
Variational Inference ��
��.� Introduction ���
��.� Mean Field Variational

Inference ���
��.�.� Example on Gaussian

distribution ���
��.�.� Variational Inference

with direct and inverse
KL ���

��.� Variational Linear
Regression ���

��.� Black box Variational
Inference ���

��.�.� Reparameterization
trick ���

��.�.� Non-reparameterizable
@(I |⌫) ���

��.�.� Rao-Blackwellization . ���
��.� Control variates ���
��.� Bayesian Neural Net-

works ���
��.�.� Bayes by Backprop . . . ���

��.� Introduction

Variational Inference is a deterministic approximation to perform infer-
ence. This differentiates it from other approximate inference techniques,
such as Markov Chain Monte Carlo, as there is no sampling involved.

Since Variational Inference is a big topic, we are just going to introduce
the basic ideas of the subject.

We start by considering a joint distribution ?(G , I), with G observable
variables and I non observable (latent) variables. This scenario includes
examples like the ones explored in the Expectation Maximization chapter,
where the latent variables are "coupled" with the observables even though
we cannot observe them (we will call these local latent variables and
denote them as I=), but I this time can also be latent parameters of our
distribution (global latent variables), thus encapsulating the possibility
of doing inference on the parameters. Therefore I is represented as
I = (I1 , . . . , I= , ) and our schema is represented by the following
PGM:

I=



G=

We have observations G1 , . . . , G= = G, which will sometimes also be
denoted simply as G, and we would like to compute the posterior distri-
bution

?(I |G)
and also the model evidence

?(G) =
π

?(G , I)3I.

This was also the context in Expectation Maximization, where we were
considering the ELBO, and we discussed that we can decompose the
evidence as

log ?(G) = L(@) + ![@(I)| |?(I |G)]

L(@) =
π

@(I)
⇥
log ?(G , I) � log @(I)

⇤
3I = E@[log ?(G , I) � log @(I)]

 ![@(I)| |?(I |G)] = �
π

@(I)
⇥
log ?(I |G) � log @(I)

⇤
3I

where @ is the so called variational distribution.

��� �� Variational Inference

In EM, we were concerned about optimizing the ELBO by a two-step
optimization over @ and . Now  are not explicitly present, but rather
trated probabilistically and included in I. Hence, we only have the
variational distribution and the goal in Variational Inference is to find
the best @ that approximates ?(I |G).

Notice this: ?(G) is fixed because observations are fixed, it’s a number.
The two terms in which we decompose it are the ELBO and the KL
divergence, therefore

I the @ that minimizes the KL-divergence is the same as the one
maximizing the ELBO L(@)

I L(@) is maximum when ![@ | |?] = 0, i.e. @ = ?(I |G)

However, in most of the cases the computation of ?(I |G) is intractable.

The solution to this problem is to restrict @ to a tractable family
of distributions. Therefore the optimal @(I) is likely to be such that
 ![@ | |?] > 0. The goal of Variational Inference is then to maximize L(@)
in a suitably restricted space of variational distributions @ (we will call
this space &).

Let’s make a first example to see how to choose this space. Think of &
as a set of parametric distributions, i.e. & = {@(I |⌫),⌫ 2 R

:} (might
be for example Gaussian distributions, with ⌫ representing the average
and the covariance matrix of our Gaussian). The optimization problem is
then on ⌫, hence we need to find argmax⌫ L(@(⌫)) = argmax⌫ L(⌫), but
the caveat is that this would typically be a highly non-linear and non-
convex optimization. Lastly, notice that ⌫ would typically be composed
of parameters for local latent variables and global latent variables, i.e.
@(I |⌫) = @( |⌫)

Q
8
@(I8 |⌫8 , )

��.� Mean Field Variational Inference

Rather than choosing a parametric model for our variational distribution,
we can instead opt for a different strategy.

Given that we are interested in approximating ?(I |G) by @(I), we as-
sume that z can be decomposed in " different blocks of variables
I = (I1 , . . . , I") and we further assume the independence of the blocks,
i.e. that

@(I) =
"Y
8=1

@8(I8)

Sometimes we will denote @8(I8) = @8 for brevity.

This is known as the mean field assumption (the name comes from
physics and stochastic processes).

��.� Mean Field Variational Inference ���

Let’s start by writing the lower bound for the mean field approximation

L(@) = E
⇥
log ?(G , I) � log @(I)

⇤
=π Y

8

@8[log ?(G , I) �
X
8

log @8]3I =

=
π

@9

"π
log ?(G , I)

Y
8<9

@8 3I8

#
3I9 �

π
@9 log @93I9 + const

=
π

@9E8<9[log ?(G , I)]3I9 �
π

@9 log @93I9 + const

where on the second row we factored out the terms depending on one
factor @9 , hiding all the terms not depending on @9 in the 2>=BC term.

Next we will define the function

log ?̃(G , I9) = E8<9[log ?(G , I)] + const

Which means, wrapping up

L(@9(I9)) = E@9 [log ?̃(G , I9) � log @9] + const,

hence L(@9(I9)) = � ![@9 | |?̃(G , I9)] + const

Now we have " lower bounds L(@9), which have to be maximized for
@9 , with @8 , 8 < 9 fixed. Since the ELBO is maximized when ![@ | |?] = 0,
we know that our best approximation is indeed

@
8
9
(I9) = ?̃(G , I9) (��.�)

Hence log @8
9
(I9) = E8<9[log ?(G |I)] + const which implies that

@
8
9
(I9) =

exp(E8<9[log ?(G , I)])Ø
exp

�
E8<9[log ?(G , I)]� 3I9

If we can compute analytically the expectation E8<9[log ?(G , I)] then
we are in a scenario in which we can actually perform the mean field
approximation. We cannot compute directly the expectation because
we do not know @8 . What we do then, is that we initialize @8 to some
initial distribution, then cycle through @9 , optimizing the ELBO with
respect to the coordinate 9 and fixing all the others @¬9 . We repeat for all
the coordinates in turn (coordinate ascent) until convergence, which is
guaranteed since the bound is convex on @9 .

Therefore, given that we know how to compute these integrals over the
logarithm of the joint distribution, mean field approximation gives us a
relatively easy method to approximate our posterior distribution.

However, being able to compute the integral depends on the model,
which means that this approximation is not suitable for every scenario.

��� �� Variational Inference

��.�.� Example on Gaussian distribution

We will use mean field variational inference to go from a Gaussian to
a factorized Gaussian. We have a joint distribution ?(I) = N(I |⇠,⇤�1)
where ⇠ =


⇠1
⇠2

�
and ⇤ is the precision matrix, so we are dealing with

a �-dimensional probability distribution. The mean field approxima-
tion implies that @(I) = @(I1)@(I2). Therefore we need to perform the
expectations.

log @81 (I1) = EI2[log ?(I)] + const

= EI2[�
1
2
(I1 � ⇠1)2⇤11 � (I1 � ⇠1)⇤12(I2 � ⇠2)] + const

= �1
2
(I1 � ⇠1)2⇤11 � (I1 � ⇠1)⇤12(E[I2] � ⇠2) + const

This has a nice form, because, since log @81 (I1) is a quadratic form, we know
that @81 (I1) is Gaussian N(I1 |<1 ,⇤�1

11) where <1 = ⇠1 �⇤�1
11 ⇤12(E[I2] �

⇠2).

By symmetry we have that

@
8
2 (I2) = N(I2 |<2 ,⇤�1

22), <2 = ⇠2 �⇤�1
22 ⇤21(E[I1] � ⇠1)

In our case we can solve directly these equations by noticing that E[I8] =
⇠8 which means that <1 = ⇠1 and <2 = ⇠2.

Notice that these are different than the marginals of a Gaussian. The
variance of each component is different than just the diagonal compo-
nent of the precision matrix (when we compute the covariance in the
marginalization process we need to invert the full matrix)

��.�.� Variational Inference with direct and inverse KL

We may ask ourselves what would happen if instead of trying find the
best variational distribution @ such that

 ![@ | |?] is minimum

we tried to solve the inverse problem, i.e. finding the @ such that

 ![? | |@] is minimum

Looking at the example of the Gaussian that we introduced before we
have the following qualitative results:

��.� Mean Field Variational Inference ���

Figure ��.�: Original distribution (green)
and its mean field approximation (Red)

Generally speaking, the inverse problem is intractable, as it requires
to evaluate an expectation with respect to the unknown distribution ?,
but in our scenario, we can make it tractable by using the mean field
approximation so that @(I) = @(I1)@(I2).
In particular, the variational distribution found by minimizing ![? | |@]
is such that @(I8) is exactly the 8C⌘ marginal of the Gaussian distribution,
hence it encompasses all the "original range" of our distribution (the
border of the picture in red is the same of the picture in green).

This is a very common behaviour of these two approximations. The
approximation of the direct KL-divergence is known as the zero forcing
approximation scheme. If ?(I) ⇡ 0 then @(I) ⇡ 0 around the mode. That’s
because if you take a small ? and a large @ you get a large ![@ | |?].
The approximation of the inverse KL-divergence instead is known as the
zero avoiding approximation scheme. Which means that if @(I) is non
zero then ?(I) is non zero, for the same (but inverse) reason as before. In
multidimensional distributions the variational distribution will end up
overlapping different modes of our system.

��� �� Variational Inference

Figure ��.�: On the left, the inverse KL
divergence, on the right, the direct KL
divergence

��.� Variational Linear Regression

Mean Field variational inference can be used also to make approximate
inference in the context of Linear regression. In particular, we will
consider the case in which we would like to put a hyperprior over the
parameter �, which regulates the variance of the prior for our weights.

F

�G=

� H=

Our joint distribution is

?(H ,F , �) = ?(H |F)?(F |�)?(�)

with each term, since we are dealing with Linear regression, defined
by

?(H |F) =
#Y
==1

N(H= |F))(G=), ��1)

?(F |�) = N(F |0, ��1
�)

?(�) = Gamma(� |00 , 10) =
1

�(00)
1
00
0 �00�1

4
�10�

and our goal becomes to compute the posterior distributions for F and �
using mean field variational inference, i.e. to compute ?(F , � |H).

We will use the mean field variational distribution @(F , �) = @(F)@(�)

Let’s start with

@
8(�) = EF[log ?(H ,F , �)] + const

= log ?(�) + EF[log ?(F |�)] + const

= (00 � 1) log � � 10� + "

2
log � � �

2
E[F)F] + const

��.� Black box Variational Inference ���

Therefore what we have is, in fact, another Gamma distribution

@
8(�) = Gamma(� |0# , 1#)

0# = 00 +
"

2

1# = 10 +
1
2
E@[F)F]

We can also workout what happens for the other term of the variational
distribution

log @8(F) = log ?(H |F) + E�[log ?(F |�)] + const

= ��
2

#X
==1

[F))(G=) � H=]2 �
1
2
E�F

)
F + const

Again, notice that here we have a quadratic form, hence completing the
square gives us a Gaussian distribution

@
8(F) = N(F |<# , (#)
<# = �(#�) H

(# = (E[�]� + ��)�)�1

The solution for w is very similar to what we have in linear regression
keeping � fixed, but now instead of just � we have its expectation in the
equation for the covariance matrix.

Notice that we know what are these expectations:

E[�] = 0#

1#

E[F)F] = <
)

#
<# + Trace((#)

Then we can just initialize the expectation for � and then we start iterating
by computing the expectation of F)F and so on.

We can also in principle compute L(@) ⇡ ?(H) that approximates the
model evidence, which can then be used for Bayesian model compari-
son.

��.� Black box Variational Inference

As we have seen, the mean field approximation efficacy is dependent
on our ability to compute the expectations that arise in the equations
determining the components of our variational distribution. If we can’t
compute the expectations, we are not able to use the approximation at
all. Here black-box (or stochastic) Variational Inference enters the picture
as a viable alternative.

��� �� Variational Inference

The general idea is to perform a Monte-Carlo estimate of the gradient of
the ELBO with respect to the variational parameters and then perform
gradient ascent with these estimates.

Our variational distribution will be tipically parametric in this scenario
@(I(⌫)). The lower bound is

L(⌫) = E
@(I |⌫)[log ?(G , I) � log @(I |⌫)]

We want to compute r⌫L(⌫) which we cannot compute analytically. The
idea, as previously stated, is to sample this gradient, but how can we do
it? We need to turn the gradient of this estimation into the estimation of
a gradient in order to exploit the capabilities of Monte Carlo methods.

We have two strategies, the first one works only for special cases, while
the second one, albeit more complex, is usable in general.

��.�.� Reparameterization trick

The first solution is called “Reparameterization trick”. It can be used if
we can write I = 6⇡(⌘) as a certain function 6 of ⌘, with ⌘ being some
random variable coming from a distribution @̂(⌘) which is independent
of ⌫. We also define ⌫̂ = (⌫, ⇡) where ⇡ are the parameters of the function
6. Then we can write

L(⌫̂) = E
@̂(⌘)[log ?(G , 6⇡(⌘)) � log @(6⇡(⌘)|⌫)]

and our expectation does not depend on ⌫ anymore. Hence we can
sample from it and compute the gradient:

r⌫̂L(⌫̂) = E
@̂(⌘)[r⌫̂ log ?(G , 6⇡(⌘)) � r⌫̂@(6⇡(⌘)|⌫)]

Let’s also define the following function for easier readability

⌧(⌘) = [r⌫̂ log ?(G , 6⇡(⌘)) � r⌫̂@(6⇡(⌘)|⌫)]

In practice, we sample ⌘9 ⇠ @̂(⌘) and the sampled gradient is just

r⌫̂L(⌫̂) = 1
(

(X
B=1

⌧(⌘B)

Then we use Stochastic Gradient Ascent (SGA), which is the ascending
version of the same algorithm that we use in Neural Network backpropa-
gation, and we just iterate these two steps, Monte Carlo approximation
of the gradient and SGA up until convergence.

The caveat is being able to perform the reparametrization trick, which is
easy for Gaussians, for example, and less easy for other distributions.

Example. If we consider the parametric variational distribution to be a
univariate Gaussian distribution, we can write it as:

@(I |⌫) = N(I |⇠, �2)

��.� Black box Variational Inference ���

Now we would like to express @(I |⌫) by a distribution @̂(⌘) independent
from⌫ combined with a function 6⌫(⌘) that depends from⌫. In particular,
we consider:

I = 6⇡(⌘) = ⇠ + � · ⌘
⌘ ⇠ @̂(⌘) = N(⌘|0, 1)

��.�.� Non-reparameterizable @(I |⌫)

The goal is still to rewrite the gradient of the expectation as the expectation
of the gradient; the general case is more complicated but an expression
can be nonetheless found. Let us start from

r⌫L(⌫) = r⌫E@(I |⌫)[log ?(G , I) � log @(I |⌫)]

= r⌫
π

@(I |⌫)[log ?(G , I) � log @(I |⌫)]3I

Using the dominated convergence theorem to get the gradient inside the
integral and then applying the product rule for derivatives we get

r⌫L(⌫) =
π
r⌫[log ?(G , I) � log @(I |⌫)]@(I |⌫)3I

+
π
r⌫@(I |⌫)[log ?(G , I) � log @(I |⌫)]3I

Taking a look at the first term, we see that r⌫[log ?(G , I)] = 0 and we can
write it as

π
r⌫[log ?(G , I) � log @(I |⌫)]@(I |⌫)3I = �E@[r⌫ log @(I |⌫)]

= �E@
r⌫@(I |⌫)
@(I |⌫)

�
=
π r⌫@(I |⌫)

@(I |⌫) @(I |⌫)3I

=
π
r⌫@(I |⌫)3I

= r⌫
π

@(I |⌫)3I = r⌫1 = 0

We still need to workout the second term. Again we use the fact that

r⌫[log @(I |⌫)] = r⌫@(I |⌫)
@(I |⌫)

which we rephrase as

r⌫@(I |⌫) = r⌫[log @(I |⌫)]@(I |⌫)

��� �� Variational Inference

Recapping

r⌫L(⌫) =
π

@(I |⌫)r⌫ log @(I |⌫)[log ?(G , I) � log @(I |⌫)]3I

= E@[r⌫ log @(I |⌫)[log ?(G , I) � log @(I |⌫)]]

Then we can sample IB ⇠ @(I |⌫) and have an estimate of our gradient

r⌫L(⌫) ⇡ 1
(

(X
B=1
r⌫ log @(IB |⌫)[log ?(G , IB) � log @(IB |⌫)]

Again we have an estimate of the gradient and we can use SGA to find
convergence. Unfortunately this estimates of the gradient has a very high
variance, which slows down the convergence of our algorithm, so in the
next steps we would see strategies on how to control this variance.

��.�.� Rao-Blackwellization

The first technique to control the variance of the stochastic estimation of
the gradient of the ELBO that we have defined in black box variational
inference, is known as Rao-Blackwellization.

Consider G , H random variates and some function �(G , H) of which we
want to compute the expectation.

First let’s define

�̂(G) = EH[�(G , H)|G] hence EG[�̂(G)] = EGH[�(G , H)]

Crucially, we know, by properties of the conditional expectation, that

+0A[�̂(G)] = +0A[�(G , H)] � E[(�(G , H) � �̂(G))2] < +0A[�(G , H)]

Now, let’s consider a mean field factorization of @(I |⌫) = Q
#

8=1 @(I8 |⌫8) .
Since every I8 depends only on ⌫8 we are going to consider the gradient
with respect to the single ⌫8 and then exploit this factorization to simplify
the expression.

We need a couple more things:

I @(8): marginal of @(I |⌫) on the terms that form the Markov Blanket
I(8) in ?

I ?8(G , I(8)) the product of factors of ?(G |I) depending on I(8)

We are not going to perform the computation here (they are reported in
the black-box variational inference paper), but we get that

r̂⌫8 [L] := E
@(8)[r⌫8L(I8)] = E

@(8)
⇥
r⌫8 log @(I8 |⌫8)[log ?8(G , I(8)) � log @(I8 |⌫8)]

⇤

So essentially now we are taking an expectation over a smaller set of
variables. This is playing the role of �̂(G) recasted on our variational
inference problem, hence the variance of the estimation is reduced with
respect to the original formulation of the problem.

��.� Control variates ���

More specifically, we need to consider samples IB ⇠ @(8)(I |⌫) and this
distribution is just the product of the factors belonging to the Markov
blanket of I8 .

��.� Control variates

Let’s first introduce the general idea of control variates. Say we have a
function 5 of which we want to know the expectation with respect a
certain distribution @. Instead of directly computating the expectation
of 5 , we will define a new function 5̂ such that E@[5̂] = E@[5] and
+�'@[5̂] < +�'@[5], and compute E@[5̂] . How do we build such a
5̂ ?

We choose a function ⌘ such that E[⌘] < 1 and define

5̂0(I) = 5 (I) � 0(⌘(I) � E[⌘(I)])

One can trivially see that indeed E@[5̂] = E[5] and that

+0A[5̂] = +0A[5] � 20⇠>E[5 , ⌘] + 02
+0A[⌘]

Additionally we have the freedom to choose 0 and we can fix it to the
value 08 that minimizes the variance, which by deriving the expression
before w.r.t 0 and setting it to zero turns out to be

0
8 =

⇠$+(5 , ⌘)
+�'(⌘)

So the larger the covariance, the larger the reduction in the estimation of
the variance.

In our scenario, we start from Rao-Blackwellization

58(I) = r⌫8 log @(I8 |⌫8)[log ?8(G , I(8)) � log(I8 |⌫8)]

and we will choose
⌘8(I) = r⌫8 log @(I8 |⌫8)

since we have seen that E[⌘8(I)] = 0.

The optimal choice 08 for 0 is hard to compute, because we would need
to know the covariance precisely, but we can estimate it as 0̂8 reusing the
same samples that we used to estimate the gradient.

Then, our estimation of the gradient using control variates becomes

r̂⌫8 =
1
(

(X
B=1
r⌫8 log @(I8 |⌫8)[log ?8(G , IB) � log @8(IB |⌫8) � 0̂8

8
]

where IB ⇠ @(8)(I |⌫).
A scheme summarizing the different kinds and applications of Variational
Inference is shown in Figure ��.�.

��� �� Variational Inference

Figure ��.�: A schematic decision dia-
gram to identify the suitable Variational
Inference scheme to use in the applica-
tion at hand.

Can we compute analytically
the expectation

E8<9[log ?(G , I9)] ?

Do we assume
independence of the blocks?

Mean Field
Variational Inference

Black box Variational Inference

Can we write I = 6⇡(⌘) ?

Reparameterization trick Estimate gradient
+

Rao-Blackwellization
+

Control variates

Yes

Yes

No

No

Yes No

��.� Bayesian Neural Networks

Looking at the world of deep learning, we will now try to understand
how the methods we have just described can prove useful when applied
to deep neural networks. These architectures are powerful function
approximators which can be trained using gradient-based optimization.
Sometimes this flexibility, which is their main strength, can become a
weakness, e.g. if it leads to overfitting or when the data available is
limited. Moreover, deep neural networks lack the uncertainty estimation
on the output.

To overcome these issues we can examine neural networks under a
Bayesian lens, which for its nature behaves in a probabilistic way. The
model uncertainty should be introduced in the parameters w. Imagine
to train many times the network on the same dataset with a stochastic
optimization technique: the parameters would probably be different each
time, as the predictions. This procedure, used in Neural Networks ensem-
bles, would lead to a measure of uncertainty on the weights which reflects
on the uncertainty on the output, though heavily dependent on the train-
ing mechanism and on the initialization of model parameters. However,
there is a simpler and more grounded way to introduce uncertainty, i.e.
switching from point-wise weights to probability distributions.

This means placing a prior distribution ?(w on weights and then learning
the posterior distribution ?(w |Ḡ , H̄) with a suitable learning algorithm,
using it to compute the predictive distribution:

?(y |x) =
π
,

?(y |x ,w)?(w |Ḡ , H̄)3w

where, is the space of the possible parameters.

Figure ��.�: Neural network (left) VS
Bayesian neural network (right). We con-
sider that the BNN outputs a probability
distribution, which is obtained by com-
puting the predictive distribution

G1

G2

⌘1

⌘2

⌘3

⌘4

H

G1

G2

⌘1

⌘2

⌘3

⌘4

?(H |G)

0.2

0.05

�0.1

�0.25

0.55

0.4

0.25

0.1

0.2

0.55

0.9
1.25

��.� Bayesian Neural Networks ���

Remark. Looking at the predictive distribution, we can consider it as a
form of Bayesian model averaging: the first term in the integral, i.e. the
likelihood, corresponds to the forward pass through a neural network
with a specific set of weights, multiplied by the posterior probability of
that set of weights over all the possible weight values. This is equivalent
to using an ensemble of an uncountably infinite number of neural
networks.

Remark. The Bayesian approach allows us to regularize the learning
by placing a suitable prior on the weights F: with a Gaussian prior we
obtain a !2 regularization; with a Laplace prior a !1 regularization.

Computing directly ?(w |Ḡ , H̄), and thus the predictive distribution, is
intractable as it requires learning a very high-dimensional distribution
(the number of weights in a neural network is typically very large). So, we
consider a variational distribution @(w |)which approximates ?(w |Ḡ , H̄).
At this point, we write the ELBO:

L() = E
@(w |)[log ?(w , Ḡ , H̄) � log @(w |)]

= E
@(w |)[log ?(H̄ |w , Ḡ) + log ?(w) � log @(w |)]

and use its opposite as the loss function of the neural network:

Loss() = E
@(w |)[log @(w |) � log ?(H̄ |w , Ḡ) � log ?(w)]

��.�.� Bayes by Backprop

In order to optimize the loss function above, we need to compute the
gradient with respect to the parameters . This is usually not tractable as
we cannot interchange the gradient with the expectation, as they both
act on the same parameters. So we use the reparametrization trick. In
this way, we can perform the optimization by combining sampling with
backpropagation, the milestone of deep learning. This algorithm is called
Bayes by Backprop [�] .

We start by assuming that the variational posterior distribution is a
Gaussian distribution with diagonal covariance matrix (but in principle
we could use any reparameterizable distribution). We notice that we need
to require 2 to be non-negative and so we parametrize it as:

2 = log(1 + exp(1))

In this case,
) = (-, 1)

and we can reparametrize w as:

w = - + log(1 + exp(1)) · ⌘

with ⌘ ⇠N(0, O).

��� �� Variational Inference

In this way, we are now able to samplew by sampling from a simple distri-
bution which does not depend on the parameters that we are optimizing.
So, after taking the expectation, we are interested in minimizing

E⌘[5 (w ,))] = E⌘[log ?(H̄ |Ḡ ,w) + log ?(w) � log @(w |)]

We can then perform the optimization step by step by repeating the
following procedure:

�. Sample ⌘ ⇠N(0, O)
�. Compute the weights as w = - + log(1 + exp(1)) · ⌘
�. Execute the forward pass
�. Compute the unbiased Monte Carlo gradients with respect to the

parameters and calculate the update steps (backpropagation):

�- = rw 5 (w ,)) · r-w + r- 5 (w ,))
= rw 5 (w ,)) + r- 5 (w ,))

�1 = rw 5 (w ,)) · r1w + r1 5 (w ,))
= rw 5 (w ,)) ⌘

1 + exp(�1) + r1 5 (w ,))

�. Update the variational parameters:

- - � ��-

1 1 � ���

where � is the learning rate.

Remark. Notice that rw 5 (w ,)), which is present in both �- and �1 is
the usual gradient found by backpropagation: Bayes by Backprop just
scales and shifts it.

Remark. As usual in deep learning, minibatches are used in the training
process. In this case, the KL cost has to be re-weighted in a proper way.

