
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9 Expectation Maximization

9.4 Mixture of Gaussians

We will see an application of the EM algorithm in a typical scenario.

Let’s start with a graphical representation of a Gaussian Mixture model:

hd

U]

where z is a discrete R.V. z1, ..., 2, zj € {0, 1}, Yjzj = 1, which means
that we have a one-hot-encoding representation for z. 7 is a discrete
probability distribution that defines the probability of being assigned to
the j-th component of the Gaussian mixture, while y, 6 are the mean
and the variance for each Gaussian distribution.

Moreover we have N observations of x which means that we also
have have N corresponding z unobserved realizations of the variable
z=1(zj), i=1,...,N,j=1,...,k

The joint distribution for the GMM model, using the one-hot encoding
representation for our variates is

K
px,z10) = [ |7}’ N xluj, a2
j=1

where notice that z; is 1 only for one j-th component and zero otherwise,
which means that in the product we only really get one factor (the others
are all 1).

This is not the typical thing that we write for a mixture of Gaussian though:
since we don’t observe z, we need to write the marginal distribution

K
p(x|0) = ZRJ‘N(xlleIGf)
=1

The problem is that the direct optimization of this is intractable. Then
we also need to consider the other terms that we need in our algorithm,
ie.

pzl6) =] [/
]

N K
p(zlx, 0) « [T ] 7" ¥ (xulusj, 07

n=1 j=1
TN (x|, 0]2)
S N (x|wi, 07)

p(z =jlx,0) =



where the last probability distribution is considered since we have
seen that, given ii.d. r.v., our conditional distribution factorizes as
p(zlx, 0) = TIY p(zilx;, 6)

In this model we can easily evaluate the conditional distribution of z
given x, which is what makes the computation of the EM algorithm
effective.

Then it is relatively simple to compute

Bl = e = o 0 = WD
2] = p(z = ilxy, — = v(z,:
plzlx)L4nj P J1Xn Zi niJV(xn I/Ji/ 0-12) i

which is called the responsibility in the gaussian mixture model scenario,
and it is needed to compute what we actually care about for the e-step of
the EM, which is the expectation of

N K
logp(x,20) = 3 > znjllog mj +log ¥ (xuuj, 07)]
n=1 j=1

that is

N K
[Ep(glg,e)[log p(ﬁl Elg) Z Z E[ Zn] 10g T+ log N (xy |I/l]/ G )]
n=1 j=1

Now we can solve in close form the optimization problem, which means
that we can compute analytically the derivatives with respect to our pa-
rameters in order to determine their maxima. Performing the calculations
we find

new = Zy(zn])xn

Epew = ﬁj Z Y (n) = ) (ot — )

N, N
m = Nj= 20 v(w)
n=1

where 717”” is the count of the probability that each observation comes

from the j-th component over all the observations; y;’ew

is a weighted
mean of the variables x for all the observations that comes from compo-

nent j; Z}”w is again a weighted average of all the covariances.

Remark A good initial guess for the parameters for our algorithm is
given by running a k-means clustering and considering the averages
and covariances of each cluster as a starting value for u; and X;. In
fact, k-means could be thought of as an approximation of EM, where
covariances are assumed to be identical and spherical.

9.4 Mixture of Gaussians

101



102

9 Expectation Maximization

9.5 EM for Bayesian Networks

We are going back to the motivating example that we have seen in the
introduction to explain how to solve the problem we posed.

Let’s consider a BN on a certain set of variables such that their joint
distribution is such that

p(x) = l—[ p(xilpa(x;), 0;)

And also we have our usual assumption that the set of variables x is
divided into a set of visible (observable) variables v, and a set of hidden
variables z. We can alternatively write then

px) = p(v,z|0)
In general, we need to consider how to compute
p(zlo=10,0)

for fixed 6, which we need to compute the expectation step. This condi-
tional, in the Bayesian settings scenario, is very easily computable using
belief propagation.

Let us denote with v = (v4, ..., v,) the set of observations of v, then our
goal is to do maximum likelihood (using the expectation maximization
algorithm) to compute the best 0 for our distribution. Define

q"(z) := p(z|vn, 0)

which is our conditional distribution for each possible observation of v.
We can also extend it to all variables x, by means of the delta distribution

q"(x) = p(zlv, 0)5(v, vn)

The e-step then just boils down to computing this 4" (x). For the m-step
we need the energy

Z Eg [log p(va, z4160)] = Z Z Eq [logp (x!pa(x})|6:)]

n
Then we can optimize
> B [logp (x}Ipa(x!)l6;)]

over 0; for each i.

Let’s introduce an example to make it clearer. Consider this simple

structure



9.6 EM for Hidden Markov Models

and each of the variables is boolean. The probability distributions are
defined by the parameters

p(z=1)=0,
plv=1)=06,
pw=1z=a,v=0)=Opaw, a,bel,1

Assume that we have observations (v1, w1), . . ., (U, wy). The e-step for
each observations just corresponds to find the distribution

7" (z) = p(zlv = vy, w = wy, 0)

or, as a function of x

q"(x) = p(z]o = vy, w = wy, 0)6(0, vx)6(w, wy)

Let’s write the energy term for a couple of factors to get the idea of how
to compute it and how to optimize with respect to it

> Egn [logp(z"102)] = > log 629" (z = 1) + log(1 - 6.)9" (z = 0)

If we maximize this with the constraint 6, € [0, 1] we obtain

Snqt(z=1) 1
QZ = = — n =1
an”(zzl)+znq”(zzo) N;q (Z )

A second (slightly more complicated) example is the energy term with
respect to w, i.e.

Z [Eqn [log p(wn IZ/ On, Gw)]

let’s restrict to thecase z = 0,0 =1 (Oyo1)
Z q"(z = 0)log Byo1 + Z q"(z = 0)log(1 — Oywo1)
nw,=1,0,=1 n:w,=0,0,=1

Maximizing over this yields

Sin I(w, =1)I (v, = 1)qn(z =0)

Ot = S o = 1) (0n = D"z = 0) + 5 T (wn = 00T (on = D"z = 0)

9.6 EM for Hidden Markov Models

We are going to address how to use the Expectation Maximization
algorithm in the context of Hidden Markov Models, which, remember,
are just a special case of Bayesian Networks. Let’s consider the following
HMM:
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9 Expectation Maximization

2 (22— e

‘ZWZ

@n)

with each z; € {1,...,k} being a categorical variable, we have the
following probability distributions

p(z1 =1i) =7,
p(zi = jlzi-1 = k) = Ayj
p(xilzi = k) = p(xi|Pk)
0=(nA )

The EM algorithm for Hidden Markov model is known as the Baum-Welch
algorithm.

The observation set in this context corresponds to whole trajectories (all
the x variables of the model are observed in each trajectory). We will
write them as x = x!, ..., xN where each x’ = (x3,---, X))

For the e-step, we need to compute
q"(z) = p(zlx", BoLp) Vn

and this is done just by running our message passing algorithm for
Bayesian Networks. For the m-step instead, we want

N [ K M K
EO) =12 0" @) Inme+ > D 4" (zi-1), zik) In Aji
el i k=1

M
+ 5>k =15¢"(zix) In p(x7 | pi)
i=1

Then we just need to maximize over all the parameters belonging to theta,
ie.0=(m, A, )

Working on the calculations we get, for example for 7ty

— ann(zlk)
g XX g (z1i)

Similarly, we can obtain expressions for the other parameters.



