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1 Introduction

Machine learning - the perspective that we take on it at least - is all about learning
probability models:

e Full data generating distribution p(x, y)
e Input data generating distribution p(x)
e Output conditional distribution p(y | x)
e Input conditional distribution p(x | y)

First goal is to recall what are these models, and how we can manipulate them and
reason about them.

2 Basics of probability theory

2.1 Probability: an intuition
e Probabilities are a mathematical tool to describe uncertain phenomena.

e Uncertainty is present either because the phenomenon is intrinsically random,
like in quantum mechanics (aleatoric uncertainty) or because of our incomplete
knowledge about the phenomenon (epistemic uncertainty).

e The probability p; of an experiment taking a certain value i is the frequency with
which that value is taken in the limit of infinite experimental trials (frequentist
viewpoint - aleatoric uncertainty)

e Alternatively, we can take probability to be our belief that a certain value will be
taken (Bayesian viewpoint - epistemic uncertainty)



2.2
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2.2.2

Random Variables and probability distributions
Random variables: results of non exactly reproducible experiments

Let x and y be two random variables, p(x = i,y = j) is the joint probability of
x taking value i and y taking value j (with i and j in the respective spaces of
possible values).

Often just written p(x,y) to indicate the function (as opposed to its evaluation
over the outcomes i and j).

p(xly) is the conditional probability, i.e. the probability of x if you know y has a
certain value

Example: a discrete random variable, with values in a countable state space S,
e.g. N, like the Poisson random variable.

Example: real-valued random variables, with values in R, like the Gaussian ran-
dom variable.

Rules of probability (discrete rv)

Normalisation: the sum of the probabilities of all possible experimental out-
comes must be 1, Y, .y p(x) = 1

Sum rule: the marginal probability p(x) is given by summing the joint p(x,y)
over all possible values of y,

P = Y plx.y)

yey

Product rule: the joint is the product of the conditional and the marginal, p(x,y) =
py)p(y)

Bayes rule: the posterior is the ratio of the joint and the marginal

PPy

pOlx) = o)

Independence

Two random variables x and y are independent if their joint probability factorises
in terms of marginals

p(x,y) = p(x)p(y)

Using the product rule, this is equivalent to the conditional being equal to the
marginal
p(x,y) = p(x)p(y) & pxly) = p(x)



2.2.3

Continuous random variables
If the state space X is continuous some of the previous definitions must be modified

The general case is mathematically difficult; we restrict ourselves to X = R” and to
distributions which admit a density, i.e. a function

p:X—>R st px)>0, Vx and fp(x)dx =1
X
Formally, these are absolute continuous measures with respect to the Lebesgue measure,
with density function playing the role of a Radon-Nikodym derivative.
It can be shown that the rules of probability distributions hold also for probability densities

Notice that p(x) is NOT the probability of the random variable being in state x (that is
always zero for bounded densities); probabilities are only defined as integrals over subsets

of X

2.3 Distributions and expectations
e A probability distribution for finite state space can be given by a table, in general
is given by a functional form
e Probability distributions (over numerical objects) are useful to compute expecta-
tions of functions
(= F@p)
xeX
e Important expectations are the mean (x) and variance var(x) = {((x — (x)?).
e For more variables, also the covariance cov(x,y) = {((x — {(x))(y — (y))) or its
scaled relative the correlation corr(x,y) = cov(x,y)/ \/var(x)var(y)
Exercise

If two variables are independent, then their correlation is zero. NOT TRUE viceversa
(no correlation does not imply independence)
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Computing expectations

If you know analytically the probability distribution and can compute the sums
(integrals), no problem

If you know the distribution but cannot compute the sums (integrals), enter the
magical realm of approximate inference (fun but out of scope)

If you know nothing but have Ny samples, then use a sample approximation

Approximate the probability of an outcome with the frequency in the sample

: 13
O = Y 3o f0 = = 3 f)
X i=1



3 Formal definition of probability

In this section we introduce probabilities from the more formally correct point of view
of sigma algebras. The problem is that, for a continuous random variable, not every
subset of real numbers can have a probability attached to it. Sets must be well-behaved,
and this is captured by the notion of sigma algebra.

3.1 Sigma Algebras

Let Q be a set, S C 2% is a o-algebra iff
1. 0,Q€eS;
2. AeS= A€ S;
3.4,€S5, neN= | J,A, € S;

(Q,S) is called measurable space. Example: the Borel sigma algebra B in R”, the
smallest o-algebra containing all open sets.

3.2 Measurable function

A function f : (X, A) — (¥, B) is measurable iff f~'(B) € A for each B € B

3.3 Probability measure

Let (Q,S) be a measurable space. A probability measure on (Q,S) is a function y :
S — [0, 1] such that

1. (@) =0
2. p(A%) =1 —u(A)
3. If A, € S disjoint, then u(U, Ay) = Yo U(Ay)

3.4 Probability space
(Q, S, ), with S o-algebra and u probability measure on (L, S), is a probability space.

3.5 Random Variables

e Let (2,8, 1) be a probability space (the sample space) and (X, A) be a mea-
surable space. A measurable function x : (Q,S) — (X, A) is called a random
variable.

e The law of x is P{x € A} = u(x'(A)), for each A € A, and it is a probability
distribution in (X, A).

e Example: discrete random variables, with values in a countable state space S,
with the o-algebra 25 .



e Example: real-valued random variables, with values in R, with the Borel o-
algebra.

4 Probabilistic inference

e In logics, an inference system is given by a set of inference rules, allowing to
infer logical consequences from a set of facts/ axioms.

e The rules of probability define an inference system generalising logical ones to
reason under uncertainty.

e Typically, we have a probabilistic model, and possibly evidence (e.g. experimen-
tal observations), and we want to deduce consequences — here compute proba-
bilities.

e We do this by consistent applications of the rules of probability.

Example

e Scientists! found that people that enjoy working 14 hours per day (HW) almost
inevitably eat Frico (F): p(F|HW) = 0.8. The probability of being a HW is rather
low, about 1074,

e Assuming eating Frico is quite common, p(F) = 0.4, what is the probability that
a Frico eater is a HW? By Bayes rule:

p(FIHW)p(HW) _ 0.8-107*

HWIF) = = =2-107*
PHWIE) p(F) 0.4
e As Frico eating is rare worldwide, say p(F) =2 - 10~
FIHW)p(HW) 0.8-107*
D(HWI|F) = p(FIHW)p(HW) — 04

p(F) - 2-10%

I¢f. Monon Behaviour



Example

Example 1.4 (Who's in the bathroom?). Consider a household of three people, Alice, Bob and Cecil.
Cecil wants to go to the bathroom but finds it occupied. He then goes to Alice’s room and sees she is there.
Since Cecil knows that only either Alice or Bob can be in the bathroom, from this he infers that Bob must
be in the bathroom.

To arrive at the same conclusion in a mathematical framework, we define the following events

A = Alice is in her bedroom, B = Bob is in his bedroom, O = Bathroom occupied (1.2.11)
We can encode the information that if either Alice or Bob are not in their bedrooms, then they must be in
the bathroom (they might both be in the bathroom) as

p(O =trlA=fa,B) =1, p(O=trlA,B=fa)=1 (1.2.12)
The first term expresses that the bathroom is occupied if Alice is not in her bedroom, wherever Bob is.
Similarly, the second term expresses bathroom occupancy as long as Bob is not in his bedroom. Then

B=fa,0=tr,A=tr) p(O=tr|A=tr,B="fa)p(A=tr,B="fa)

—fal0 = B _
p(B =falO =tr,A=tr) = PO=tr A=t = POt A=t (1.2.13)

where
p(O =tr, A =tr) = p(O = tr|A = tr, B = fa)p(A = tr, B = fa)
+p(O =trlA =tr, B =tr)p(A = tr, B =tr) (1.2.14)
Using the fact p(O = tr|A = tr, B = fa) = 1 and p(O = tr|A = tr, B = tr) = 0, which encodes that if Alice

is in her room and Bob is not, the bathroom must be occupied, and similarly, if both Alice and Bob are in
their rooms, the bathroom cannot be occupied,

p(A =tr, B =fa)
p(A =tr, B =fa)
This example is interesting since we are not required to make a full probabilistic model in this case thanks
to the limiting nature of the probabilities (we don’t need to specify p(A, B)). The situation is common in
limiting situations of probabilities being either 0 or 1, corresponding to traditional logic systems.

p(B =falO =tr,A=tr) = =1 (1.2.15)

Example

Exercise 1.3 (Adapted from [181]). There are two bozes. Box 1 contains three red and five white balls and
box 2 contains two red and five white balls. A box is chosen at random p(box = 1) = p(box = 2) = 0.5 and
a ball chosen at random from this box turns out to be red. What is the posterior probability that the red ball
came from box 17



5 Some probability distributions

In this section we introduce some of the most fundamental probability distributions,
both discrete and continuous.

5.1 Discrete probability distributions

5.1.1 Discrete/ categorical distribution

A random variable can take N distinct values with probability p;, i = 1,...,N .
Formally

N
px=d=pi Y pi=1
i=1

5.1.2 Bernoulli distribution

A discrete random variable x with two outcomes: 1, with probability p(x = 1|6) = 0
and 0, with probability 1 — 6. Compute mean and variance.

o (x)=86
e var(x) =6(1 - 0)

5.1.3 Binomial distribution

Describes the outcome of n Bernoulli trials. The probability of k successes is

ply = ko) = (Z)eka — gyt

Compute mean and variance.
e (x)=no
e var(x) = né(1 - 0)
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5.1.4 Multinomial distribution

Describes the outcome of n trials of a categorical distribution on {1, ..., K} with prob-
abilities 8 = (61, . .., 0x). The probability of observing y; outcomes of type i is

>~

6.?‘[

i=1

n!
PO Kl0) = ————
Yito YK

Compute mean and variance.
o (yi) = nb;
e var(y;) = n6;(1 -6,

e cov(y;,yj) = —nb;f;

5.1.5 Poisson distribution
A distribution over non-negative integers

n

A
p () = — exp[=4]
n!
The parameter A is often called the rate of the distribution. The Poisson distribution is
often used for rare events, e.g. decaying of particles or binding of DNA fragments to a
probe.
Compute mean and variance.
o (x)=24

e var(x) =4

e A binomial with parameter 6 = A/n converges to a Poisson for n — oo
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5.2 Continuous probability distributions
5.2.1 Uniform distribution

A variable x with constant density, over its domain of definition, which is an interval
[a,b] c R. Hence p(x) = 1/(b — a), if x € [a, b].

e (x)=(a+b)/2

o var(x) = (a* + b* + ab)/3

f(x)
1 . .
b—a ‘ ‘
J, |
0 a b X

5.2.2 Exponential distribution

Typically used for the time of occurrence of a random event, like the decay of a particle
or the arrival of a customer in a shop. For x > 0,

p(x|1) = e
with A known as the rate of the distribution.
o (x)y=1/4
o var(x) = 1/22
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5.2.3 Gamma distribution

Defined for x > 0, by the density

1 a-1 —x/p
p(xla, B) = ,Bl"(a)(x/’g) e

where « is the shape parameter, § is the scale parameter, and I'(«) is the gamma function

I'(a) = f e ldr
0

° (x)=a/B
o var(x) = a/B?

e Gamma(l, 1) = Exp(d)
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5.2.4 Inverse Gamma distribution

Defined for x > 0, by the density

(2

Pl ) = (1t

()
where « is the shape parameter, 3 is the scale parameter, and ['(«@) is the gamma function
o (x)y=B/(a-1),a>1
o var(x) = /(@ = 1)*(a - 2))

10



5.2.5 Beta distribution
Defined for x € [0, 1] by

X011 = !

p(xle, B) =

B(a, B)

where the Beta function B(a, ) is defined by [B(a,8) = %Eﬁ(ﬂ))

o (n)=caf(a+p)

_ ap
o var(x) = e
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5.2.6 Dirichlet distribution

It is a distribution over discrete probability distributions on k elements. It depends on
k parameters u = uy, ..., u;. Its pdfis

117 e
pdir(x|u) = p(X|ll) = % | | le." !
i=1

. [15, T)
with B(u) = F(Z]’Ll :i)

o (xi) = uif (i + W), W = X jui U
_ u;ld;
s Var(xi) - (u,~+ﬁ,~)2éui+ﬁ,~+1)

o puir(Xluy)pyir(Xuz) = pgir(xjug +uy)

. ij PairXW)dx; = pair(X/iluy;)

° fx/j Pdir(X|l.l)dX/j = pbem(xj|uj, Z#J. Mj)

5.3 Univariate Normal distribution
One of the most used distributions in Machine Learning

1

2no

2
7,7 (=)

P, 0%) = N(xlu, o) = e

2
o (x)=p
o var(x) = o2

e Foru = 1, 0% = 1 we talk about a standard normal distribution.

12



e 1/0? is known as precision.
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5.3.1 Student’s t-distribution

v+l

Az — p)? -ut
Py A,v) = Student (alp, A, v) = A1
v

JZ=="
(3) 1+
2

@)

where 4 is the mean, v the degrees of freedom, and A scales the distribution. The variance is given by

(8.3.24)

v

var(z) = O]

, forv>2 (8.3.25)

For v — oo the distribution tends to a Gaussian with mean p and variance 1/X. As v decreases the tails of
the distribution become fatter.

The t¢-distribution can be derived from a scaled mizture

[e.9]

p(x|p, a,b) :/ N (z|p, 771) Gam™ (7]a,b) dr
7=0

With v = 2a degrees of freedom and scale A = a/b.
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5.4 Multivariate normal distribution
This is the most important distribution we will use, and generalises the 1d normal. In

d dimensions

1
p(XIp,X) = N(x|u, Z) = exp (—§<x - x - "

1
J2r)? det(T)

It holds p = (x), and £ = cov(x, X) = {(x — u)(x — )T

B 0.08
0 0.06
-1

0.04

002

We will now present some properties of the multivariate normal distribution

54.1 Completing the square
A useful technique in manipulating Gaussians is completing the square. For example, the expression
exp (—%XTAX + bTx> (8.4.10)
can be transformed as follows. First we complete the square:

%XTAX “b'x=:-(x—A'b)"A(x—A'b) - %bTA’lb (8.4.11)

1
2
Hence

exp (7%XTAX - bTx> =N (X‘Aflb,Afl) det (2rA~1)exp (%bTA’1b> (8.4.12)

p(x|A,b) = cexp (—%xAxT + bTx) is known as the canonical representation, and it is

normal with mean A~'b and covariance A,

5.4.2 Linear transformation

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through
y=Mx+n (8.4.14)
where x L1, n ~ N (u, %), and x ~ N (g, ;). Then the marginal p(y) = [, p(y|x)p(x) is a Gaussian

py) =N (y\Muz +p, ME,MT + 2) (8.4.15)

14



5.4.3 Eigendecomposition

4 0.12
3
0.1
2
1 0.08
i N o 0.06
ORI
i ;
ilﬂ"““““\“\‘\\\\QS ! 0.04
RSN
RSSO -2
S5 N 0.02
-4
-4 -3 -2 -1 0 1 2 3 4
(a) (b)
S = EAET (8.4.5)
where ETE = I and A = diag (AM,-..,Ap). In the case of a covariance matrix, all the eigenvalues \; are

positive. This means that one can use the transformation

y=A"ZET (x — p) (8.4.6)
so that
x—p)' = (x—p)=(x—p) BATE (x—p)=y'y (8.4.7)

So by rescaling, we can obtain a product of d-univariate standard normal distribu-
tions, one per dimension.

5.4.4 Marginal and conditional of multivariate Gaussians

Result 8.4 (Partitioned Gaussian). Consider a distribution A (z|p, £) defined jointly over two vectors x
and y of potentially differing dimensions,

7= < ; > (8.4.16)

with corresponding mean and partitioned covariance

By Sow By )
= 3= ! 8.4.17
# ( Hy > ( Byr By ( )
where 3, = ELU. The marginal distribution is given by
p(x) = N (x|, Do) (8.4.18)
and conditional

p(x[y) = N (x|, + Zay Ty (v = 1), Zaw — Ty Ty ) (8.4.19)

15



5.4.5 Product of multivariate Gaussians

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

exp (*% (1 — o) " S7 (11 — Hz))

N (X1, 1) N (x| g, o) = N (x|, 2 8.4.8
(x| 1, Z) N (], Zo) (%[, %) Jaet@79) (8.4.8)

where S = 3 4+ 33 and the mean and covariance are given by
=318y + 3S S =385, (8.4.9)

5.4.6 Gaussian average of a quadratic function

Result 8.5 (Gaussian average of a quadratic function).

T T
A =u A t AX
<x X>N(x\p,§:) w Ap + trace ( )

5.5 The Curse of Dimensionality

When the dimensionality of random variables becomes high (a typical scenario for big
data and modern machine learning) some counterintuitive phenomena start to emerge.
Here’s some as exercises.

Exercise

Suppose you want to explore uniformly a region by gridding it. How many grid points
do you need?

Exercise

Suppose you sample from a uniform distribution in d dimensions. What is the proba-
bility of finding a point inside the region [e, 1 — €]4?

Exercise

Suppose you sample from a spherical Gaussian distribution. Where do the points lie as
the dimensions increase?

5.6 Mixtures: how to build more distributions

e More general distributions can be built via mixtures: e.g.

where the mixing coefficients n; are discretely distributed

16



e You can interpret this as a two stage hierarchical process: choose one component
out of a discrete distribution, then choose the distribution for that component

o IMPORTANT CONCEPT: the mixture

.....

is an example of latent variable model, with a latent class variable and an ob-
served continuous value. The mixture is the marginal distribution for the obser-
vations (w.r.t. the latent variable)

e The probability of the latent variables given the observations can be obtained
using Bayes’ theorem.
5.6.1 Continuous mixtures: some cool distributions

e No need for the mixing distribution (latent variable) to be discrete

e Suppose you are interested in the means of normally distributed samples (possi-
bly with different variances/ precisions): Marginalising the precision in a Gaus-
sian using a Gamma mixing distribution yields a Student t-distribution

e Suppose you have multiple rare event processes happening with slightly different
rates: Marginalising the rate in a Poisson distribution using a Gamma mixing
distribution yields a negative binomial distribution

6 Estimation: fitting distributions

6.1 Parameters?

e Many distributions are written as conditional probabilities given the parameters:
p(x10)

e Often the values of the parameters are not known
o If we have observations, we can try to estimate the parameters from such data.

e We assume to have independent and identically distributed (i.i.d.) observations
of p(xlBirue): X = X1,..., XN.

6.2 Maximum Likelihood

e Likelihood for i.i.d. observations X = xi, ..., Xy:

N
pxio) = | | pCxilo)
i=1

17



6.3

6.4

e Choose the parameters that best explain the observations: we pick § by maximum

likelihood:

0 = argmax,

ﬂ p(xi|e)}

Maximum a posteriori

Suppose we can encode prior knowledge (or absence of it) in a prior distribution
over parameters, p(6).

We can then compute the posterior distribution, given i.i.d. observations x =
X1,...,Xn, by Bayes theorem:

P(x(0)p(6)

2] =
p(6Ix) )

where

p(x) = fg p(xl0)p(0)d6

Estimate 6,,,,, by the maximum a posteriori (MAP) estimate

HMAP = argmaxy

@] p(x,-w)]

Exercise: fitting a discrete distribution

We have a discrete distribution with values in K = {1,...,k}, with parameters
H=p, s i 2 = 1.

We have independent observations x = xp, ..., Xy, each taking values in K.

The likelihood is N
L = pl) = | | p Gl
i=1
Compute the Maximum Likelihood estimate of u. What is the intuitive meaning

of the result? What happens if one of the D values is not represented in your
sample?

6.5 Exercise: fitting a discrete distribution

6.6 Exercise II: fitting a Gaussian distribution

-4.5cm We have independent, real valued observations x = xi, ..., xy. Fit a Gaussian
by maximum likelihood.

18



6.7 Bayesian estimation
e The Bayesian approach fully quantifies uncertainty

e The parameters are treated as additional random variables with their own prior
distribution p(6)

e The observation likelihood is combined with the prior to obtain a posterior dis-
tribution via Bayes’ theorem

p(x|6)p(6)

0 =
pIx) 2X)

e The distribution of the observable x (predictive distribution) is obtained as
pxlx) = f p(x10)p(61x)d6

6.8 Exercise: Bayesian fitting of Gaussians

e Letdatax; i =1,...,N be distributed according to a Gaussian with mean u
and variance o

e Let the prior distribution over the mean u be a Gaussian with mean m and vari-

ance 12

e Compute the posterior (and predictive distribution, Exercise)

6.9 Exercise: Bayesian fitting of Gaussians
6.10 Estimators
e A procedure to calculate an expectation is called an estimator

e c.g., fitting a Gaussian to data by maximum likelihood provides the M.L. estima-
tor for mean and variance, or Bayesian posterior mean

e An estimator will be a noisy estimate of the true value, due to finite sample
effects

e An estimator f is unbiased if its expectation (under the joint distribution of the
data set) coincides with the true value

e An estimator f is consistent if it converges to the true value when the number of

data goes to infinity.

6.11 Exercise: biased estimator

-4.5cm The ML estimator of variance, 2 = 1%] Zﬁi (X = ﬂ)z is biased: (6%) = NT_IO'Z.

19



6.12 Bootstrap

e For an estimator, in theory we can compute its mean and its variance under the
joint distribution of the datasets. In practice, getting the variance may be very
hard. Bootstrapping can be used instead.

Given the dataset X = xy,..., xy, construct from it K new datasets x;, also of
size N, by sampling with repetitions.

compute the estimator 6; for each x;.

Compute the empirical variance (or any other statistics) from x, ..., Xg.

This is an estimate of the actual variance of the estimator.

6.13 Conjugate priors

e The Bayesian way has advantages in that it quantifies uncertainty and regularizes
naturally

e BUT computing the normalisation in Bayes theorem is very hard

e The case when it is possible is when the prior and the posterior are of the same
form (conjugate)

e Example + Exercise: Bernoulli and Beta.
e Example: discrete and Dirichlet

e Exercise: conjugate priors for the univariate normal (mean)

6.14 Conjugate priors: Binomial and Beta

-4.5cm Show that the Beta is the conjugate prior for the Bernoulli distribution.

7 Information theory

7.1 Entropy

e Probability theory is the basis of information theory (interesting, but not the topic
of this course).

e An important quantity is the entropy of a distribution

Hlp] = - Z pilog, pi
i
Or for continuous distributions:

H[p] = - f p(x) log p(x)dx

20



7.2

7.3

7.4

Entropy measures the level of disorder of a distribution; for discrete distributions,
it is always > 0 and O only for deterministic distributions. The maximum is
log K, if K is the size of the support of the discrete distribution, and is achieved
by the uniform distribution.

Divergence

The relative entropy or Kullback-Leibler (KL) divergence between two distribu-

tions is
Ligllp] = Z qi log -

Of in the continuous case
q(x)
KL[qllp] = f q(x) log —d

Fact: KL is convex and > 0 (by Jensen ineq)

Fact: KL is zero if and only if p = gq.

Conditional Entropy and mutual information

Conditional entropy is defined as

Hp(xy)] = - f f p(x,y)log p(xly)dxdy = H[p(x, y)] = H[p(y)]
and captures the residual uncertainty on x once y is known.
Mutual information between r.v. x and y is defined as

I[x,y] = KL[p(x, )| p(x)p(y)] = H[p(x)] — H[p(x]y)]

and captures the reduction in uncertainty about x by knowing y, i.e. it is a mea-
sure of how much y brings information about x, and viceversa.

Justification for maximum likelihood

Given adata setx = {x;}, i=1,...,N, let the empirical distribution be

N

1
pemp(x) = N Z ]I(xi)

i=1
with I the indicator function of a set

To find a suitable distribution g to model the data, one may wish to minimize the
Kullback-Leibler divergence

1
KLpenplld) = Hlpenp) = (108 ()., = =3 D log ()

o Maximum likelihood is equivalent to minimizing a KL divergence with the em-

pirical distirbution
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8 Decision theory

8.1

An overview

Suppose we have a classification problem, and we are able to learn a model of
the joint distribution p(x,y), where y is a categorical variable. Given a new input
x*, for which we want to make a prediction, to which class should we assign it?

We may choose to assign it to class j if p(y = jlx*) is the maximum one. How-
ever, suppose y models having or not a cancer, and that p(y = 0|x*) = 0.51 >
0.49 = p(y = 1|x").

To be more flexible, we can specify a loss function (or utility function), which is
the cost ¢ j of assigning x™ to class j when the true class is k.

Then we can assign a point x* to the class j minimising the expected loss w.r.t.
the learned joint distribution (i.e. X}; cx ;jp(y = k|x*)).
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