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APPROXIMATE INFERENCE BY SAMPLING

o Generate a sample from a given distribution
o Estimate integrals and expectations
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BASIC SAMPLING

@ Ancestral Sampling in Bayesian Networks
e Rejection Sampling
e Importance Sampling
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MARKOV CHAINS

Main idea: to sample from p(x), simulate from an ergodic
Markov Chain with stationary probability p(x).

@ Definition of Markov Chains
e Stationary distributions and ergodicity
o Reversible MC and detailed balance condition
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BASICS

Main idea: to sample from p(x), simulate from an ergodic
Markov Chain with stationary probability p(x).

@ Definition of Markov Chains

e Stationary distributions and ergodicity

o Reversible MC and detailed balance condition
o Metropolis Hastings acceptance criterion
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MCMC EXAMPLE - UNIMODAL
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Figure 11.9 from Bishop: A simple illustration using Metropolis algorithm to sample from a
Gaussian distribution whose one standard-deviation contour is shown by the ellipse. The
proposal distribution is an isotropic Gaussian distribution whose standard deviation is 0.2. Steps
that are accepted are shown as green lines, and rejected steps are shown in red. A total of 150

candidate samples are generated, of which 43 are rejected.
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MCMC EXAMPLE - MULTIMODAL

Figure 27.8 from Barber: Metropolis-Hastings samples from a bi-variate distribution p(z1, z2)
using a proposal G(x'|x) = N(x'|x,1). We also plot the iso-probability contours of p. Although
p(x) is multi-modal, the dimensionality is low enough and the modes sufficiently close such that
a simple Gaussian proposal distribution is able to bridge the two modes. In higher dimensions,

such multi-modality is more problematic.
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GIBBS SAMPLING

Main idea: to sample from p(xi,..., x,), sample iteratively from
1 dimensional conditional distributions.

o Gibbs sampling as MCMC
o Metropolis-within-Gibbs
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GIBBS SAMPLING - ERGODICITY
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Figure 27.5 from Barber: A two dimensional distribution for which Gibbs sampling
fails. The distribution has mass only in the shaded quadrants. Gibbs sampling proceeds
from the I'" sample state (), z5) and then sampling from p(za|2}), which we write
(z4*1, 257) where '™ = 2. One then continues with a sample from p(z1|z2 = z5?),
etc. If we start in the lower left quadrant and proceed this way, the upper right region is

never explored.
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GIBBS SAMPLING - CORRELATION
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Figure 27.7 from Barber: Two hundred Gibbs samples for a two dimensional Gaussian.
At each stage only a single component is updated. (a): For a Gaussian with low
correlation, Gibbs sampling can move through the likely regions effectively. (b): For a
strongly correlated Gaussian, Gibbs sampling is less effective and does not rapidly
explore the likely regions.
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CONVERGENCE DIAGNOSTIC

How to check that a MC has reached stationarity

e Compare between variance and within variance between
several simulations

e Compute index R and effective sample size
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EXAMPLE OF MCMC RUN
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Figure 11.2 from Gelman et al. (2nd Edition): Five independent sequences of a Markov chain simulation for
the bivariate unit normal distribution, with over-dispersed starting points indicated by solid squares. (a) After
50 iterations, the sequences are still far from convergence. (b) After 1000 iterations, the sequences are nearer
to convergence. Figure (c) shows the iterates from the second halves of the sequences. The points in Figure

(c) have been jittered so that steps in which the random walk stood still are not hidden.
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CONVERGENCE DIAGNOSTIC - EXAMPLE
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Figure 11.3 Ezamples of two challenges in assessing convergence of iterative simulations. (a) In
the left plot, either sequence alone looks stable, but the juztaposition makes it clear that they have
not converged to a common distribution. (b) In the right plot, the twosequences happen to cover a
common distribution but neither sequence appears stationary. These graphs demonstrate the need
to use between-sequence and also within-sequence information when assessing convergence.
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HAMILTONIAN MONTE CARLO - ALGORITHM

Algorithm 27.4 Hybrid Monte Carlo sampling

1: Start from x!
2: fori=1to L do

3 Draw a new sample y from p(y).

4; Choose a random (forwards or backwards) trajectory direction.

5 Starting from x*,y, follow Hamiltonian dynamics for a fixed number of steps, giving a candidate x’,y’.
6: Accept the candidate x*! = x’ if H(x/,y’) > H(x,y), otherwise accept it with probability

exp(H(x',y") — H(X,y)).
7 If rejected, we take the sample as xi+! = x?.
8: end for

— Algorithm 27.4 from Barber
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HAMILTONIAN MONTE CARLO - EXAMPLE
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Figure 27.9 from Barber: Hybrid Monte Carlo. (a): Multi-modal distribution
p(z) for which we desire samples. (b): HMC forms the joint distribution p(z)p(y)
where p(y) is Gaussian. (c): This is a plot of (b) from above. Starting from the
point z, we first draw a y from the Gaussian p(y), giving a point (z,y), given by
the green line. Then we use Hamiltonian dynamics (white line) to traverse the
distribution at roughly constant energy for a fixed number of steps, giving 2/, y'.
We accept this point if H(z',y') > H(x,y’) and make the new sample z’ (red
line). Otherwise this candidate is accepted with probability

exp(H(z',y') — H(z,y')). If rejected the new sample z’ is taken as a copy of .
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