
Generative Modelling ��
��.� Variational Autoen-

coders ���
��.�.� Introduction ���
��.�.� Autoencoding Varia-

tional Bayes (AEVB
[��]) ���

��.� Diffusion Models ���
��.�.� Forward Diffusion

Process ���
��.�.� Backward Process ���
��.�.� Denoising parametriza-

tion ���
��.�.� Diffusion in discrete

space ���
��.�.� Score-based diffusion

models ���

��.� Variational Autoencoders

��.�.� Introduction

Variational Autoencoders (VAE) [�, ��] are one of the most commonly
used and efficient approaches for the task of generative modelling. Un-
like discriminative models, whose objective is to learn the conditional
distribution ?(y |x), generative techniques aim to obtain the whole distri-
bution of the data x = x1 , ..., x= , i.e. estimate ?(x) with the parametric
distribution ?(x , ), typically differentiable with respect to .

In this way it becomes possible to sample from such a probability
distribution, thus generating new instances similar to the training dataset,
or to assign to a given instance the probability of having been generated
by the same process as the training dataset.

In general, generative modelling deals with a harder task with respect
to discriminative models because in the former there is much more
knowledge to learn. Intuitively, this is valid also for humans: by seeing
many labelled images of dogs and cats it is much easier to distinguish
dogs from cats than to draw a new image of a dog or a cat. In fact, in
order to assign a label it is only required to find out some patterns which
are different between the categories, while to generate a new instance it
is necessary to capture correlations in the dataset, as for example the fact
that dogs have two eyes, a tail, etc.. So, the discriminative model has to
learn a decision boundary in the data space, while the generative one
has to understand how data is placed throughout the space.

Figure ��.�: Image from
https://medium.com/@jordi���/about-

generative-and-discriminative-models-

d����b��ad��

It may be more convenient to avoid learning directly the distribution of
the data (pixels in our example), but to introduce latent features I which
can describe the data and rewrite our distribution as:

?(x , z |) = ?(x |z, )?(z)

We assume that the posterior distribution ?(z |x) is intractable and that
we are working in the big data regime, so that we are forced to consider

��� �� Generative Modelling

mini-batches during the training phase. The goals that we would like to
achieve are:

I Learning the parameters 
I Approximating the posterior ?(z |x) in order to understand which

are the latent features extracted from a given instance x

I Performing approximate inference on x to be able to fill holes in an
instance

In this scenario, where we have a parametric distribution with latent
variables, it might occur to us to use Expectation Maximization. But
we must remember that the E-step requires being able to evaluate the
conditional distribution ?(z |x , $!⇡) which we have assumed here to be
intractable. Other techniques that we have already seen, such as mean
field variational approximation or sampling-based methods, turn out to
be too computationally expensive as they do not scale well with large
datasets. We will now see how to solve the problem by applying stochastic
variational inference together with an encoder-decoder approach.

��.�.� Autoencoding Variational Bayes (AEVB [��])

Following the idea of black-box variational inference, we start by consid-
ering a parametric variational distribution for the latent variables @(z |)).
We would like to optimize the ELBO jointly on  and) by stochastic
gradient ascent and so we need to compute r,)L(), ). We fix the prior
distribution of z as a standard Gaussian:

?(z) ⇠ N(0, O)

and we start by rewriting the lower bound as:

L(), ) = E
@(z |x ,))[log ?(x , z |) � log @(z |x ,))]

= E
@(z |x ,))[log ?(x |z, ) + log ?(z) � log @(z |x ,))]

= E
@(z |x ,))[log ?(x |z, )] � E

@(z |x ,))


log

@(z |x ,))
?(z)

�

= E
@(z |x ,))[log ?(x |z, )] � ![@(z |x ,))| |?(z)]

As we said before, we are not able to work with the entire dataset and
thus we have to consider a mini-batch x1 , ..., x< and approximate:

L(), ) ⇡ 1
<

<X
9=1

E
@(z |x 9 ,))[log ?(x 9 |z, )] � ![@(z |x 9 ,))| |?(z)]

We can try to understand the meaning of this expression:

I The first term is the reconstruction error. It considers how well we
are reconstructing x given z sampled from @. This is maximized
when ?(x |z, ) assigns the highest probability to the original
instance x. We call ?(x |z, ) decoder.

��.� Variational Autoencoders ���

I The second term is a regularization term which encourages the
variational distribution to look like a Gaussian distribution and not
some kind of identity mapping. This avoids learning a mapping
from inputs to latent features that just “stores” the inputs in different
regions of the latent space, hence it favours generalization.

Both the terms involve the expectation with respect to the variational
distribution of the latent variables that we interpret as features describing
the data. So, we call @(z |x ,)) encoder.

We can represent the architecture in the following way:

x

Encoder:
@(z |x ,))

z

z

Decoder:
?(x |z, )

x̂

where the input x is mapped through the encoder into a useful latent
space z from which we can reconstruct x̂ via the decoder. We would like
x̂ to be as similar as possible to x.

Remark. Notice that the variational parameters are shared across all
the datapoints: using global parameters allows us to ’amortize’ the cost
of inference (amortized inference). Instead, in mean-field variational
inference we had different parameters for each datapoint. This changes
the behaviour of the model when we have a new datapoint: in mean-field
VI we need to maximize the ELBO for each new point while here we can
keep the global parameters fixed or run the variational inference again
(maybe when many points are added).

So far we have obtained an expression for the ELBO, which is the
objective function of our optimization. In order to maximize it, we need
a good estimate of the gradient and we cannot obtain it directly from the
previous expression because the gradient has to be computed on the same
variables involved in the expectation. Therefore, it is not possible to swap
the gradient and the expectation and this is where the reparametrization
trick comes in.

We express the variational distribution @(z |x ,)) through a deterministic
transformation 6(9, x ,)) which maps a noise variable 9 (distributed
accordingly to a distribution we can easily sample from, as 9 ⇠ N(0, O))
to the distribution of z:

z = 6(9, x ,))

��� �� Generative Modelling

Figure ��.�: Random samples from
learned generative models (AEVB) of
MNIST for different dimensionalities of
latent space [��].

Typically, the variational distribution is chosen to be a Gaussian:

@(z |x ,)) = N(-z(x ,)), 2z
2(x ,)) · O)

so that we have an analytical expression for ![@(z |x ,))| |?(z)] and we
can rewrite z as

z = -z(x ,)) + 2z
2(x ,)) · 9

At this point, we can evaluate the gradient of the ELBO as:

r,)L(), ) = E9[r), log ?(x |6(9, x ,)), )] � r) ![@(z |x ,))| |?(z)]

We still have to choose the functions -z(x ,)) and 2z
2(x ,)). To have

high expressiveness and efficient optimization, we can opt for neural
networks: we just built a variational autoencoder.

-z

22
z

sample z

G1 Ĝ1

G2 Ĝ2

G3 Ĝ3

G4 Ĝ4

G5 Ĝ5

input ! ##()) ##() ! output

Remark. The variational autoencoder can be interpreted as a directed
probabilistic graphical model with latent variables.

��.� Diffusion Models ���

z

x 

#

��.� Diffusion Models

Diffusion models are a family of probabilistic generative models that
progressively destruct data by injecting noise, then learn to reverse this
process for sample generation. In particular, we will discuss denoising
diffusion probabilistic models (DDPMs), but many concepts are common
to other formulations.

Figure ��.�: Image from [��], Denoising

Diffusion-based Generative Modeling: Foun-

dations and Applications

��.�.� Forward Diffusion Process

Given a data point x0 2 X sampled from the data distribution ?(x0),
consider a Markov chain ?(xC |xC�1) with C 2 1, . . . ,) satisfying the
following properties:

I It is easy to sample from ?(xC |xC�1)
I For) large enough, ?(x)) is approximately a known distribution

from which it is easy to sample and that does not depend on x0, i.e,
?(x)) ⇡ ?(x) |x0). This distribution is referred as the prior.

x0 x1 x)�1 x)

?(xC |xC�1)

Such Markov chain is referred as the forward diffusion process, and
?(xC |xC�1) is often referred as the forward transition kernel. Using the
chain rule of probability and the Markov property, we can factorize the
joint distribution of x0 , . . . , x) into:

?(x0 , . . . , x)) = ?(x0)
)Y
C=1

?(xC |xC�1)

In practice, the most used forward process in continuous space is based
on the injection of Gaussian noise:

?(xC |xC�1) B N(xC ;
p

1 � �CxC�1 , �CO)

��� �� Generative Modelling

where �C 2 (0, 1) regulates the amount of noise that is injected at each
step (the larger, the faster the convergence to the prior distribution).
A useful property of the above process is that we can sample at any
arbitrary time step in a closed form using the reparameterization trick.
Given �C B 1 � �C , �̄C B

Q
C

8=1 �8 , and &C ⇠ N(0, O) we have

xC =
p
�CxC�1 +

p
1 � �C&C�1

=
p
�C

⇣p
�C�1xC�2 +

p
1 � �C�1&C�2

⌘
+
p

1 � �C&C�1

=
p
�C�C�1xC�2 +

p
1 � �C�C�1 &̂C�2

= . . .

=
p
�̄Cx0 +

p
1 � �̄C &̂

where &C�2 and &C�1 have been merged into &̂C�2.

Hence, we have

?(xC |x0) = N(xC ;
p
�̄Cx0 , 1 � �̄C)

This is also useful to show, as �̄C ! 0, that

lim
C!1

?(xC |x0) = N(xC ; 0, O)

So for a sufficiently large), x) §⇠ N(0, O). In other words, this process
ends up in corrupting the data into white noise.

��.�.� Backward Process

Now that we are able to gradually corrupt data points x0 into noise, for
generating new data samples we have to revert this process. We have
seen that we can easily sample from ?(x)), but sampling from

?(x0 , . . . , x)) = ?(x))
)Y
C=1

?(xC�1 |xC)

is non-trivial, since we do not have access to the reverse transition kernels
?(xC�1 |xC)� that would allow us to perform ancestral sampling as in the
forward process. Therefore, the reverse transition kernels have to be
learned. In order to do this, we fit parametric distributions @(xC�1 |xC),
from which it easy to sample and that can be easily computed, for
example:

@(xC�1 |xC) B N(xC�1;⇠(xC , C),⌃(xC , C))
where the mean and covariance functions are neural networks.

The objective is then to find parameters  such that

@(x0 , . . . , x)) B ?(x))
)Y
C=1

@(xC�1 |xC) ⇡ ?(x0 , . . . , x))

� It is easy to prove that the reverse of a Markov chain is also a Markov chain.

��.� Diffusion Models ���

x0 x1 x)�1 x)

@(xC�1 |xC)

The parametric kernels are learned by minimizing the Kullback-Leibler
divergence between the forward and backward processes:

⇡ !(?(x0 , . . . , x))| |@(x0 , . . . , x))) = E
?(x0 ,...,x))


log

?(x0 , . . . , x))
@(x0 , . . . , x))

�

= �E
?(x0 ,...,x)) [log @(x0 , . . . , x))] + const

= �E
?(x0 ,...,x))

"
)X
C=0

log @(xC�1 |xC)
#
+ const

Remark. The forward process ?(x0 , . . . , x)) was considered constant
with respect to the parameters . Although parameters of the forward
process (as �C) are usually considered fixed (hyperparameters), it is also
possible to learn them. In that case we cannot consider the forward
process as constant with respect to the parameters.

Minimizing this inverse KL divergence is equivalent to solving a max-
imum likelihood estimation problem: we can sample full trajectories
starting from samples from the dataset and use them to fit parametric
functions @ by stochastic optimization, as in a supervised learning
problem.

Remark. It can be shown that, if forward transition kernels corrupts
the data slowly enough () is large), then the reverse transition kernels
will be approximately Gaussian. This is what makes the approximation
of reverse transition kernels possible and approachable as a prediction
problem. Conversely, if forward transition kernels add too much noise,
the reverse transition probabilities can be multimodal, hence a parametric
approximation would be intractable.

��.�.� Denoising parametrization

There is empirical evidence that learning directly the backward transition
kernels @(xC�1 |xC) is not the most effective strategy. Alternatively, it is
possible to write the backward transition kernel in the following way:

?(xC�1 |xC) =
π
x02X

?(xC�1 , x0 |xC)3x0 =
π
x02X

?(xC�1 |xC , x0)?(x0 |xC)3x0

This means that we can sample xC�1 if we can sample x0 ⇠ ?(x0 |xC) and
plug it into ?(xC�1 |xC , x0). It is possible to show that for the Gaussian
diffusion process introduced above the distribution ?(xC�1 |xC , x0) is also
a Gaussian and can be computed analytically:

?(xC�1 |xC , x0) = N(xC�1;⇠C(xC , x0), �CO)

⇠C(xC , x0) =
p
�C(1 � �̄C�1)

1 � �̄C
xC +

p
�̄C�1�C

1 � �̄C
x0

��� �� Generative Modelling

�C =
(1 � �̄C�1)

1 � �̄C
�C

Instead ?(x0 |xC) (the denoising kernel) has to be learned, again by fitting
a parametric distribution @(x0 |xC). Interestingly, this works despite
?(x0 |xC) being highly multimodal and non-Gaussian, so only a “mean”
approximation is possible.

However, it is common in DDPMs to avoid predicting directly x0 given
xC . In fact, a model is trained to predict the noise that was added to
x0 in order to obtain xC . Recall the property following from ?(xC |x0) =
N(xC ;

p
�̄Cx0 , 1 � �̄C):

xC =
p
�̄Cx0 +

p
1 � �̄C&C with &C ⇠ N(0, O)

We can rewrite the mean of ?(xC�1 |xC , x0), or ?(xC�1 |xC , &C), as

⇠C(xC , &C) =
1p
�C

✓
xC �

1 � �Cp
1 � �̄C

&C

◆

Now we can fit a parametric model &(xC , C) to approximate ?(&C |xC).
This is usually done in a simplified way by minimizing the squared
error:

L() = EC ,x0 ,&C

⇥
k&C � & (xC , C)k2⇤

= EC ,x0 ,&C

���&C � &
⇣p

�̄Cx0 +
p

1 � �̄C&C , C
⌘���2

�

where the time step C is sampled uniformly in {1, . . . ,)}, x0 is randomly
sampled from the dataset, and &C ⇠ N(0, O). The training and sampling
algorithm are then summarized as follows:

Figure ��.�: The training and sampling
algorithms in DDPMs (image from [��]).

Remark. The empirical advantage of predicting the noise &C instead of
x0 could be due to the fact that it is easier to train a neural network
when the target output is (marginally) distributed according to a normal
distribution.

Summary

A DDPM makes use of two Markov chains: a forward chain that perturbs
data to noise, and a reverse chain that converts noise back to data. The
forward Markov chain is designed with the goal to gradually transform
any data distribution into a simple prior distribution (e.g., standard
Gaussian). The backward Markov chain instead reverses the former
starting from the known distribution and gradually converging to the

��.� Diffusion Models ���

data distribution. Since the backward Markov chain is unknown, it
is learned by a deep neural network using examples generated with
the forward process. New data points are subsequently generated by
first sampling a random vector from the prior distribution, followed by
ancestral sampling through the reverse Markov chain.

��.�.� Diffusion in discrete space

Despite being originally thought for data in continuous space, it is also
possible to define a diffusion process in discrete space [��], even though
its usefulness is questionable and subject of current research. Assuming
without loss of generality data x 2 {1, 2, . . . , 2}3, there are two main
kinds of discrete diffusion processes:

I Uniform: At each time step C, every component G8
C

of xC switches to
a random value with a given small probability &C . The prior distri-
bution of such diffusion process is the uniform over {1, 2, . . . , 2}3.

I Absorbing: At each time step C, every component G8
C

of xC switches
to a particular value called the “mask", often referred as the [MASK]
token. The prior distribution of such diffusion process is the single
point [MASK]3, that is the absorbing state of the Markov chain.
A variant of the absorbing diffusion process is when at each time
step C the CC⌘ component GC

C
is masked. Modelling the corresponding

reverse process is then equivalent to fitting an autoregressive model.

��.�.� Score-based diffusion models

Given the objective to sample from the distribution ?(x) that generated
the data, score-based models models aim at estimating the so called score

of ?(x), defined as rx log ?(x) and then use sampling techniques that
exploit the knowledge of the score of the distribution.

An example of score-based model is diffusion with stochastic differential
equations (SDE), a generalization in continuous time of the Markov chain
diffusion process discussed above, where the transition kernel ?(xC+& |xC)
is implicitly defined through the following SDE:

dx = f (x , C)dC + 6(C)dw

where dw ⇠ N(0, OdC) is a Wiener process.

Figure ��.�: Image from [��], An introduc-

tion to Diffusion Probabilistic Models.

��� �� Generative Modelling

Generation of new data points reduces to solving the inverse-time SDE,
that it can be proven to be:

dx =
⇥
f (x , C) � 6

2(C)rx log ?C(x)
⇤

dC + 6(C)dw

For this we need to estimate the time dependent score rx log ?C(x), for
example using a neural network B(x , C). The most popular method is
denoising score matching, where the following loss in minimized:

E
C⇠D(0,1),x0⇠?(x0),xC⇠?(xC |x0) ks(xC , C) � rxC

ln ?(xC | x0)k

that is deeply connected with the denoising loss of DDPMs.

