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1 Basic Definitions and Notations

For the sake of clarity we briefly summarize the main notations which will be
used in the following and some definitions that are assumed to be known by the
reader.

• F will denote a generic field among R and C.

• Ω ⊆ Rd open set;

• for a given f ∈ C0(Ω,R) we define Supp(f) := {x ∈ Ω : f(x) 6= 0};

• D(Ω) := {f ∈ C∞(Ω,R) : Supp(f) compact};

• in a generic metric space (X, d) we denote the set BXd (f, r) := {g ∈ X :
d(f, g) < r} i. e. the open ball of center f ∈ X and radius r > 0.
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Definition 1.1. A function T : D(Ω)→ F is called a distribution on Ω if:

1. T is F linear;

2. for all K, compact set in Ω, there exists CK > 0, mK ∈ N such that:

|T (ϕ)| ≤ CK
∑
|α|≤mK

sup
x∈Ω
|∂αϕ(x)|

for all ϕ ∈ D(Ω) such that Supp(ϕ) ⊆ K;

The set of distributions on Ω will be denoted D′(Ω).

2 Introduction

The main purpose of this work is to provide a brief yet exhaustive proof of the
following claim.

Proposition. Let (Tn)n∈N ⊆ D′(Ω) a sequence of distributions on Ω such that
for all ϕ ∈ D(Ω) there exists in F limn→+∞ Tn(ϕ). Then the functional:

T : D(Ω)→ F
ϕ 7→ lim

n→+∞
Tn(ϕ)

is a distribution on Ω.

The main reference for this work is:

[Bon01] “Cours d’analyse: thérie des distributions et analyise de Fourier”
by Jean-Michel Bony (Les Éditions de l’École Polytechnique, 2001).

The proof relies on a generalized version of Banach-Steinhaus theorem that
applies for Fréchet spaces and not only Banach spaces. In particular [Bon01]
gives the proof of the above mentioned version of Banach-Steinhaus theorem,
while the definition of distribution we use in this work is due to [Hör63].

3 Fréchet Spaces

Definition 3.1. Let E be a vector space on F. We call a seminorm on E an
application:

P : E → [0,+∞)

such that:

1. P (f + g) ≤ P (f) + p(g) ∀f, g ∈ E;

2. P (λf) = |λ|P (f) ∀λ ∈ F, ∀f ∈ E.

2



Property 1. is called subadditivity or triangular inequality, property 2. is
also called homogeneity. In addition we remark that a generic seminorm P on
a vector space E turns out to be a norm on E if in addition it fulfills:

3. P (f) = 0⇔ f = 0 ∀f ∈ E.

Definition 3.2. A vector space E on F endowed with an increasing family of
seminorms (Pj)j∈N such that:

f = 0⇔ Pj(f) = 0 ∀j ∈ N

is called a locally convex metrizable space.

Definition 3.3. Let (Pj)j∈N and (Qk)k∈N be two increasing sequences of semi-
norms on a vector space E over F. We say that the two sequences of seminorms
define the same structure of locally convex metrizable space or that they are
equivalent if:

∀j ∈ N,∃k ∈ N,∃C ∈ R s.t. Pj ≤ CQk,
∀k ∈ N,∃j ∈ N,∃C ′ ∈ R s.t. Qk ≤ C ′Pj .

Remark 3.4. The structure of locally convex metrizable space on a vector space
E over F is fully determined once a generic sequence (Qi)i∈N of seminorms is
given. Indeed, an increasing sequence of seminorms can be recasted as follows:

∀j ∈ N Pj :=
∑
i≤j

Qi.

For any j ∈ N both subadditivity and homogeneity are preserved when summing
over a finite set of indices: i ∈ {1, ..., j}.

Remark 3.5. A normed space (X, ‖ · ‖) is a particular case of locally convex
metrizable space where all seminorms are chosen to be equal to ‖ · ‖.

From now on, for the sake of simplicty we will denote (E, (Pj)j∈N) the locally
convex metrizable space E over a field F with its increasing sequence of semi-
norms (Pj)j∈N.

Definition 3.6. Given (E, (Pj)j∈N), f ∈ E, r > 0, j ∈ N, the set:

SBEj (f, r) := {g ∈ E : Pj(g − f) < r} (1)

is called a semiball relative to Pj of center f and radius r in E.

Definition 3.7. Given (E, (Pj)j∈N), f ∈ E, r > 0, j ∈ N, the set:

SB
E

j (f, r) := {g ∈ E : Pj(g − f) ≤ r} (2)

is called a closed semiball relative to Pj of center f and radius r in E.
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Remark 3.8. Given (E, (Pj)j∈N), if C ⊆ E is such that SBEj (f, r) ⊆ C for

some f ∈ E, r > 0, j ∈ N, clearly there exists r such that SB
E

j (f, r) ⊆ C,
indeed it is enough considering r = r

2 .

Remark 3.9. Given (E, (Pj)j∈N), let f ∈ E, r > 0, j ∈ N. Then for all k > j

SBEk (f, r) ⊆ SBEj (f, r) and SB
E

k (f, r) ⊆ SBEj (f, r).

Definition 3.10. Let (E, (Pj)j∈N) be a locally convex metrizable space and
(αj)j∈N be any sequence of positive real numbers such that

∑∞
j=1 αj < ∞. We

define
d : E × E → R

where:

d(f, g) :=

∞∑
j=1

αj min{1, Pj(f − g)}. (3)

Proposition 3.11. d defined as in Definition 3.10 is a metric on E.

Proof. 1. d(f, g) ≥ 0 ∀f, g ∈ E as by definition Pj ≥ 0 ∀j ∈ N.

2. d(f, g) = 0 if and only if Pj(f − g) = 0 for all j ∈ N. According to
Definition 3.2 this is equivalent to f = g.

3. ∀f, g ∈ E, d(f, g) = d(g, f).

4. ∀f, g, h ∈ E :

d(f, h) =
∑
j∈N

αj min{1, Pj(f − h)}

≤
∑
j∈N

αj min{1, Pj(f − g) + Pj(g − h)}

≤
∑
j∈N

αj min{1, Pj(f − g)}+
∑
j∈N

αj min{1, Pj(g − h)}

= d(f, g) + d(f, h).

Remark 3.12. The choice of the sequence (αj)j∈N has no influence on the
topology induced by d, in particular, choosing a different sequence (βk)k∈N
yields a metric d̃ such that for all ε > 0 there exist δ1, δ2 > 0 such that:

d(x, y) < δ1 ⇒ d̃(x, y) < ε ∀x, y ∈ E,
d̃(x, y) < δ2 ⇒ d(x, y) < ε ∀x, y ∈ E,

i. e. one says that d and d̃ are uniformly equivalent metrics. Finally uniformly
equivalent metrics induce the same topology.
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Definition 3.13. A locally convex metrizable space (E, (Pj)j∈N) is a Fréchet
space if it is complete with respect to the structure of metric space as given in
Definition 3.10.

Remark 3.14. Thanks to Definition 3.10 and Proposition 3.11 any locally con-
vex metrizable space (E, (Pj)j∈N) turns out to be a metric space and hence a
topological space. This allows us to define notions like open sets, neighbour-
hoods of a point, convergence of a sequence and continuity of a function. In
addition we have that:

• a function ψ : E → X - where X is some topological space - is continuous
if and only if for any sequence (fn)n∈N ⊆ E converging to some f ∈ E the
sequence (ψ(fn))n∈N ⊆ X converges to ψ(f) ∈ X;

• V ⊆ E is compact if and only if it is sequentially compact.

Nevertheless handling minimums and αjs in (3) is not easy at all, so expressing
the above mentioned topological notions in terms of seminorms is definitely
convenient.

Lemma 3.15. Let (E, (Pj)j∈N) be a locally convex metrizable space.

1. Let (fn) ⊆ E be a sequence. Then:

• (fn) is a Cauchy sequence ⇔ limm,n→∞ Pj(fn − fm) = 0 ∀j ∈ N;

• fn → f ⇔ Pj(fn − f)→ 0 ∀j ∈ N.

2. V ⊆ E is an open neighbourhood of f if and only if ∃j ∈ N, ε > 0 such
that SBEj (f, ε) ⊆ V . In particular for all k ∈ N, for all r > 0 SBEk (f, r)
is an open neighbourhood of f .

3. Seminorms Pj : E → R are continuous.

Proof. 1. One easily deduce from the Definition 3.10 of d that d(fn, fm)→ 0
and d(fn, f)→ 0 if and only if Pj(fn−fm)→ 0 ∀j ∈ N and Pj(fn−f)→
0 ∀j ∈ N, respectively.

2. Suppose V ⊆ E is a neighbourhood of f ∈ E. This means that there
exists ε > 0 such that BEd (f, ε) ⊆ V . Let k ∈ N be such that

∑
j>k αj <

ε
2

(notice that this can be done as the series of αj converges) and define
ε̃ := min{ ε

2
∑

j≤k αj
, 1}. Then SBEk (f, ε̃) ⊆ V . Indeed, let g ∈ SBEk (f, ε̃).

Then:

d(f, g) =
∑
j≤k

αj min{1, Pj(f − g)}+
∑
j>k

αj min{1, Pj(f − g)}

≤
∑
j≤k

αjPk(f − g) +
∑
j>k

αj

<
ε

2
+
ε

2
= ε.

Therefore SBEk (f, ε̃) ⊆ V . The converse is trivially satisfied.

5



3. Using triangular inequality, one can prove that |Pj(f)− Pj(g)| ≤ Pj(f −
g) ∀j ∈ N,∀f, g ∈ E.

Remark 3.16. Lemma 3.15 grants that the adjective “closed” in Definition 3.7
makes sense.

We now state and prove a characterization of linear and continuous functions
between locally convex metrizable spaces. This result will be useful in the
following.

Proposition 3.17. Let (E, (Pj)j∈N) and (F, (Qk)k∈N) be two locally convex
metrizable spaces. Let L : E → F be a linear application. The following three
properties are equivalent:

1. L is continuous at every point;

2. L is continuous at 0;

3. ∀k ∈ N,∃j ∈ N, C > 0 such that ∀f ∈ E Qk(L(f)) ≤ CPj(f).

Proof. (1⇒ 2). This implication follows from the definition of continuity.
(2⇒ 3). By continuity of L at 0 and by linearity, the set L−1(SBFk (0, 1)) is an
open neighbourhood of 0. Hence there exists ε > 0 and there exists j ∈ N such

that SB
E

j (0, ε) ⊆ L−1(SBFk (0, 1)). This means that:

Pj(f) ≤ ε⇒ Qk(L(f)) < 1. (4)

Let f ∈ E such that Pj(f) > 0. We remark that Pj(
ε

Pj(f)f) = ε and hence by

(4) and linearity of L: Qk( ε
Pj(f)L(f)) < 1. By homogeneity of Qk one gets:

Qk(L(f)) <
1

ε
Pj(f),

i. e. the thesis with C = 1
ε . Suppose now Pj(f) = 0. Then, either there exists

j0 ∈ N such that j0 > j and Pj0(f) > 0 and one recasts the above argument as
the implication in (4) is still valid thanks to Remark 3.9 or f = 0 and the thesis
is trivially true.
(3 ⇒ 1). Suppose fn → f in E. Then by Lemma 3.15 Pj(fn − f) → 0 ∀j ∈ N
and then Qk(L(fn)− L(f))→ 0∀k ∈ N. This implies that L(fn)→ L(f) in F,
i.e. the thesis as E is a metric space as stated in Proposition 3.11.

4 The Fréchet space C∞K (Ω)

Definition 4.1. Let K ⊂ Ω be a compact set. We define the sets:

CmK (Ω) := {f ∈ Cm(Ω,R) : Supp(f) ⊆ K} ∀m ∈ N;

C∞K (Ω) := {f ∈ C∞(Ω,R) : Supp(f) ⊆ K}.
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Proposition 4.2. C∞K (Ω) endowed with the family (Pm)m∈N where

Pm(f) := sup
x∈K,|α|≤m

|∂αf(x)| ∀f ∈ C∞K (Ω), (5)

is a locally convex metrizable space.

Proof. For all m ∈ N homogeneity and subadditivity of Pm are obtained by
linearity of derivative and subadditivity of absolute value. Moreover one has
that that:

Pm(f) = 0 ∀m ∈ N⇒ |∂αf(x)| = 0 ∀x ∈ K,∀α ∈ Nd,

then clearly f ≡ 0.

Proposition 4.3. The locally convex metrizable space (C∞K (Ω), (Pj)j∈N) is a
Fréchet space.

Proof. Let (fn)n∈N ⊆ C∞K (Ω) be a Cauchy sequence. According to Lemma 3.15,
one has that:

∀j ∈ N lim
m,n→+∞

Pj(fm − fn) = 0,

and thanks to the definition of Pj as in Proposition 4.2 and linearity of derivation
one has:

∀α ∈ Nd sup
x∈K
|∂αfm(x)− ∂αfn(x)| → 0 as m, n→ +∞.

that is to say that for all multi-indices α ∈ Nd the sequence (∂αfn)n∈N is a
Cauchy sequence with respect to the usual uniform norm, and hence for all
α ∈ Nd there exists gα ∈ C0

K(Ω) such that ∂αfn → gα uniformly on K. We now
recall the classical result on uniform limits of derivatives1: if some sequence
(ϕn) ⊆ C1(Ω,R) is such that ϕn → ψ uniformly on Ω, ∂iϕn are continuous
and ∂iϕn → ξi uniformly on Ω then ψ ∈ C1(Ω,R) and ∂iψ = ξi. Applying
inductively this results to ∂αfn and gα one gets that g ∈ C∞K (Ω) and

∀j ∈ N Pj(fn − g)→ 0,

which is the thesis.

5 Banach-Steinhaus Theorem for Fréchet Spaces

Definition 5.1. Let (E, (Pj)j∈N) be a locally convex metrizable space, C ⊆ E
is symmetric if:

f ∈ C ⇒ −f ∈ C.

Lemma 5.2. (E, (Pj)j∈N) be a locally convex metrizable space, C ⊆ E convex,
symmetric and with nonempty interior, then C is a neighbourhood of 0.

1See for instance [Giu89], Theorem 13.3.
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Proof. C has non empty interior, hence there exist ε > 0, g ∈ E, j ∈ N such
that SBEj (g, ε) ⊆ C. We claim that SBEj (0, ε) ⊆ C. Indeed, let h ∈ SBEj (0, ε).
Then Pj(h) < ε and:

Pj((g + h)− g) = Pj(h) < ε,

Pj((g − h)− g) = Pj(h) < ε,

hence g + h, g − h ∈ SBEj (g, ε) and hence g + h ∈ C and h− g = −(g − h) ∈ C
by symmetry of C. Finally h = (h−g)+(h+g)

2 ∈ C as C is convex.

Proposition 5.3 (Banach-Steinhaus). Let (E, (Pj)j∈N) be a Fréchet space and
let (F, (Qk)k∈N) be a locally convex metrizable space. Let (Ln)n∈N a family of
linear continuous functions from E to F . Suppose that for every f ∈ E, Ln(f)
converges in F to a limit that we denote L(f). Then:

1. The family (Ln)n∈N is equicontinuous, that is: for every k ∈ N there exist
a constant C > 0 and an index j ∈ N such that:

Qk(Ln(f)) ≤ CPj(f) ∀n ∈ N,∀f ∈ E. (6)

2. for every compact subset K ⊆ E, Ln → L uniformly on K, that is:

lim
n→+∞

sup
f∈K

Qk(Ln(f)− L(f)) = 0 ∀k ∈ N. (7)

Proof. 1. Let k ∈ N and for every p ∈ N define the set:

Cp = {f ∈ E : ∀n ∈ N Qk(Ln(f)) ≤ p}.

Since Qk, Ln are continuous for every k, n ∈ N, every set Cp is closed.
Moreover, ∀f ∈ E, Ln(f) is convergent in F and therefore, by continuity
of Qk, also Qk(Ln(f)) is convergent and hence bounded in [0,∞). This
means that every f belongs to some Cp for p big enough and

⋃
p∈N Cp = E.

Since E is a Fréchet space, it is a complete metric space and hence we can
apply Baire’s categories theorem and find p ∈ N such that Cp has non
empty interior. In particular, being every Cp convex and symmetric, Cp
is a neighbourhood of zero according to Lemma 5.2. Therefore there exist

ε > 0 and j ∈ N such that SB
E

j (0, ε) ⊆ Cp.
We can now prove the equicontinuity of the family (Ln)n∈N. Let f ∈ E
such that Pj(f) > 0. Then:

Qk(Ln(f)) =
Pj(f)

ε
Qk(Ln(

ε

Pj(f)
f)) ≤ p

ε
Pj(f)

Hence we get item 1 proved with C = p
ε . If on the contrary Pj(f) = 0

either one can pick j0 > j such that Pj0(f) > 0 and recovers previous
argument thanks to Remark 3.9 or one has f = 0 and then (6) is trivially
accomplished.
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2. Choose a compact K ⊂ E, ε > 0 and k ∈ N. We want to show that, if n
is large enough enough, then:

sup
f∈K

Qk(Ln(f)− L(f)) ≤ ε. (8)

According to item 1, one can pick C > 0, j ∈ N such that (6) holds
true. K is compact, so there exists {gλ}λ∈Λ ⊆ K such that Λ is finite and
K ⊆

⋃
λ∈Λ SB

E
j (gλ,

ε
3C ). Thus for all f ∈ K there exists gλ such that:

Qk(Ln(f)−Ln(gλ)) = Qk(Ln(f−gλ)) ≤ CPj(f−gλ) ≤ ε

3
∀n ∈ N. (9)

By continuity of the Qk, one can replace Ln with L in (9) obtaining:

Qk(L(f)− L(gλ)) ≤ CPj(f − gλ) ≤ ε

3
. (10)

Moreover, by the continuity of Qk and the finiteness of the set {gλ}λ∈Λ

one can find N ∈ N such that:

Qk(L(gλ)− Ln(gλ)) ≤ ε

3
∀λ ∈ Λ ∀n ≥ N. (11)

Finally by subadditivity of seminorms one can recollect (9), (10) and (11)
obtaining:

Qk(Ln(f)− L(f)) ≤ Qk(Ln(f)− Ln(gλ))

+Qk(Ln(gλ)− L(gλ))

+Qk(L(gλ)− L(f))

≤ ε.

(12)

Since this is valid for every n ≥ N , we get the thesis.

Remark 5.4. Item 2 of Proposition 5.3 corresponds to a well known fact in
analysis: on a compact space, given a family of equicontinuous functions, point-
wise convergence implies uniform convergence.

Corollary 5.5. Under the hypothesis of Proposition 5.3:

1. the function L is linear and continuous from E to F;

2. let (fn)n∈N ⊂ E be such that fn → f , then Ln(fn)→ L(f) in F.

Proof. 1. Item 1 of Proposition 5.3 ensures that for every k ∈ N one can find
C > 0 and j ∈ N such that:

Qk(Ln(f)) ≤ CPj(f) ∀n ∈ N, ∀f ∈ E. (13)

Since Qk is continuous, one can pass to the limit as n→ +∞ and get:

Qk(L(f)) ≤ CPj(f) ∀f ∈ E. (14)

This last inequality implies the continuity of L according to Proposition
3.17. Linearity of L follows by linearity of limit.
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2. The set (fn)n∈N ∪ {f} is sequentially compact and hence compact. Thus
by item 2 of Proposition 5.3:

lim
n→+∞

sup
m∈N

Qk(Ln(fm)− L(fm)) = 0 ∀k ∈ N. (15)

In particular one has:

lim
n→+∞

Qk(Ln(fn)− L(fn)) = 0 ∀k ∈ N. (16)

Moreover, for every k ∈ N:

Qk(Ln(fn)− L(f)) ≤ Qk(Ln(fn)− L(fn)) +Qk(L(fn)− L(f)). (17)

The first term on right hand side of (17) goes to 0 as n→ +∞ according
to (16). The second term on the right goes to 0 by the continuity of Qk
and by item 1. Hence item 2 is proved.

6 A Characterization of D′(Ω)

It is well known that the space D(Ω) is not a Fréchet space, as it is not metrizable
(see for instance [Hör63]) so in principle one cannot exploit the results shown
above. Anyway, it has been proved in Proposition 4.3 that C∞K (Ω) is a Fréchet
space for every compact K ⊆ Ω. Thus the following Lemma is crucial as it
provides a useful characterization of D′(Ω) and allow Corollary 5.5 to apply
thanks to Proposition 4.3.

Lemma 6.1. Let T : Ω → F be a F-linear function and let (C∞K (Ω), (Pj)j∈N)
as in Proposition 4.3. The following two facts are equivalent:

1. T ∈ D′(Ω);

2. for all compact sets K ⊆ Ω the restriction of T on C∞K (Ω) is a continuous
map.

Proof. First of all we remark that F is naturally endowed of a structure of
Fréchet space thanks to the usual modulus | · | which acts as a norm.
(1 ⇒ 2). Let K ⊆ Ω a compact set and (fn)n∈N ⊆ C∞K (Ω) such that fn → 0.
By Lemma 3.15 this implies that:

Pj(fn) = sup
x∈K,|α|≤j

|∂αfn(x)| → 0 ∀j ∈ N. (18)

Thus:
sup
x∈K
|∂αfn(x)| → 0 ∀α ∈ Nd. (19)

We recall from Definition 1.1 that by assumption there exist CK > 0 and mK ∈
N such that:

|T (fn)| ≤ CK
∑
|α|≤mK

sup
x∈Ω
|∂αfn(x)| (20)
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Now one remarks that the above summation is a finite sum. Moreover:

Supp(∂αfn) ⊆ K ∀n ∈ N ∀α ∈ Nd, (21)

as a consequence:

sup
x∈Ω
|∂αfn(x)| = sup

x∈K
|∂αfn(x)| ∀n ∈ N, ∀α ∈ Nd. (22)

Hence the right hand side of (20) converges to 0 as n→ +∞, that is T (fn)→ 0.
This means that T is continuous in 0 ∈ C∞K (Ω) as a map from (C∞K (Ω), (Pj)j∈N)
to F. Finally the thesis follows from Proposition 3.17.
(2 ⇒ 1). Let K ⊆ Ω be a compact set. By assumption and Proposition 3.17
there exist C > 0 and j ∈ N such that:

|T (f)| ≤ CPj(f) = C sup
x∈K,|α|≤j

|∂αf(x)| ∀f ∈ C∞K (Ω). (23)

Setting CK = C, mK = j and recalling that for all f ∈ D(Ω) Supp(f) ⊆ K if
and only if f ∈ C∞K (Ω), one gets:

|T (f)| ≤ CK
∑
|α|≤mK

sup
x∈Ω
|∂αf(x)| (24)

for all f ∈ D(Ω) such that Supp(f) ⊆ K, that is the thesis.

Remark 6.2. A straightforward consequence of Lemma 6.1 is the following
well known characterization of distributions.

Let T : D(Ω) → F be a linear function. Then the two following conditions
are equivalent.

1. T is a distribution.

2. For every sequence (fn)n∈N ⊆ D(Ω) such that:

• there exists a compact set K ⊆ Ω such that Supp(fn) ⊆ K for all
n ∈ N,

• for all α ∈ Nd, ∂αfn
n−→ 0 uniformly,

one has that T (fn)
n−→ 0.

Indeed Item 2 amounts to state that the restriction of T on C∞K (Ω) is con-
tinuous at 0 for every compact set K ⊆ Ω.

7 A Result on Convergence of Distributions

Finally we can prove the following result.

11



Proposition 7.1. Let (Tn)n∈N ⊆ D′(Ω) a sequence of distributions on Ω such
that for all ϕ ∈ D(Ω) there exists in F limn→+∞ Tn(ϕ). Then the functional:

T : D(Ω)→ F
ϕ 7→ lim

n→+∞
Tn(ϕ)

is a distribution on Ω.

Proof. The proof is in two steps.
Step 1. Let K ⊆ Ω be a compact set. According to Lemma 6.1 the sequence
(Tn)n∈N is a sequence of linear and continuous functions from the Fréchet space
C∞K (Ω) to the locally convex metrizable space F. One notices that hypotheses
of Proposition 5.3 are satisfied. Hence by Corollary 5.5 T : C∞K (Ω) → F is
continuous.
Step 2. Since Step 1 holds true for every K ⊆ Ω, applying once more Lemma
6.1 T turns out to be a distribution.
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