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@ LINEAR REGRESSION
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MAXIMUM LIKELIHOOD REGRESSION

@ Observations (x;, &), i=1,...,N

@ M + 1 Generalised basis functions ¢; : R” — R, with ¢o(x) = 1
(polynomials, Radial Basis Functions, sigmoids)

Gaussian noise: t = y(X,w) +¢, e ~ N(0,57")
Likelihood is p(tiX,w,8) = [TV, N(tiwTé(x;),57")
Maximum likelihood solution computable in closed form

Regularization by penalising large weights (Lasso and Ridge
regression)
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.
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AN EXAMPLE (BISHOP)

e Max likelihood solution for different max degree of
monomial M




LINEAR REGRESSION 5/14

REGULARIZATION
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e BAYESTAN LINEAR REGRESSION
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THE BAYESIAN APPROACH

o Regularisation works by biasing

e One way to bias estimators is to have prior beliefs and
being Bayesian

o Gaussian prior for regression weights: w ~ N(0, al)

o Compute posterior by by Bayes theorem:

p(tIX,w, a,8)p(W|e)

PWX.t . f) = =— X . 5)

@ Predictive distribution:

Pt ) = f p(t1. W, @, B)p(Wit, . B)dw
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POSTERIOR UPDATE

likelihood prior/posterior data space
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EXAMPLE
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MARGINAL LIKELIHOOD

e The marginal likelihood or evidence is p(t|a,5).
@ It can be used to identify good hyperparameters a and 8

o If we have more models, e.g. My and Mo, the evidence
p(tlM;) can be used for Bayesian model comparison (via
Bayes factors) or to compute posterior model support

p(Milt)
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e DUAL REPRESENTATION AND KERNELS



DUAL REPRESENTATION AND KERNELS

KERNELS AND DUAL FORMULATION

e Dual variables a are defined via input data projection:
N
W= Z ajp(x;)
j=1

o The kernel is k(xi, Xj) := ¢(xi) " ¢(X;)
e The Gram matrix K is Kj = K(Xi, X;)
e The dual regression problem

N
Eq(a) + 1Ew(a) = > (t—a’K')? + 1a’Ka
i—1
has also closed form solution
@ The kernel trick avoids direct reference to basis functions.
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