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1.1 Continuous nowhere differentiable functions

Let f: I — R, where I is an open interval in R. Let xqg € I. We recall two
fundamental notions.

Definition 1. f is continuous at xg if

lim f(z) = f(zo).

Tr—rT0o
f is differentiable at xo if
lim f(z) = f(zo) = f'(z0) € R.
T—Xo Tr — X

f continuous or differentiable (on I) means continuous or differentiable at every
point of I.

It is well known that a differentiable function (at a point) is continuous (at
the same point), but vice versa is not true. Anyhow immediate examples are
available only in the case that the point in which a function is continuous and
not differentiable is an isolated point in the domain of the function (e.g. the
function x — |z| at the point 0).

To Karl Weierstrass it is due the first example of everywhere continuous
nowhere differentiable function. The proof of the following theorem can be
found in [7, § 17]

Theorem 1 (Weierstrass’ example). Let
+oo 3
f(z) = Zb’€ cos(afmz), with ab>1+ 57 and 0<b<1.
k=0

Then f is continuous and not differentiable at every point of R.

We present here a similar example, may be easier from the point of view of
computation, taken from [11].



Figure 1: Karl Theodor Wilhelm Weierstrass (1815-1897)

Example 1. Let g : R — R, periodic of period 4 and such that

1=z i z €10,2],
ID= 1he i zelo0.

N

We define
“+o0
fl@) =Y 27"g(2*"x).
n=1

f is continuous: in fact all the functions x — 2-"g(22"z) are continuous
and the series is totally and, consequently, uniformly convergent, so that the
limit is continuous.

We want to prove that f is not differentiable at any point. Let & € R, k € N.
Consider 22" %. We have 22°% € [2m,2m + 2] for some m € Z. We choose
h=2"2" orh=-2"2" depending on the fact that

22"z, 22z 4+ 1 € [2m, 2m + 2,

or
k

22z, 227 — 1 € 2m,2m + 2.



Suppose we are in the first case. We consider

0 if n >k,
192" (@+h)—g(27" 3)| = [g(2*" 7427 7)) —g(2*"7)| = { 1 ifn =k,
<22"-2" jfn < k.
Consequently
k
F@+h) = f(@) =) 27"(g2" ( +h) - 9(2* 7)),
n=1
so that
kol n k
@ 4h) — f@)] 2okt -3 g g2
n=1
> 27k (k—1)22" 2
> 27k (k—1)272",
and finally

|w| > 2*k+2k _ (k _ 1)221"’_1'
In this way, for all T € R, we construct a sequence (hy)r in R, such that

limg hy = 0 and

(Z + i) — f(2)
by
This implies that f is not differentiable at Z.

lilgn\f | = 4o00.

Remark 1. The technique of considering series of functions which are rescaled
in size and in the variable is typical in the construction of nowhere differentiable
functions (see e.g. [9]). Like in the case of Von Koch curve, the graph of such
functions is, in general, a fractal set.

1.2 How many continuous nowhere differentiable functions
are there?

The content of this paragraph can be found in [7, §17]. Nowhere differ-
entiabilty is, in some sense, the normal situation for a continuous function. We
will prove, in fact, that the set of continuous nowhere differentiable functions
is the complement of a set which is contained in the countable union of closed
sets with empty interior, in the metric space of continuous functions with the
sup-distance.

Definition 2. Let ¢ : I — R, with I open interval in R, and let xo € I. We
define
liminf p(z) =sup{ inf {p(z)}},

Tzl t>0 To<z<zoti

limsup p(z) = inf{ sup {¢(z)}},

o t>0 "y <a<mo+t
liminf p(z) =sup{ inf {p(z)}},
Tz t>0 To—t<z<zo

limsupp(z) = inf{ sup {p(z)}}.

Ty t>0 zo—t<z<zgo



Figure 2: The statue of Ulisse Dini (1845-1918) in Pisa

Definition 3. Let f : I — R, with I open interval in R, and let o € I. We
define

D+f(q;0) = lim sup M, D+f($0) — liminf f(CC) - f(l‘o)
w—)wg' T —Zo x—)mg' Tr — X

)

D™ f(zo) = limsup M D_ f(z0) = liminf fx) — f(xo)'

b
T—xy T — o T T — To

DT f(z0), Dy f(xo), D™ f(z0), D_f(xo) are the so called Dini’s derivatives of
the function f at the point xg.

We have, for every function f and point g,
—00 < Dy f(z0) < D¥ f(g) < +00, —00 < D_f(zg) < D~ f(zo) < +o0.
Remark that a function is differentiable at ¢ if and only if
D_f(x9) = D™ f(xo) = D+ f(x0) = D¥ f(x0) € R.

Theorem 2. Denote by C([0,1],R) the space of continuous functions on [0,1]
with the sup-distance. Let

D={feC(0,1,R) |3z e[0,1]: Dsf(z), D* f(z) € R}.

Then D is contained in the union of a sequence of closed sets with empty
interior.



Proof. First of all we notice that the set of functions which are differentiable
(from the right) at least in one point, is contained in D so that the set of
continuous nowhere differentiable functions contains the complement of D.

Let

1L flet+h) - fz)

Cn:{feC([O,l],IR{)\Ela:e[(),l—%] Vhel, o], | | <n).

5 <
Obviously C,, C D.

We prove that D C |J,, C,. Let f € D. Then there exists z € [0,1] and
there exists C, C’ € R, with ¢’ < C, such that

el s (L) <o
and f(@) - (@)
ili%{iolcgfiﬂ{%}} >

In particular there exists ¢ > 0 such that

wp (FEIE

T<e<T+t T—=T

and this means that for all z € |z, + [ we have

Consequently there exists «, § > 0 such that, for all h € ]0, ],

Jah=1@)
h
and this implies that f € C), for some n. B B
We prove that C), is closed. Let n fixed and let f € C), where C,, denotes the
closure of C), in the space C([0, 1], R) (remember that the distance in C([0, 1], R)

is do (f,9) = sup,ejo.1) |/ (2) —g(x)| = ||f —gllo). There exists a sequence (fx )k
in C}, which converges uniformly to f. We have that, for each k, there exists a

point xj such that

fru(xr +h) — frlzr)
h

1 1
zr € [0,1 — =] and for all h €]0, =], | | <n

n n
Passing to a subsequence, we can suppose that there exists z € [0,1 — %] such
that 2 — Z. We fix now h € ]0, 1], we fix £ > 0 and we choose k in such a way
that

h h h
1f = Filloo < 50 1f@w) = F@I < 5, 1@+ R) = Flaw+ ) < T



Consequently
|f(@+h) - f(2)]
<|f@+h) = flak+ )|+ |f(zr + h) = fe(ze + h)|
Ffe(@e + ) = fil@r)l + | fe(ze) = flaze)| + [f(2r) — f(2)]

ch eh itk
Syt Mty
< nh + ¢h.

Since that last inequality holds for every € > 0, we deduce that f € C,,.

We prove finally that C,, has an empty interior. By contradiction suppose
that there exists n, there exists f € C,, and there exists € > 0 such that the
ball B(f,e) = {g € C([0,1,R) | |lg — flleo < €} is contained in C,,. Using the
(Stone-)Weierstrass Theorem (see [13, Ch. 7]), there exists a polynomial p on
[0,1] such that ||f — pllec < €. Let §d =¢ — || f — p|loo- As a consequence

B(p,0) € B(f,£) € Ch.

We construct now a function g € C([0, 1], R) such that ||g|lcc <, g has a finite
right derivative ¢/, (x) at each point x of [0, 1[ and, for all z € [0, 1],

194 (@) > 1+ P[0

(to find such a function g it is sufficient to take a suitable sawtooth function).
Then we have p+g € Cp, (p+g), =p"+ ¢/, and, for all z € [0, 1],

I(p+9)\ (@) > g (@) = 1P|l > m,

which is a contradiction. This completes the proof. O]

1.3 How many angles or cusps are there?
The content of this paragraph can be found in [7, §17].

Definition 4. Let f : I — R a function, where I is an open interval in R.
Let £ € I. Let f continuous at . T is called angle point (in italian: punto
angoloso) if there exists

o fle) @) o fle) @)
1 _— = 1 _— =
axcig:lJr r—T f+($), a:—Ig:l* r— f_ (J)),
fi(@) or fL(z) €R and [ (2) # fL(2).
Z is called cusp point (in italian: punto di cuspide) if there exists f (Z),
f1(Z), they are different and both of them are infinite.

Take now a continuous nowhere differentiable function. We pose the follow-
ing question: “how many angles or cusps are there?” We will see that there is
only a finite or countable set of such points. This means that the real cause
of nowhere differentiability is not the presence of angles or cusps, but the fact
that for almost every point the limit of the difference quotient (from the left
and from the right) does not exists. The real cause is oscillation.



Theorem 3. Let f : I =]a,b[ = R a function. There exists at most a countable
set of points in I in which f! and f’ exist and are different.

Proof. Let

A={zel]| fi(z), f () exist and f (z) > ' (2)},
and

B={zel|f(x), f_ (x)exist and f (z) < f.(z)}.

We show that A is at most countable. The case of B will be similar. Let x € A.
We choose
r, € Q such that f/(z) <r, < fi(2).

We choose t,, s, € Q such that a < t, <z < s, < b and

M<rw for all t, <y <u,
Yy—x

FO=F@) L foral z<y<s,
y—x

Consequently

fly) = f(z) >re(y—2x) forall yé€lt,, s.[ with y#z.

Consider now
D: A Q% x> B(x)=(re, te, 52).

We claim that ® is injective and consequently A will be countable (since Q? is
countable). By contradiction, suppose there exists & # z, e.g. T < = such that

(rz, tz, 8z) = (Tu, te, Sz);
this means that
forall y € Jta, sol, y#2 = fly)— f(@)>ro(y —7) (1)
and
for all y € lto, 5o, y#£ax = [fy)—flx)>ro(y—a). (2)
Considering (1) with y = 2 we have
f(@) = f(Z) > re(z - T),
and considering (2) with y = Z we have
J(@) = f(x) > re (T — ),

obtaining a contradiction. The proof is complete.



Figure 3: Henri Léon Lebesgue (1875-1941)
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2.1 Differentiation of monotone functions

The content of this paragraph can be found in [10, Ch. 9] (see also
the Ch. 6 of the italian edition of [10]) and in[7, §17].

As we have seen, differentiability can be destroyed by oscillations. Mono-
tonicity may be considered the opposite of oscillations. This general idea is,
in some sense, confirmed by the following fact: monotone functions are almost
everywhere differentiable.

Theorem 4 (Lebesgue’s differentiation theorem). Let f : [a,b] — R be a mono-
tone function.
Then f is almost everywhere differentiable.

Proof. We give here a proof in the case of continuous monotone functions. We
need the following definition.

Definition 5. Let g : [a,b] — R be a continuous function. Let x¢ € [a,b]. We
say that g is invisible from the right (or right-invisible) if there exists & € |z, b]
such that g(§) > g(xzo). Similarly xg € |a,b] is invisible from the left (or left-
invisible) if there exists & € [a, o[ such that g(§) > g(xo).

The set of right-invisible points is described in the following lemma, the
proof of which is let as an exercise.



Lemma 1. Let g : [a,b] — R be a continuous function. The set I, of right-
invisible points contained in |a,b[ is an open set. Moreover I, is the union of a
finite or countable set of pairwise disjoint open intervals |ag, Bx[ and, for all k,

g(aw) < g(Br)-

Let’s go back to the proof of Lebesgue’s differentiation theorem. Sup-
pose that f is a continuous increasing function defined on [a,b]. Consider
f:[-b—a = R, f(z) = —f(—x). Also f is a continuous increasing func-
tion. Let xg € Ja,b[. We have

D f(w9) = D™ f(—0), D f(x0) = D_ f(—x0),

D™ f(zo) = D" f(=x0),  D—f(wo) = Dy f(—wo).

We know that

D_f(xo) < D™ f(xo),  D+f(xo) < DT f(wo).
If we are able to prove that, for a continuous increasing function, in a point xg,

D~ f(zo) < Dy f(wo),

then the same will be true for f in the point —zg, so that

D* f(wo) = D™ f(=0) < Dyf(~w0) = D—f(x0)
and consequently

D7 f(w9) < D— f(zo) < D™ f(x0) < Dy f(w0) < D f(x0).

As a conclusion we have that, for proving the theorem, it will be sufficient to
prove that

i) D™ f(z) < D, f(x), for almost every z € ]a, b[;
ii) DT f(z) € R, for almost every z € ]a, b].

Let’s show ii). Suppose z € ]a,b[ such that DT f(zp) = +o0o (remember
that f is increasing, so that all Dini’s derivatives are non negative). We have

limsup 20— F(@0) _
Tz T — o
so that, for all ¢ > 0,
@)

ro<z<wzo+t T — X9

Consequently, for all C' > 0, there exists & > zy such that

and then



This last inequality means that if DV f(z9) = 400 then x is right-invisible with
respect to the function z — f(x) — Cz. Let’s denote by I, ¢ this set. We use
Lemma 1 and we obtain that

Ir,C = U ]anaﬂn[

n

and, for all n, f(ay) — Ca, < f(Bn) — CBp. Consequently, for all n,

f(Bn) — flaw)
ﬁn — Qp S Ta

and, since the intervals Ja,, 5, ] are pairwise disjoint, we have

MIe) = 30 B — o, < 32 LS 00) JOL )

where A(I, ¢) denotes the Lebesgue measure of the set I,. . Notice that in the
last inequality it is essential that f is increasing. Finally denote by A the set of
the points z € Ja, b[ such that DT f(z) = +00. We have

ACI. c, for all C' > 0.

Consequently, for all C' > 0, A is contained in a set with Lebesgue measure less
of equal than w This implies that A is measurable and A(A) = 0.

We prove now i). This condition is equivalent, for an increasing function f,
to prove that

') DT f(z) < D_f(z), for almost every z € ]a, b[;

Let R
E={x €la,b[| D_f(z) < D" f(z)}.

We have to prove that A(E) = 0. Consider ¢, C' € Q, with 0 < ¢ < C; denote
by
E.c={x€]a,b]| D_f(z) <c<C < D" f(z)}.

If, for all such ¢, C, we have \(E.¢) = 0, then \(E) = 0, in fact

E= U E.c.

c, CeQ
0<ce<C

Let p = &. We will show that, for all |, B[ C |a, b],

N (Ee.cNla, B[) < p (8 — a), 3)

where \* denotes the outer Lebesgue measure. From this we obtain the conclu-
sion using the following lemma, the proof of which is let as an exercise.

Lemma 2. Let p € ]0,1[. Let A be a set in ]a, b such that for all Jo, 8] C ]a, b,
A (AN e, B[) < p (B = a).

Then X\*(A) = 0. Consequently A is measurable and A\(A) = 0.

10



Let z € E. ¢ N Ja, B]. We have, in particular, that D_ f(z) < ¢ and consequently
there exists £ € ]a, [ such that

This imply that
f(&) —c&> fla) —ca,

i.e. z is left-invisible with respect to the function z — f(z) — cz, defined on
Ja, B]. We denote by I; the set of these points. We have

EC,Cm ]avﬂ[ C Il = U]akaﬂk[

k

with, for all k,
flag) —cag > f(Br) — ¢ Br,

or, equivalently, for all &,
c(Br — ax) = f(B) — flak).

Suppose now z € E. N Jay, Br[. We know that, in particular, Dt f(z) > C.
Consequently there exists n € |z, B[ such that

f(n) = f(=)

- >C i e. f(m)—Cn> f(z) —Cu.

This means that x is right-invisible with respect to the function z — f(z)—C z,
defined on |ay, Bx[. We denote by I, the set of these points. We have

Iy = U Jak i, Br.ils
J
where the intervals oy, j, Bk, ;[ are pairwise disjoint, with, for all j,
flarg) = Conj < f(Brj) — C By

and, consequently,

JF(Br,j) — f(ak,j)'

(Br,j — o) <

C
We have
M) = 3By — ) < Y0 TPeal T Cs) T JHow)
J J
Finally

and (3) follows. O

11



Figure 4: Giuseppe Vitali (1875-1932)

Remark 2. The proof of Lebesgue’s differentiation theorem in the case of non
continuous functions can be obtained with a modification of the above proof. The
key idea is that for monotone functions there exists, at each point T, the limit
from the right and from the left and, e.g. if f is increasing,

Tim f() < f(2) < lim f(z).

The definition of right-invisible points has to be suitably modified, and so on.

In [7, §17] there is a proof (of Lebesgue’s theorem for general monotone
functions) with similar intricate reasoning as in the pages above. There the
main point is the so called Vitali’s covering lemma.

Definition 6. Let A be a subset of R. A family F of closed non degenerate (i.
e. with strictly positive length) intervals of R, is said Vitali’s covering of A if
for all x € A and for all e > 0 there exists I € F such that x € I and \(I) < e.

Lemma 3 (Vitali’s covering theorem). Let A C R and let F a (non empty)
Vitali’s covering of A.

Then there exists a finite or countable set of pairwise disjoint elements of F
(let’s call it {I,}) such that

MANCe((JIn) =0

(here Cr(U,, In) denotes the complement set of |J,, I, in R).

Suppose moreover that A(A) < 4o0.
Then, for all € > 0, there exists a finite set {I1,..., Iy} of pairwise disjoint

elements of F such that
k

MAnC(| L)) <e.

i=1

12



Figure 5: Guido Fubini (1879-1943)

2.2 Fubini’s theorem on the differentiation of a series

The content of this paragraph can be found in [7, §17]. An interest-
ing consequence of Lebesgue’s differentiation theorem is the following result on
differentiation of functions defined as the sum of a series of monotone functions.

Theorem 5 (Fubini’s theorem on the differentiation of a series). Let (fn)n be
a sequence of increasing functions defined on [a,b], with value in R. Note that
for all n, f, is differentiable a. e. in [a,b], with deriative f). Suppose that,

for all x € [a,b], the series

is convergent with sum s(x). Then
i) the function s : [a,b] = R, z — s(x), is almost everywhere differentiable;
ii) the series Y, fl(x) is almost everywhere convergent;
iii) for almost every x € [a,b], Y fr(x) = s'(x).

Proof. Possibly considering f,,(z) — fn(a), it is not restrictive to suppose that
fu(z) >0, for all z € [a,b]. We set

sn(@) = fi(@) + ...+ ful@),

“+o0
() = s(z) = su(x) = Y ful2).

j=n+1

13



Each function s, is increasing and positive and, for all z € [a, b], the sequence
$n(z) is convergent to s(z). Then the function s is increasing and positive and
consequently it is a. e. differentiable. We have

sp(x) = filz) + ...+ fr(x)

and, for all n and a. e. © € [a,b], f/(z) > 0 (remember that f,; is increasing),
so that, for a. e. x € [a, b],

S (2) < 87,41 (2)-
Moreover, suppose h > 0 and z, z + h € [a, b], then

s(th)—s(@) _ sn(wth) —sn(@)  ralr+h) =)

h h h

with ”(LW >0, as 7, is increasing. Consequently

s(x 4+ h) — s(z) S Sn(x+ h) — sp(x)
h - h ’
and, passing to the limit as h goes to 0, we have s/ (z) < /(z). In conclusion,

for a. e. x € [a,b],
0 < sp(x) < sppa(@) < ().

From the previous inequality we deduce immediately that the series ) f (x)
is a. e. convergent with sum less or equal than s'(z). To conclude the proof
it will be sufficient to show that the sequence (s}), has a subsequence which
converges a. e. to s’. Remark that the sequence (s,(b)), is an increasing
sequence converging to s(b). As a consequence the sequence (s(b) — s, (b)), is
decreasing and converging to zero. It is then possible to choose a sequence (ny)g

such that the series
+o0o

> ((5(6) = 50, (1))

k=1

is convergent. Since for all x € [a,b], 0 < s() — sp, () < s(b) — sy, (b), then

the series
“+o0

D ((s(x) = sn, (),

k=1

is convergent. We can then apply the already proved points i) and ii) of this
theorem to the sequence of functions (gi)r where gi(z) = s(x) — sy, (). We
have that, for almost every z € [a, ],

+oo
> gi(@)
k=1

is convergent and then, for almost every z € [a, b],

lilgngfc(x) =0 ie s (z) — §'(z).

ng

The proof is complete.

14



3

3.1 Bounded variation functions
The content of this paragraph can be found in [7, §17].
Definition 7. Let f : [a,b] = R (or C). Consider

A={a=xy<z1<...<mYy =},
a subdivision of [a,b] (a subdivision is a finite set of points in [a,b], containing
the points a and b). We define
VIA) =D If ;) = Flaj)]
j=1
and
Vi'(f) =sup V([ A).
The quantity V,2(f) is called total variation of the function f. If
Vi'(f) < +o0

the function f is a bounded variation function (in short: a BV function) on the
interval [a,b]. The set of BV functions on [a,b] is denoted by BV ([a,b]).

Remark 3. If f : R = R or (or C), we will consider

VIX(f) = sup  VE(S).

a,beR, a<b
We list here some properties of BV functions.

i) If f € BV ([a,b]), then f is bounded.

ii) f € BV([a,b]) if and only if Rf € BV ([a,b]) and Sf € BV ([a,b]) (where
Rz and 32z means real and imaginary part of z respectively).

iii) If f € BV([a,b]) and o € R (or C), then a.f € BV ([a,b]) and
Vo(af) = lal V().
iv) If f, g € BV([a,b]), then f + g € BV ([a,b]) and
Vo +9) S VI + Vi (9).
v) Let f € BV ([a,b)); if we set

Ifllsv = [f(@)| + V2(f),

then || - || v is a norm and BV ([a, b]) is a Banach space.

vi) Let ¢ € Ja,b[. f € BV ([a,b]) if and only if fijq,) € BV ([a,c]) and ficp) €
BV ([c, b]); moreover

V) =V flaa) + VESfew)  (we will write V2(f) = Vi(f) + V().

15



Figure 6: Camille Jordan (1838-1922)

vii) The function x — V*(f) is increasing. We denote this function by V,(f).
viii) If f is continuous in Z, then also V,(f) is continuous in Z.

We prove the point viii), while the other ones are let as an exercise. We
show that V,(f) is continuous from the left, the continuity form the right being
similar. We know that f is continuous from the left in Z € ]a, b]. In particular,
for all € > 0, there exists a 6 > 0 such that, if x € |Z—4, Z[, then |f(z)—f(Z)| <
5. Let

=20 <21 < ... <Tp_1<Tp=2=T

such that .
VI = Y If(ws) = Flai-nl < 5.
j=1

We can suppose, without loss of generality, that z,_; € |Z — 4§, Z[ (if it is not
so, it is sufficient to add a point of the interval |Z — §, Z[ in the subdivision).
Then

n—1
Vit (f) 2 1 f () = flajo)
j=1

or, equivalently,
n—1
=Vt () + Y If ) = flaja)] 0.
j=1
Consequently

n—1
VI = VEr () + ) | f () = flzi—)| < VE(S)
Jj=1

16



and then

S VI () = 21 (5) = flasa)]
< VI =D @) = )|+ (@) — flan-a)| <e
j=1 -
< —
< g 2

Since x — VF(f) is increasing, from the last inequality we deduce the left
continuity of V,(f) at Z.

Theorem 6. Let f € BV ([a,b]).
Then f is the difference of two increasing functions.

Proof. We know that V,(f) is increasing. We show that V,(f) — f is increasing.
In fact, for all x, y € [a,b], with z < y,

fy) = f(2) < |f(y) = f@)] < V() = VZ(F) = Vi (f)

and this implies

Vi (f) = f2) < V() = ().

Corollary 1 (differentiation of BV functions). Let f € BV ([a,b]).
Then f is almost everywhere differentiable.

Proof. Since f is the difference of two increasing functions, it is sufficient to

apply Lebesgue’s theorem to these two functions. O

3.2 The integral function of a L! function is a BV function

The content of this paragraph can be find in [7, §18].
We prove that the integral function F of f € L' is a BV function and the
total variation of F is the L! norm of f.

Theorem 7. Let f € L'(a,b) (we denote by L'(a,b) the set of Lebesgue’s
integrable functions on the interval [a,b]). Let

o= [ gwar= | s

the so called integral function of f.
Then

i) F is uniformly continuous;

17



it) Fis a BV function and

VI(F) = .
(F) /H ]

Proof. Let T € [a,b]. Consider (z,), a sequence in [a, b] such that lim, =, = Z.
Let
fn(x) = X[a,zn](x)f(x)7

where X[q,7,,] is the characteristic function of the interval [a, z,,]. We have
fa(®) == Xpaz) (@) f(z) and | fo(@)] < |f(2)]

for almost every z € [a,b]. The dominated convergence theorem gives

lim F(x,) = lim fn= f=F(z)

n " Jla,b] la,Z]

i. e. F is continuous. Since F is defined on [a,b], F' is uniformly continuous.
Let
a=x9<x1<...<Tp_1 <xp=n>0.

We have
Py~ Pyl =1 ]fIS/[ ot

so that

LORLERIEDY L=

)

and finally, passing to the supremum in all the subdivisions,
AOEY T
[a,b]

It remains to prove that

/ I < VE(E).
[a,b]

We know that step functions are dense in L'(a,b) (see e. g. [7, §13, (13.23)];
step functions are functions such that there exists

a=xpg<x11<...<x, =0 and a1,...,a, €R (or C),

such that
n
o:la,b[ = R (or C), o(x) = Z osz[zjfl’z][(x);
=1

the density can be deduced also approximating continuous function and using
[3, Th. IV.6]). let (0,)n be a sequence of step functions in [a,b] such that

18



lim, 0, = sgnf in L' and almost everywhere in [a,b]. It not restrictive to
suppose that |0, ()] < 1 for almost every x € [a,b]. We have

[f (@) = f(z)sen f(z) = lim f(z)o.(z)

and
|f(z)on(z)] < |f(z)]

for almost every = € [a,b]. Consequently, from the dominated convergence

theorem,
[ =t [ o
[a,b] " Jab]

Considering now that fact that

kn
Un(x) = Zan,jX[mn,j—hrn,j[(‘r) with |an7j| <1
Jj=1

and

kn
| /[ RCARED Sy 1< gl [F () = F(zn1)]
a, j=1

Ty, j=1;Tn,;] =1

we finally obtain
[ nsvie
[a,b]

and the conclusion follows.

Corollary 2. Let f € L'(a,b). Let F the integral function of f.
Then F is a. e. differentiable.

3.3 Which is the derivative of an integral function?

The content of this paragraph can be found in [7, §18].

We have seen in the previous paragraph that an integral function of an L'
function is almost everywhere differentiable. It is natural to pose the question
about its derivative. Notice that we know how to answer, at least in the special
case of the integral function of a continuous function: the fundamental theorem
of calculus says that the derivative (which in this case exists in all the points of
[a,b]) is exactly the continuous function we have considered. Here we want to
give an answer in the general case.

Lemma 4. Let f : [a,b] — R be an increasing function (so that, from Lebesgue’s
theorem, f' exists a. e.).
Then f' € L'(a,b) and



Proof. We extend the values of f with f(x) = f(b) for > b. For all n > 1, we
define g, : [a,b] — R, setting

gule) =n(f (@ + )~ [(2))

Since f is increasing, g¢,(z) > 0 for all n and all z, and, since f is a. e.
differentiable,

lim g, (x) = f'(x) for almost every z € [a, b].

We apply Fatou’s lemma (see [3, Lemma IV.1]) and we have

Fatou

f :/ liminf g, < lim inf/ Gn
[a,b] [a,b] n n [a,b]

b
< liminf/ n(f(:z:+l)—f(z))d:c

n n

< limninf n(/bf(w—i— %)dw— /bf(ac) dzx)

bt aty
< lim inf n(/b+ f(ac)dx—/ ’ f(z)dx)

n

n

< liminf n(%f(b) - /(H_n f(z)dx)

< f(b) — limsup n/a—s_n f(z)dx

n

< f() = f(a).

Lemma 5. Let f € L(a,b). Suppose that for all x € [a,b], f[a 2] f=0.
Then f =0.

Proof. Let a, B € [a,b], with a < 3. We have

/ f = / f— | =0
[, 8] [a,a] [a,B]

Let A be an open set in Ja,b]. We know A is a finite or countable union of
pairwise disjoint intervals of ]a, b], i. e.

A:U]a/wﬂk[ with ]aj76][m}ah7ﬁh[:® if ]#k
k

Consequently, for all open set A in ]a, ],

/Af - /uk mmf - Z/[ak,m =0

k
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Let now, for all n > 0,
1 1
E, ={z € [a,] |f(x)>5} and F, ={x € [a,}] \f(x)<—g}

E, and F, are measurable set. If we prove that A(E,) = A(F,) = 0, the
conclusion easily follows remarking that

{z € [a,b] | f(x)#o}:U(EnUFn)

n

We show that A\(E,) = 0. By contradiction suppose that A(E,) > 0. Then
there exists a compact set C' contained in E,, such that A\(C) > @ > 0. As
a consequence we would have

/ > so
C n

But, denoting by A the open set ]a,b[ \C, we have

o L= frv-oes

Theorem 8. Let f € L'(a,b). Let F(z) = f[a af
Then F is a. e. differentiable and F'(x) = f(x) for almost every z € [a, b].

O

Proof. We can suppose without any restrictions that f is positive (if not we
decompose f = fT — f~ where f* and f~ are positive and negative part of f
respectively).

We consider first that case of f bounded. Suppose that for all x € [a,b],
|f(z)] < M. We set

1
ngj:nFl' —)—F(z)) =n .
gn(@) = n(F(z + 1)~ F(2) A@gﬁ

n

Since F is a. e. differentiable, we know that lim, g, = F’ a. e. in [a,b] and,
moreover, for all n > 0 and all = € [a, b], we have

1
lgn ()] <l flsn [ Aflsnoar<
[z,z+ 1] [z,z+2] n
consequently, the dominated convergence theorem implies that, for all z € [a, b],

lim gn = / F'. (4)
[a,2]

" Ja,a)

We remark that

/[m] gn = n(/aI(F(t + %) — F(t)dt = n/:ﬂ‘ F(t)dt — n/ﬂ““‘ F(t) dt.
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Since F' is continuous we can use the integral mean theorem and we have

T+ a+%
limn/ F(t)dt = F(x) limn/ F(t)dt = F(a),

n n

and finally

lim %zﬂw—ﬂ®=/ /. (5)

" Jla,a)

Putting together (4) and (5) we obtain, for all x € [a, ],

/ F'—f=0.
[a,2]

Lemma 5 gives the wanted conclusion.
Consider now the case of f not bounded. We set

x) if r) <n,
hm_{fﬁ J@) <

n it f(z) >n,

(recall that f > 0). We have
ORI ©)

Notice that the function z — f[a 2] f — fn is increasing, almost everywhere

differentiable and its derivative is a. e. positive. Differentiating the identity (6)
and using the first part of the proof for the derivative of f[a 2] fn, we have

F'(z) > fu(z) almost everywhere,
and passing to the limit in n we have
F'(z) > f(x) almost everywhere, (7)

We obtain

from Lemma 4

ﬂw:%%ﬁgz%}FSFw—F@=F@

from (7)

Finally, for all z € [a,b], f[a nf—F " = 0. Again the conclusion follows from
Lemma 5. O

Corollary 3. Let f € L'(a,b).
Then, for almost every x € [a,b],

z+h z+4

f(:c)z}llii%% : f(t)dtz}llii%% - f(t)at. (8)

Definition 8. The points for which (8) is valid are called Lebesgue’s points of
the function f.
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Remark 4. It can be shown that (see [7, §18]) if f € L*(a,b), then, for almost
every x € [a,b],

h
Jim 1/ Fa+1) + flo—1t) — 2f(x) dt = 0
0

h—0+ h
and
o1t
Jim 5 [ if@r0) - @)@ =0,
4

4.1 Absolutely continuous functions

The content of this paragraph can be found in [7, §18].

Definition 9. Let f : [a,b] = R (or C). f is an absolutely continuous function
if, for all € > 0, there exists § > 0 such that, for all finite or countable family
(Ja, B[k of pairwise disjoint open intervals in ]a,b],

if Y (Be—ar) <38 then Y |f(Br) — flow)| <e.
k k

The set of absolutely continuous function on [a,b]) is denoted by AC([a,b]).

We list here some properties of AC' functions.
i) If f, g € AC(Ja,b]) and «, B € R (or C), then af + g € AC([a,b]).
ii) If f € AC([a,b]), then f € C([a,b]).

In fact, considering, in the definition of absolute continuity, only one interval
Ja, B[, we have the definition of uniform continuity.

iii) If f € AC([a,b)]), then f € BV ([a,b]).

In fact, let, in the definition of absolute continuity, € = 1. Consider a corre-
sponding § > 0 and choose

A={a=xz9<z1 <...<z, =0} suchthat, forall j, z; —z,;_1 <.
Take another subdivision
A:{a:y0<y1<...<yk:b}

and consider .
AUA={a=20<21 <...< 2z, =>b}

We have

NE

k
ST ) = Fyi—0)l < D0 1f(z) = fzi-0)]
j=1

<.
I
—

NIE

( Z |f(zr) = fzr-1)])

1 Kk such that
zp 1<z <z}

h

<1, since f € AC

Consequently V2(f) < n.



iv) If f € AC([a,b]), then V,(f) € AC([a,b]).

In fact, fix € > 0 and take a corresponding § > 0 from the definition of absolute
continuity. Consider a finite or countable family (Jay, Bx[)x of pairwise disjoint
open intervals in |a,b[ such that >, (8 — o) < 0. For all intervals Jag, B[
consider a subdivision

Ak = {ak =00 < g1 <...<Qn, = ﬁk}

in such a way that

V) =3 [ flany) — flawg-1)| < 2%
j=1

Then
VA < DS M an) = Flomg )+ Y o < 2
k k

k j=1
——
<eg, since f € AC <&

It is sufficient to note that

DOV = VI =D Var ()
k

k

to have the conclusion.

v) If f € AC([a,b]), then f is the difference of two AC increasing functions.

4.2 Absolute continuity of the integral
We recall a classical result from measure theory.

Theorem 9. Let (2, A, \) a measure space (Q is a set, A a o-algebra of subsets
of Q, X a positive measure on A). Let f € L} ().
Then, for all e > 0, there exists 6 > 0 such that, for all A € A,

if AA) <o, then / |f]d\ < e.
A

Proof. Suppose first that |f| < M, for some M > 0. Then, taking A € A with
AA) <0,

1l acy - an
A

and it sufficient to take § < 7 to have the wanted property.
Consider now the general case. Taking

flz) if [f(@)] <n,
f”(x)_{ no i |f(@)] >,

The dominated convergence theorem ensures that

1im/|f—fn|d)\:0.
n Q
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Let € > 0; there exists n € N such that

€

/ |f = fald\ < 3
Q
Since f5 is bounded, there exists § > 0 such that, for all A € A,
if AA)<d,  then /\fﬁ|d)\< %

A

Finally, for all A € A, if A(4) < 0,

[inns [1r=plove [ inlars [17-plans [ nlo<e

< <

| ™
| ™

Corollary 4. Let f € L'(a,b). Let F(z) = f[a,z] !
Then F € AC([a,b]).

4.3 Characterization of AC functions

Let f € L'(a,b) and let F its integral function, i.e. let F(z) = Jia £ We
have seen that F' is BV ([a,b]), F is differentiable almost everywhere in [a, b],
F'(z) = f(x) for almost every x € [a, b] and finally F' is AC([a,b]). In particular
the integral function of an L! function is an absolutely continuous function. Is
the converse true? Apart a constant, is an absolutely continuous function the
integral function of an L! function?

Lemma 6. Let F be a monotone, absolutely continuous function on [a,b]. Sup-
pose that F'(x) =0 for almost every x € [a,b).
Then F' is a constant function.

Proof. Let
E ={z €]a,b[| F'(x) # 0}.

We know that A(E) = 0. Consider the fact that F € AC([a,b]). So that, for
all € > 0, there exists § > 0 such that the definition of absolutely continuity is
satisfied. Let now A be an open set in |a, b[ such that

AMA) <o and EC A

We have A = |, |ak, Bil, where (Jou, Bk[)r is a finite or countable set of
pairwise disjoint intervals in ]a, b[. Then, from the monotonicity of F (let’s fix,
e. g. F increasing),

F(E) | JIF(an), F(B)[;
k
and, consequently,

ANF(E) <> (F(Br) — Flax)) <e.
k
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Since this last inequality holds for every € > 0, we obtain that A(F(E)) = 0.
Let now
G = {x €la,b] | F'(z) = 0}.

Let € > 0 and consider zp € G. From the fact F' is increasing and F'(zg) = 0
we deduce that there exists r > 0 such that

F(J})—F(l‘o) < 3

for all — 0< .
orall x€lxg—r, xo+r[\{zo}, < pr— .
We obtain in particular that, for all z € ]zq, zo + 7],
bfaaco—F(xo) < bfax—F(x),

i. e. x¢ is invisible from the right for the function z — =2 — F(z). We
denote by I, this set and we have G C I,.. We know that there exists a finite or

countable set of pairwise disjoint intervals (Jax, Bk[)r in Ja, b[ such that

L=law Bl with  —an—Flaw) < 7B — F(B),
k

€
b—a

in particular
€

We use the monotonicity of F' and we have

F(G) € F(I,) € [ J1F(aw), F(B)
k

and then
€

AF(G) £ Y (F(B) — Flon)) < 1 S (B —ax) < &
k k

The last inequality is valid for every € > 0 and consequently \(F(G)) = 0. We
have

A(F(Ja,b]) = AM(F(E)) + AM(F(G)) = 0.
Since F' is continuous, this implies that F' is constant. O

Theorem 10. Let F € AC([a,D]).

Then, for all x € [a,b], F(x) = F(a) + [ F'(t)dt.
Proof. Recalling that an absolutely continuous function is always difference of
two increasing absolutely continuous functions, it is not restrictive to suppose
that F is increasing. From Lemma 4 we have that, for all 1, 2o € [a,b] with
r1 < X9,

/ " B dt < F(za) — Fay),

so that z — F(x) — f; F'(t)dt is an increasing AC function. Recalling also
Theorem 8, we have

(F(z) / Flt)dt) = F'(z) — F'(z) = 0
for almost every = € [a,b] and the conclusion of the proof is reached by using

Lemma 6.
O
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Corollary 5. Let F, G € AC([a,b]).
Then FG € AC([a,b]) and, for almost every x € [a,b],
(FG)(z) = F(2)G'(z) + F'(2)G(x).

Proof. Remark that in each point in which F' and G are differentiable, also F'G
is differentiable and Leibniz’s formula holds. Then it is sufficient to prove that
FG is AC. For this purpose we remark that, given a finite or countable family
(Jay Br[)r of pairwise disjoint open intervals in ]a, b[, we have

> IF(BL)G(Br) — F(o)Glaw)|
k

< max |F| > 1G(Br) = Glaw)| + max G| > P (Br) = Flag)l.
: & @ &

The conclusion follows. O
Corollary 6. Let f, g € L'(a,b). Let F(x) = a—i-f[a o f and G(z) = B—I—f[a 29
Then

fG=Fb)GD) —af — Fy.
la,b] la,b]

Remark 5. Consider F € AC([a,b]). We know that F' € L'. Consider
¢ € Ci(Ja,b]) (here Ci(Ja,b]) is the set of C' functions with compact support
contained in ]a,b[). Then

b b
/ Ft)'(t)dt = 7/ F'(t)p(t) dt.
If we introduce the set
Wh(a,b)
={u € L*(a,b) | Fv € L'(a,b) : Vo € Ci(]a,b]), / uyp' = —/ vp},
la,b] [a,b]

then AC([a,b]) € Whi(a,b). We will prove (when we will speak about Sobolev
spaces) that, actually, AC([a,b]) = Wi(a,b).

4.4 On the fundamental theorem of calculus

We want to make here a comparison between the fundamental theorem of cal-
culus in Riemann’s (integral) theory and the fundamental theorem of calculus
in Lebesgue’s theory. In Riemann theory the result is the following.

Theorem 11 (Riemann’s fundamental theorem of calculus). Let f € C([a,]).
Then f is Riemann-integrable and, denoted by F the integral function, F is
differentiable in [a,b] and, for all x € [a,b], F'(x) = f(z).

It is possible to give also a slightly different version of this theorem.

Theorem 12. (see [13, Th. 6.21]). Let f be an integrable function in the sense

of Riemann. Suppose that there exists G : [a,b] — R, such that G is a primitive

of f (i. e. G is differentiable on [a,b] and, for all x € [a,b], G'(z) = f(x)).
Then, for all x € [a,b],

/ " Ft)dt = G(2) — Gla).
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Figure 7: Stefan Banach (1892-1945)

In Lebesgue’s theory we have the following result.

Theorem 13 (Lebesgue’s fundamental theorem of calculus). Let f € L'(a,b)
and denote by F its integral function.

Then F is differentiable almost everywhere in [a,b] and for almost every
T € [aa b]} F/(:L‘) - f(aj)

4.5 A theorem of Banach

Definition 10. Let g : [a, b] — R. Let g([a, b]) C [, ] CR. We say that g
satisfies the condition (N) if

ECla, b] and XE)=0 -implies A(g(E))=0.

Theorem 14 (S. Banach, 1925). Let ¢ : [a, b] = R a continuous function with
bounded variation.
o satisfies (N) if and only if v is absolutely continuous.

4.6 The Cantor function

The Cantor function is an example of continuous increasing function (so that it
is also of bounded variation) which is not absolutely continuous. We define this
function as the uniform limit of a sequence of continuous increasing functions.
Define, on the interval [0, 1],

32 if zelo, 3],
f(il?) =T, fg(li) = % if ze [%7 %]
S¢—3 if xel? 1].

[\
oo



Figure 8: Georg Cantor (1845-1918)

S if zelo0, 3],
i if @€l 3]
%x—% if xe[%, %],
fal@) =1 3 if xé€l3, 3]
Sz —1 if zel2, 7]
% if € [g, %]
%x—g if xe[g, 1],

and so on. To obtain f,, 41 from f,, we subdivide in three equal parts the intervals
in which f,, is not constant etcetera. It is possible to prove that this is a Cauchy
sequence. The set in which the limit function is constant is a countable union
of intervals, pairwise disjoint, such that the measure is 1. This means that
the limit function is almost everywhere differentiable, with 0 derivative. But
f(1) =1 so that

1
/0 Fl(x)de =0< f(1) — £(0) = 1.
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5.1 Signed and complex measures

The content of this paragraph can be found in [7, §19].

Definition 11. Let (2,.A) a measurable space (0 is a set, A a o-algebra of
subset of Q). Letv: A —]—00,+00] (or [—00,+0[). v is a signed measure if

i) v(0) = 0;
it) v is countably additive.

Remark 6. In the above definition, v is countably additive means the following.
Let (Ap)n be a sequence in A consisting of pairwise disjoint subsets of Q. Let

A=, An.
i) If v(A) < +oo, then 3, |v(An)| < +o0 and 3, v(A,) = v(A).
i) If v(A) = +o0, then, denoting by
B { A, ifv(A,) >0, o _ { 0 ifv(A,) >0,
0 ifv(A,) <0, A, ifv(A,) <0,
we have Y, v(By) = 400 and 3, —v(C,,) < +o0.

Definition 12. Let (Q,.A) a measurable space. Let v : A — C. v is a complex
measure if

ii) v is countably additive.

Remark 7. In the above definition, v is countably additive means the following.
Let (Ap)n be a sequence in A consisting of pairwise disjoint subsets of Q. Let
A=, An. Then ) |[v(Ay)| < +oo and ), v(A,) =v(A).

Theorem 15. Let v be a signed measure. We have
i) if B, Fe A, F CE and |[V(E)| < +oo, then [v(F)| < 4+o00;

it) if (An)n is sequence in A with, for alln, A, C A,11, then

vl JAn) = lim v/(A,);

1) if (An)n is sequence in A with, for allm, A, D Apyq1 and |v(Ar)| < o0,
then
v([()An) = limv(A,).
n

Remark 8. A result similar to Theorem 15 is valid also for complex measures.
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5.2 The Hahn’s decomposition theorem

The content of this paragraph can be find in [7, §19].
Let Q be a set and A a o-algebra on €. Let v be a signed measure on the
measurable space (2, 4).

Definition 13. Let P, N € A. The couple (P, N) is called a Hahn’s decompo-
sition of the measure v if

i) PAN =0 and PUN = Q;
ii) for all Ae A, v(ANP) >0, (we will say that P is non negative);
i1) for all Ae A, v(ANN) <0, (we will say that N is non positive).

Lemma 7. Let E € A, with —o0o < v(E) < 4o0.
Then, for all € > 0, there exists E. € A such that

E.CE,v(E:) >v(E) and, for all A€ A, if AC E., then v(A) > —e¢.

Proof. By contradiction, suppose that there exists €y > 0 such that, for all
F € A, the fact that F C E and v(F) > v(E) implies that there exists Ag € A
such that Ag C F and v(4g) < —&o.

Let’s choose firstly ' = E. We have that there exists A; € A such that
Ay C E and v(A;) < —eg. Choose F' = E \ A;. Consequently there exists
Ay € Asuch that Ay C E\ A; and v(A3) < —ep. Next choose F' = E\ (A;UA,).
We obtain Az € A such that A3 C E\ (A; U As) and v(A3) < —e&p.

A sequence of pairwise disjoint sets (A, ), is constructed in such a way that,
for all n, A, C F and v(A,) < —eo. We deduce that v(U,4,) =Y v(A,) =
—00, obtaining a contradiction, since U, 4,, C E and v(E) > —occ. O

n

Lemma 8. Let E € A, with —0o < v(E) < +00.
Then there exists F' € A such that

FCE,v(F)>v(E) and, forall Ae A, v(ANF) >0
(remark that the last point means that F' is a non negative set).

Proof. We apply Lemma 7 to the set E, with ¢ = 1. We obtain that there exists
E; € A, such that £y C E, v(E;) > v(F) and, for all A € A, if A C E; then
v(A) > —1. Next we apply Lemma 7 to the set E; with ¢ = —%. We obtain
that there exists Fy € A, such that Es C Fy, v(FE2) > v(Ep) and, for all A € A,
if AC E5 then v(A) > —%.

Applying successively this procedure, we construct a sequence (E,), such
that, for all n, £, C --- C E; C E, v(E,) > --- > v(E;) > v(E) and, for all
Ae A if ACE, then v(A) > —%.

To conclude the proof it is sufficient to take F' = N, E,. It is easy to verify
that F C E, v(F) > v(E) and, for all A € A, if A C F then v(A4) > 0, since,
for all n, A C E,, and consequently, for all n, v(A) > —%. O
Theorem 16 (Hahn’s decomposition theorem). Let v be a signed measure
on the measurable space (Q, A).

Then there exists a Hahn’s decomposition (P, N) of the measure v. If (P', N")
is another Hahn decomposition, then the sets P\ P', P’\ P, N\ N’ and N'\ N
are negligeable.
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Figure 9: Hans Hahn (1879-1934)

Proof. We suppose that, for all E € A, —o00 < v(F) < 4+00. We set @ =
sup{v(F), E € A}. We take (E,), a sequence in A such that lim, v(F,) = a.
It is not restrictive to suppose that, for all n, —oco < v(E,) < +oo. We apply
Lemma 8 to each set E,,, obtaining a sequence (F},),, such that, for all n,

F, CE,, v(F,) >v(E,) and, for all Ae A, v(ANF,) > 0.

We set now G, = Uj_; F;. We have that v(Gy) > v(F,) since G,, = U’,;Zlﬁ‘k,
where F,, = F,, and F), = F}, \ (U?:kHFJ') for k=1,...,n— 1. The sets F}, are
pairwise disjoint and have non negative measure. Remark that, for all n, G,, is

a non negative set (in fact is the union of non negative sets) and the sequence
(Gy)n is increasing. We set P = Ul F, = US> G,,. We have that

v(P) = lim, v(Gy,) = lim, v(F,) = lim, v(F,) = a and consequently a € R.

It is immediate to see that P is non negative, as it is union of non negative sets.

It remains to prove that Q\ P is non positive. Suppose by contradiction there
exists A contained in Q\ P such that v(A) > 0. Then v(PUA) = a+v(A) > a,
and this is impossible.

Suppose now that (P, N) and (P’, N') are two Hahn’s decomposition. Con-
sidering that P\ P’ = PN N’, using the fact that P si non negative we have
v(P\ P’) > 0 and using the fact that N’ is non positive we have v(P\ P') <0
and the conclusion follows. The other cases are similar. O

Exercise 1. Let v be a signed measure on a measurable space (Q, A). Suppose
that for all E € A, —co < V(E) < 400, i.e. v(A) € [—00,+00].
Prove that if o = sup{v(E), E € A}, then a < +o0.
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5.3 Total variation of a measure
The content of this paragraph can be find in [7, §19].

Definition 14. Let v be a signed measure on (2, A). Let (P,N) a Hahn’s
decomposition. We set, for all E € A,

vH(E)=v(ENP),
v (E)=—-v(ENN),
V|(E) =vT(E)+ v (E).

+

vt, v~ and |v| are positive measures and they are called positive variation,

negative variation and total variation of v, respectively.
We give a characterization of the total variation of a measure.

Theorem 17. Let v be a signed measure on (2, A). We set, for all E € A,
k
w(B) =sup(}_[V(E))| | E=Uj_1 B, BjNEw=0 if j#h}  (9)
j=1

Then, for all E € A,
n(E) = [v[(E).

Proof. Let (P, N) a Hahn’s decomposition of v. We have that
v (Ej)| = [v(E; N P) +v(E; N N)| < [v(E; 0P|+ [v(E; N N)| = [v](Ej).
Consequently

k
W(E;)| < WI(E;) = [vI(EB),
=1 j=1
and we obtain that
w(E) < v|(E).

Converserly, if we write E = (ENP)U(ENN), since (ENP)N(ENN) =0,
we have

k
plE) =sup(Y_[V(E))| ...} = W(E O P)| +|v(E N N)| = [v|(E).

O

Remark 9. Suppose not having proved Hahn’s decomposition theorem. It is
still possible to prove that p, defined by (9), is a positive measure. To prove
that u(0) = 0 is immediate. To prove that p is countably additive we proceed in
the following way. Let (Ay), be a sequence in A consisting of pairwise disjoint
subsets of Q. Let A=J,, An. Let

k
B <sup{>_[V(E)|| A=Ui_ B, E;NE,=0 if j#h}=u(A).
j=1
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Then there exists Fn, ..., Ey in A such that A = Uk_lE E;NE,=0if j#h
and

k k “+o0
Bo< D WEN =D 1D v(E;N AL
j=1 j=1 h=1
k +oo +oco k
< YN WENA) =D (BN A
j=1h=1 h=1j=1

k
< > sup{>_ [W(F N A)| | Ap = U By, )
h=1 =1

+oo
< ZN(Ah)'

We deduce that pu(A) < Zh > (Ap).

It remains to prove the converse inequality, i. e. S, 5 u(Ar) < u(A). The
interesting case is when u(A) < +oo. For all hy € N and for all partition
Bi,...,B, of Ay, we have

Z\VBk|<|V U Ah|+Z\VBk|<M A),
hsho

so that p(Ap,) < +oo. Let nowe > 0 and, for all h € N, choose E}, 1, ..., Epn,
such that
1(An) <

€
Tone
Then, for all m € N,

> (A
h=1

IN

m

ZZ‘ Ehk|+2h)

h=1

< ZZ\ (Enil)+v( |J An)l+e
h=1

h>m+41
< w(A) + €.

Since this is true for all m € N and for all € > 0, the conclusion follows.
let’s now consider the case of complex measures.

Definition 15. Let v be a complex measure on (2, A). We set, for all E € A,
k
E) =sup{>_|v(Ej)| | E=U_1E;, E;nE,=0 if j#h}.  (10)

Theorem 18. Let v be a complex measure on (2, A).
Then |v|, defined in (10), is a positive finite measure.

Proof. The fact that |v| is a positive measure it is proved in analogy of what we
have seen in the previous Remark 9. It remains to prove that |v| is finite (see
[14, Th 6.4]). O

Theorem 19. Let v be a complex measure on (2, A). Let v1 and vy the real
and the imaginary part of v.
Then
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i) 11 and vy are signed measures on (9, A);
i) v, vy, vy and vy are positive finite measures on (Q,.A).
For all E € A, we have

iii) v(E) = v (E) — vy (E)+i(vs (E) — vy (E)) (this is the so called Jordan’s
decomposition of v);

w) [VI(B) < v (B) + vy (B) + vy (E) + vy (E);

v) v (B), v (B), v (E), vy (E) < [V|(E).
Proof. (See [7, §19, (19.13)]). The first and the second point are immediate. In
fact, v(0) = 0 implies Rv(0) = v1(0) = 0, Sv(0) = v2(0) = 0 and the countably
additivity of v implies the same property for v; and vo. The fact that vi", vy,

vy and vy are positive finite measures comes from the fact that [v|(Q) < +o0.
In fact, let (P1, N7) a Hahn’s decomposition for vq, we have,

W) = [p(P)|+ (V)]
> | (Pr) +ive(Pry)| + [v1(N1) + v (Ny)]
> vi(Pr) +vi(Ny)
Z %41 (Q)
The other points are let as an exercise. O

6

6.1 The Radon-Nikodym theorem
The content of this paragraph can be found in [7, §19].

Definition 16. Let (Q,.A) a measurable space. Let p and X be a positive mea-
sure and a signed or complex measure on (Q, A) respectively. We say that X\ is
absolutely continuous with respect to p, and we write X < p, if, for all E € A,

w(E)=0 implies AE)=0.
Theorem 20. Let u and A as in previous definition.
A << pif and only if |A| < p.

Proof. We prove first that |A\| < p implies A < p. In fact, let E € A with
#(E) = 0. Then |A(F) = 0 and then A(E) = 0 (remember that |A(E)| <
IAI(E)).

Conversely consider E € A with u(F) = 0. Take E = U;?:lEj, where E; € A
and E; N E, = 0 if j # k. We have u(E;) = 0 and consequently A\(E;) = 0 for
all j. We infer that 3 [\(E;)| = 0. Then

IM(E) =sup{Y_[ME;)| | E=U_ E; with ... }=0.
J
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Theorem 21. Let p and A be a positive and a complex measure, on the same
measurable space (Q, A), respectively.
A is absolutely continuous with respect to u if and only if

() for alle > 0, there exists § > 0 such that, for all A € A, if u(A) <4, then
IA(A)] < e.

Proof. Suppose that the property () holds. Take E € A such that u(E) = 0.
Then |A(E)| < €, for all e > 0. This means that A(EF) = 0. Consequently A < p.
Conversely we prove that A < p implies

(%) for all € > 0, there exists ¢ > 0 such that, for all A € A, if u(A) < J, then
|A(A) < e.

The fact that (xx) implies (x) is clear (remember that |A(E)| < |A|(E)). Suppose
by contradiction that (xx) is not true. Then there exists 9 > 0 such that, for all
d > 0, there exists As € A such that u(As) < d and |A\|(As) > €. In particular,
If § = 5, there exists A, € A such that u(A,) < 5 and |A|(A4,) > . Let us

P on

define
+o0 too
By=|JA and C=[)B.
k=n n=1

We have, for all n € N,
+o0 +o0 1 1
M(Bn) < Z M(Ak) < Z o = on—1 and B, 2 B,+1.
k=n k=n

Consequently
=0.

2n—1

Since A < p, from Theorem 20 we have |A\| < p and then |A|(C) = 0, but

+o00o
C={()Bn forallneN B,2Buy and [|\(By) > e,
n=1
so that lim, |A|(By) = |A|(C) cannot be equal to 0. O

Remark 10. The proof of Theorem 21 is valid also in the case when X\ is a
stgned measure with the extra hypothesis that

forallAe A, p(A) < +4oo implies |A(A)] < +o0.

Consider p a positive measure on the measurable space (2, 4). Let’s f €
L,,(€). If we define, for all A € A,

A = [ xa-fau= [ fan

we have that A is a complex measure on (€2, .A4), which is absolutely continuous
with respect to u (the fact that if u(A) =0 then [, fdu = 0 is immediate, but
we have also proved directly that for all € > 0 there exists 6 > 0 such that, if
p(A) <4, then | [, fdu| < [,|fldp < ¢). The Radon-Nikodym theorem says
that this is the general case, at least if u is o-finite.
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Figure 10: Otto Nikodym and Stefan Banach Memorial Bench, Krakov

Theorem 22 (Radon-Nikodym). Let o and A be measures on the measurable
space (2, A). Let p be a positive o-finite measure. Let A be a signed or complex
measure. Suppose that X is absolutely continuous with respect to p.

Then there exists a measurable function fo such that, for all A € A, if
IA(A)| < 400, then xa - fo € L, and

AA) = [ xa fodu= [ fodn (11)
Q A
In particular, if X is a complex measure (or a signed measure with |[\(2)]| < +00),
fo € L}, and (11) is valid for all A € A.

Proof. We present here the proof only in the case of p and A positive finite
measures. Let

CZ{fGLIHfZOand,forallAEA, /fdug)\(A)}.
A

Remark that C is not empty, since the function f = 0 is an element of C.

Consider
o= Sup/ fdu.
fec Jq

We have a < A(Q2). Let (fy)n a sequence in C such that lim,, [, f, dup = a. We
set

gn(x) = max{fi(z), fa(x),..., fu(®)}.

We have g, € C and lim,, fQ gn dp = a. Since (g, )n is an increasing sequence,
using Beppo Levi’s theorem we have that, setting

g(z) = 1irrln gn(2),

we have that g € C (in particular g > 0 and g € L)), [, gdp = o and, for all
Ae A,

/ gdu < MA).
A

Consequently, if we set



then v is positive measure on A.

Our goal is to prove that v = 0. Suppose by contradiction that v(€2) > 0.
Then there exists k& > 0 such that

w(Q) — kv(Q) <0.

We denote by v the signed measure p— kv. Let (P, N) a Hahn’s decomposition
for v;. We remark that pu(N) > 0. In fact, if (IN) = 0, then by the absolute
continuity of A with respect to p, A(N) = 0 and consequently v(N) = 0 and
v1(N) = 0. Then

0 < ju(P) = ku(P) = (u(P) — kv(P)) + (u(N) = ku(N)) = p(Q) — kw(%) < 0,

which is a contradiction. Consider now

1

- if x €N,
hiz)={ F
0

otherwise.

Then, for all A € A,
1
/ hdu = —u(ANN).
A k

Now
(ANN)=u(ANN)—-kv(ANN) <0,
consequently
v(ANN) > %u(AﬂN) = / hdy,
A
and hence

v(A) >v(ANN) > / hdp.
A

Finally, for all A € A,

1
[ o+ mdn=a+ puv) > a.
Q k

which is impossible, since & = sup;co fQ f dp. The proof is complete.
O

Remark 11. The hypothesis that u is a positive o-finite measure cannot be
neglected. An example is given here below. Let u be the measure on [0,1] such
that p counts the points of each set (let this measure, e. g., on the Borelian sets
B). p is not o-finite. Let X be the Lebesque’s measure. It is immediate to verify
that A < u. Suppose there exists fy € L}L such that, for all A € B,

NA) = [ dodn
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Figure 11: Johann Radon (1887-1956)

Let g € [0,1] and A = {xo}. We have, on one hand, \(A) = 0, and on the
other hand,

fodp = fo(wo).
{zo}

This implies that fo(xo) = 0 and this is valid for all zo € [0,1]. Then fy =0,
which is a contradiction.

Corollary 7. Let 1 and A be measures on the measurable space (2, A). Let p
be a positive o-finite measure. Let X\ be a signed or complexr measure. Suppose
that X is absolutely continuous with respect to .

Then there exists a measurable function fo such that, for all f € L}, f- fo €

L}L and
/QfdAz/ﬂf-fodu.

Remark 12. Let F : R — R be an increasing right-continuous function. It is
possible to show that there exists one, and only one, positive measure g on the
Borelian sets of R (denoted by B) such that, for all a, b € R, with a < b,

ne(Ja,b]) = F(b) - F(a). (12)

wr is called the Lebesgue-Stieltjes (positive) measure associated to F.

Similarly, let F € BV (R) (it is sufficient that, for all M > 0, F € BV ([—M,
M]) and or the positive or the negative variation is finite) and suppose that F'
is right-continuous. It is possible to show that there exists one, and only one,
signed measure pp on B, such that, for all a, b € R, with a < b, (12) is verified.
Also in this case we will say that pp is the Lebesque-Stieltjes (signed) measure
associated to F'.

It is possible to show that F € AC(R) (this means that, for all M > 0,
F e AC([-M, M])) if and only if up < X\, where X is the Lebesgue measure.

Remark 13. Let F': R — [0, 1] a right-continuous increasing function. Sup-
pose that lim;_, o F(t) =0 and lim;_, ;o F(t) = 1. We define

jr:R =R, jr(t) = F(t) — lim F(z).
z—t~
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The function jx is different from 0 only on a finite or countable set of points
(Tn)n. We define
W)= 3 julen).
T, <t
We define Fy = F—x. The function Fy : R — [01] is continuous and increasing.
We know that F| is a L' (Lebesgue integrable) function and, for all t; < ta,

/t2 F{(S) dS S Fl(tg) — Fl(tl).

t1
In particular, for all t; < ts,

t1

ta
At — | Fl(s)ds < Fu(ta) —/ Fi(s) ds.
0 0

We set
G(t) = Fi(t) 7/0 Fi(s)ds and  Fy(t) = /0 F{(s)ds.

In conclusion

F(t) = Fao(t) + G(1) + x(1),

where Fy is an absolutely continuous increasing function, G is a continuous
increasing function such that G'(x) = 0 for almost every x € R and x is a
Jump-function.

F can be thought as the distribution function (in Italian: funzione di ripar-
tizione) of a random variable X. We have

P(X <t) = F(),

where P is the probability measure associate to X. This random variable has
an absolutely continuous density (the function Fy) and a discrete density (the
function jx) but has also a “singular part” (linked to the function G) which
cannot be described in term of Lebesque measure nor in term of discrete random
variables.

7

7.1 The Hardy-Littlewood maximal function

The content of this paragraph can be (partially) found in [17, Ch. 1]
and [14, Ch. 8].

Let us denote by B the o-algebra of Borel sets of R%. Let A be the Lebesgue
measure on R? and let v be a complex measure defined on B. For any ball
B(z,r) ={y € R* | |y — z| < r}, we set

Quuix) = L
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Figure 12: G. H. Hardy and J. E. Littlewood in 1924

Definition 17. Let x € R®. If the limit

. .. v(B(xz,r))
rli%l+ Qrv(v) = rg%l+ A(B(x,r))

exists, we call this limit symmetric derivative of v with respect to A at the point
z and we denote it with % (z).

Remark 14. Let f € Ly(R") and vy such that vy(A) = [, fdX, then
fB( )fdA dv 1
: = Blen d )= lim ——r dX.
Qi) =3By ™ o @)= B ) /B(w,,,)f

dv
d

5 and also to

We are interested in conditions guaranteeing the existence of
the value of this quantity.

Definition 18. Let v and |v| be a complex measure and its total variation,
respectively. Let x € R?. We define

_ aup M B@:1)
M) =308 3B )

The function M, : RY — [0, +00] is called Hardy-Littlewood mazimal function
of v.
Theorem 23. The function M, is lower semicontinuous.

Proof. Tt is not restrictive to suppose that v is a positive measure. Proving that
M, is lower semicontinuous means to show that for all a > 0, the set

E={zeR"|M,(z) >a}
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is an open set. Let € E. Then M, (x) > « and consequently

v(Bl,r)
By~

Hence there exist » > 0 and t > o > « such that

v(B(x,r))

N\ ) /
NB(z,7)) >t>a > a.

Take now ¢ > 0 such that
n n t
(r+0)" <r"—,

so that, if |z — y| < d, then B(y,r + ) 2 B(z,r) and consequently

v(B(y,r +0)) = v(B(x,r)) > tANB(z,r))

> a'M)\(B(x, r)) = ' N(B(z,r +6)) = &’ X(B(y,r +9)).

,rn
Finally
v(B(y,r +9))
A(B(y,r +9))
i. e. we have proved that if |z — y| < §, then y € E, and consequently F is an
open set. O

>a > a,

Corollary 8. The function M, is Lebesque measurable.

Lemma 9 (Wiener). Let W be the union of a finite number of balls B(xz1,r1),
B(.’L'27r2), ey B({,L‘k,Tk).
Then there exists S C {1, 2,..., k} such that

i) ifi,j €S, with i # j, then B(x;,r;) N B(xz;,rj) = 0;
ii) W C U;eg B(xi,3r3);
iii) A(W) < 3" 3, o AM(B(w;,73)).

Proof. The fact that ii) implies iii) is a consequence of the homogeneity property
of Lebesgue measure. Let’s show i) and ii). It is not restrictive to suppose that
T >T > ... 2T,

Let n; = 1. We define
As={je{nm+1,...,k} ’ B(xp,,rn,) N B(zj,rj) =0}
If Ay =0, we take S = {n;}. If Ay # 0, we define ny = min A;. We consider
Az ={j € A ’ B(2n,,mn,) N B(zj,r;) =0}

If A3 = 0, we take S = {ny, no}. If A3 # 0, we define ny = min A3 and we go
on with this procedure up to obtaining

S={ny, no,...,np} with 1=mn; <ng<...<n, <k
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Figure 13: Norbert Wiener (1894-1964)

With such a construction, condition i) is verified. In fact, let n, < j <
Nit+1. Since n;41 is the minimum index h grater than n; such that B(xp, ) N
B(zp,,,Tn,,) =0 for every m = 1,...,i, we have B(z;,r;) N B(xn, T, ) # 0 for
at least one h in {1,...,i}, so that

B(x]ﬁ Tj) < B<xnm3rnh)
and condition ii) follows. O

We are now ready to show the main property of Hardy-Littlewood maximal
function.

Theorem 24 (Hardy-Littlewood). Let v be a complex measure. Let o > 0.
Then

A{z € RY | M, (z) > a}) < 3% é - V|(RY),

Proof. Let K be a compact set contained in E = {z € R? | M,(z) > a}
(remember that the set F is measurable). Let x € K C E. We know that
M, (z) > a. Then there exists r, > 0 such that

v[(B(z, 7))
A(B(z,72))

The set {B(z,r,) | € K} is an open covering of the compact set K. Let
B(xl7rl)7 B(.’lﬁgﬂ"g), .. ,B(.’En,T‘n>,

a finite subcovering and let S be the set of indexes given from Wiener’s lemma.
We have

n
K C | B(ai,ri) € | Bz, 3r)).
i=1 jes
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Consequently
ME) <Y AB(xj,3r5)) <373 A(B(wj, 7))
jes jes
1
ZM (zj,75)) < 3% = [v|(RY).
JES @

Since this last inequality holds true for all the compact sets contained in E, the
conclusion follows. O

Remark 15. Usually the Hardy-Littlewood theorem is stated in a slightly dif-
ferent way. In particular let f € L*(R?). Denote by Mjy the function

1

The result shown here above implies that, for all a > 0,
d a 1
A{z € RY [ My(z) > a}) <37 — - |l

It is possible to prove also that, if f € LP(R?), with 1 < p < 400, then M; €
LP(R?) and
[Mglle < Apllfllze,

where A, depends only on p and d (see [17, Ch. 1]).

7.2 Lebesgue’s points

Definition 19. Let f € L} (R?) (this means that, for all K compact sets in
R?, xx - f € LY(RY)). Let x € RY. x is said to be a Lebesgue’s point for f if

= 1 )d
f(@) vl |Ba:r/g” ¥

(from now on, given A € B, |A| will denote the Lebesgue measure of A).

Theorem 25. Let f € L'(R?).
Then, for almost all x € R?,

1

lim —— - dy = 0.

Proof. Let g € C§(R?). Then
1
|B(@,7)| J B2
<o =gl e [ ) - f@)
|B(z,7)| /B |B(z,7)| /B2,

Denoting by My_, the maximal function of f — g, i. e.

[f(y) — f(z)] dy

My_y(z) = sup —— F() — gv)| dy,

r>0 |(B($,7’)‘ B(z,r)
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we have

1

1

< My_ _—
- ! g(x)+ ‘B($7T)| B(z,r)

l9(y) — f(@)[dy.
We consider, on both sides of (13), the limsup, _,,+. We have

T'(z) = limsup |f(y) — f(2)] dy

r—0+ |B('1:5T)| B(z,r)

1
< My_y4(x) + limsup Bz, )] /B( : l9(y) — f(z)| dy.

r—0t

Remarking that the function y — |g(y) — f(x)| is a continuous function, we
obtain that

i 1 = x) — f(x
limsup o /B 1o~ @)y = lg(@) ~ )]

r—0+t

and, finally,
T(x) < My—g(z) + |g(x) — f(2)].

Take now ¢ > 0 and consider
{z e R? | T(z) > 2} C{x € R¢ | My_g(z) > ey U{z € R¢ | 1f(z) = g(z)| > e}.

From the Hardy-Littlewood theorem we know that

1
Mz € R | My_y(w) > e}) <37~ || = gl
and, from a direct calculation,
1
A{z e R | |f(z) — g(a)| > e}) < - I =l
Hence )
Mz € RY | T(2) > 2e}) < 3T+ D)2 — gl (14)

It is sufficient to consider a sequence (g, )., in CJ such that, for all n, || f—gn||z: <
1/n (see Theorem 26), obtaining, from (14), that, for all € > 0, we have

A{z e R | T(x) > 2¢}) = 0.
In conclusion, for almost every z € R?,

o -
Tlgng 1B . |f(y) — f(z)|dy = 0.
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Corollary 9. Let f € L} (R%).

loc
Then, for almost every x € RY,

1
lim —— dy = .
R TEa] e fly)dy = f(z)

Remark 16. Let v be a compler measure on B(R?). Suppose that v < ),
where \ is the Lebesgue measure. From the Radon-Nikodym theorem we know
that there exists fo € L (R?) such that, for all E € B,

Mm:LhM

From Corollary 9 we have also that, for almost every x € R,

1 v(B(z,r))  dv

ol = B8 B o PV T B 3B T ax

Hence, if v < X, then, for almost every x € R?, v possesses a finite symmetric
derivative with respect to A and the value of the symmetric derivative is exactly
the value of the Radon-Nikodym density function, i. e., for all E € B,

wmzé%mw.

8

8.1 Preliminary results (to distribution theory)
8.1.1 (Cy(Q) is dense in L'()

The following density result is considered (by H. Brezis) “un résultat d’intégration
qu’il faut absolument connaitre”.

Theorem 26 (Th. IV.3 in [3]). Let Q be an open set in R™. Let f € L*(f).
Let e > 0.
Then there exists ¢ € Co(2) such that

If —elleiq) <e,

i. e. Co(Q) is dense in L'(Q2), where Co(Q) denotes the space of continuous
functions ¢ such that the closure of the set {x € Q | o(x) # 0}, 4. e. the support
of p, is a compact set in €.

8.1.2 (y(Q) is dense in LP(Q), for all 1 <p < 400

The density result of the previous paragraph can be extended to LP, for all
1<p< +oo.

Lemma 10 (Lemma IV.2 in [3]). Let f € L}, .(Q). Suppose that, for all ¢ €
Co(Q),

/chp=0-
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Proof. Let us suppose that f € L'(Q2) and || < +oc.
Since Cp(Q) is dense in L*(Q), then, for all € > 0, there exists f. € Co(2)
such that

1f = fellLr) <e
Consequently, for all ¢ € Cy(Q),

|/ feol = |/ Dol < f = fellov@llellee @ <ellellre@-  (15)

Consider
K1={$€Q|f€($)26}, KQ:{xEQ’fE(x)S—s}

and K = K1 UK,y. K;, Ko and K are compact sets in 2. We use Uryshon’s
Lemma to construct u. € Co(Q2) such that

us(x) =1 on Ki,
lue(z)] <1 forall z€Q  and (@) '
us(x) =—-1 on Kos.

We have

[ [ur-ni+ [ini<es [ ani+ [ 1
Q Q Q Q\K K
—_——
<e
Remark now that

Josd= [ foue= [ fou- [

| / feue] <elucllp <ce, as a consequence of (15),
Q

and

\/ f5u5|§/ |fol <e- |2\ K], since, on O\ K, we have |f.| < e,
Q\K Q\K

so that

/ | fe] < |/ fausl"“/ feue| <e(1+1Q\ KY).
K Q O\K
——

——
<e <eO\K|

Finally

/|f|</|f fs|+/|fs|<6+/\ e [ 18] <20 ).
—_

\Q\K| e(1+]Q\K])

This last inequality implies that [, |f] =0 and consequently f = 0.
Suppose now f € L}, . and 2 open in R™. Consider

Q, = B(0,n)N{z Q| dist(z,C0Q) > %}
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From what we have already proved, we deduce that, for all n,

[ xa, =0,
and this conclude the proof. O
Theorem 27 (Th IV.12 in [3]). Cy(Q?) is dense in LP(Q), for all1 < p < +oo.

Proof. This result, in the case p = 1, is already known. Let 1 < p < +00. We
know that a consequence of the Hahn-Banach theorem is the following: let W
a subspace of a normed space Vand suppose that, for all ® € V', ®(W) = 0
implies ® = 0, then W is a dense subspace of V. Consider ® € (L?(Q2))". From
Riesz’s theorem we have that there exists g € Lp/, with % + % =1, such that

B(p) = [ g0
Q
Suppose that ®(¢) = 0 for all p € Co(Q), i. e. [, g9 = 0 for all p € Co(Q).

From the previous lemma we have that ¢ = 0, i. e. ® = 0. As a consequence
Co () is dense in LP(9). O
8.1.3 Convolution of functions

We collect here some (supposed) known results on convolution (see [3, Ch.
Iv.4]).

Theorem 28 (Th. IV.15 in [3]). Let f € LY(R"), g € LP(R"), with 1 < p <
+00.
Then, for almost every x € R™, the function

yr flz—ygly) isin LY(R")
and setting
frg(x)= A fle—y)gy)dy
we have f x g € LP(R™) and
If = gliee < [l llgllLe-

More generally, let 1 < p, q, 7 < +00, with % =
and g € LP(R™).
Then

5+ —1. Let fe L"(R")

f*ge LYR") and If = gllee < fllz-llgllLe (Young inequality).

Definition 20. Let f be a continuous function defined on §2, open set of R™.
We call support of f the closure, in Q, of the set {x € Q | f(x) #0}.

Let f be a L}, (Q) function. Consider W, the set of points of Q, having an
open neighborhood U in 2, such that [ is a. e. equal to 0 on U. We call support
of f the complementary set of W in €.

The support of f in Q0 is the smallest relatively closed set in  outside of
which [ is a. e. equal to 0.
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Theorem 29 (Prop. IV.18 in [3]). Let f € L'(R"), g € LP(R™), with 1 < p <
+00. Then
Supp (f * g) € Supp f + Suppg

Remark 17. Let f € L'(R™) with compact support (i. e. f is a. e. equal to 0
outside a compact). Let g € L} (R™). Then it is possible to define f * g in the
usual way and we have that f x g € LP(R™).

Theorem 30 (Prop. IV.20 in [3]). Let f € Co(R™) and g € L}, .(R™).
Then f g€ C(R™).
Let f € CqY(R™), with m > 1, and g € L}, (R™).
Then 9 of
C™(R"™ d — = —— xq.
fxgeC™(R")  an a:L,j(f*g) a0 "9
8.1.4 Test functions and mollifiers

We collect here some notions on test functions and mollifiers (see [8, Ch. 1.2]).

Definition 21. We set
Co(Q2) = {continuous functions with compact support contained in Q},

form e N,
Co* (1) = Co(Q) N C™ (),

and, finally,
D(Q) = C°(Q) = () C5* (D).

The elements of D(2) = C§°(Q) are called test functions.

Example 2. Let

{ et for t>0,
f R=>R, f@) =
0 for t<0.

It is possible to prove that f € C*°(R) and fU)(t) = 0 for all j and for allt < 0.
The function

u:R" - R, u(z) = f(1—|z|?),
is a test function, with Suppu = B(0,1).

Definition 22. Let p € D(R?), p > 0, Suppp C B(0,1) and [, p(z)dx = 1.
The set

(o [ €101 pele) = 23 (D)} = (po)ecron:

is called mollifier (or also family of mollifiers). Similarly we will call mollifier
(or family of mollifiers) the sequence

(p)n with  pa(a) = n'p(na).

Theorem 31 (Th. 1.2.1 in [8]). Let (p:). be a mollifier.
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i) Let u € L(Q), with u = 0 outside a compact set of Q.
Then there exists €9 > 0 such that, for all 0 < € < gq, pe xu € CF ().
it) Let u € Co(Q).
Then, for € going to 07, p. x u converges uniformly to u.
iit) Let u € LP(Q), with 1 < p < +00. Let
u(x) for ze€Q,
{ 0 for x & Q.

Then, for e going to 07, p. x4 converges to u in LP(Q).

Proof. i) Denote by K the compact set of Q outside of which the function u is
identically 0. Take g9 > 0 less than half the distance between K and the border
of Q2. Theorem 29 and Theorem 30 give the conclusion.

ii) Let £g > 0 as in the previous point, and let 0 < € < 9. Then
@) @) = [ )t —y) —uw) dy
Yy|se

Consider now that v is uniformly continuous, so that for all » > 0 there exists
d > 0 such that, if |1 — z2| < J§ then |u(z1) — u(z2)| < r. Consequently, if
e < §, for all x € Q,

lpe ¥ u(z) —u(x)] < /

ly|<e

pe(@)u( — y) — ulx)|dy < / pely)rdy =1

ly|<e
and the conclusion follows.

iii) We know that Cy(Q2) is dense in LP(£2) (recall that 1 < p < +o00). Fix
6 > 0 and consider w € Cp(Q2) such that ||u — w| 1ro) < 6. We have

[(pe * @) — ullLo(e)

< |[(pe * 1) — @l Lo (wn)

< |(pe * @) — (p= * )| Lo @n) + [|(pe * W) — Wl Lo @ny + W — ullLr ().
We consider now the fact that

[(pe * @) = (pe * w)||Le@ny = |lpe * (@ — w) || Lrwn) < llpellrllu — wl[Lr) <6,
and
[w —ullLr@) < 9.
Consequently
(o * @) — ull gy < [l(pe W) = ]l oy + 26

From the point ii) we know that p. * w is converging uniformly on 2 to w and
both p. *w and w are Cy(2) functions, so that p. *w is converging to w also in
LP(R™). This means that, if ¢ is sufficiently small,

1(pe * ) — ull Lo (o) < 30,
and the proof is complete. O
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Remark 18. Convolution with a mollifier is a good way to construct a C§°
function which value is 1 in a neighborhood of a certain compact K. Let’s show
how to do it.

Let K be a compact set in R™. Consider the covering {B(z,£) | v € K}
and extract a finite subcovering

B(l‘l,Eo), B(xg,ao), .. .,B(l‘N,&)).

Define

and finally consider p. * Xk, , with € < 9. We let as an exercise to verify that
Pe * XK, s a C§° and that its value is 1 inside each ball B(xj,¢e0).

We end this paragraph with a refinement of the previous density results.

Lemma 11. Let f € L}, (). Suppose that for all o € C§°(2), [, fe =0.
Then f =0.

Proof. Suppose first that f € L1(Q). Let ¢ € Co(Q). Let (p,)n be a mollifier.
Consider ¢,, = p, * 1. We have that, for all n, ¢, € C§° and ¢,, converges
uniformly to ). Remark that

(@)l =1 [ pu(wita =)yl < maxlol [ |pun)ldy < maxol.

Then
f(@)pn(z) 2 flx)y(x) almost everywhere,

and

[/ (@)pn ()| < max ||| f(z)].

We can apply the dominated convergence theorem and we have
| r@en@yas = [ rajota) da,

but we know that, for all n, [, f(z)pn(z)dx =0, so that [, f(z)i(x)dz. The
conclusion is a consequence of Lemma, 1.

Let now f be in L} .(2). The above part of the proof guarantees that, for
all compact set K, the function f - yx is identically equal to 0 and this implies
that f = 0.

O

Corollary 10 (Cor. IV.23 in [3]). C§°(Q?) is dense in LP(S2), for all 1 < p <
+00.

8.1.5 Partition of unity

We conclude the list of preliminary results with a partition of unity theorem.
We need, before, a property that we let as an exercise.
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Exercise 2. Let K be a compact set in R™. Let Q1 and Qo be two open sets in
R", with K C QU Qs and K; NQ; # 0, for j =1, 2. Show that there exists
two compact sets K1 C Q1 and Ko C Qs such that K = K1 U Ko,

Hint. First of all, if Q; N Qy = () then it is sufficient to take K; = K N Q;, for
j=1,2. If Q3 NQy # O, for every x € K, consider an open ball B(x,r;) such
that,

if x € K\ 4, then B(x,2r,) C Q,
if x € K\ Qg, then B(x,2r,) C 4,
if x € KN Q1 NQy, then B(x,2r,) C Q1 N Q.
{B(z,r;) | x € K} is an open covering of K. Take a finite subcovering
Bi(z1,71),...,Bi(zN,TN)
Define

K1:Kﬂ( U Bl(SCi,TZ‘)) and KQZKQ( U Bl(l’i,T‘i)).
;€N ;€02

Theorem 32 (Th. 1.2.3in [8]). Let K be a compact set in R™. Let Qq,...,Qn
be open sets in R™, with K C U§V=1 Q.
Then there exist o1, ...,on with, for all j, ¢; € C§°(Y;) such that,

N
Z%’(Jf)zl, forall ze K.
j=1
Proof. Using the exercise we can find K, ..., Ky compact sets, with, for all j,

K; CQjand U;K; = K. We consider, for all j, ¢, € C§°(£2;), such that ¢; =1
in a neighborhood of K;. We set

$1 :¢1,
2 = (1 — 1),
03 = Y3(1 —2)(1 — 1),

ox = Un(1l— n 1)1 —n_a) .. (1— ).

By induction, it is possible to prove that

o1+t +eon=1-(1—=v1)-...- (1 —2n),

and the conclusion follows. O
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9

9.1 Distributions
The content of this paragraph can be found in [8, Ch. 1.3] (see also

[15]).
9.1.1 Notations
Let a be a multi-index of lenght n, i. e.
a= (a1, ag,...,an) with «a; € N;

we set
la] = a1 4+ ...+ ap, al=ay! ...l

If «, B are two multi-indexes of lenght n, @ < 8 means
(€51 Sﬂla et O‘ngﬂna

and, in this case,

(5)_ Bl B
(0% _oq!(ﬁl—oq)! an'(ﬁn—an)'

Let z € R™ and a € N, we set

=t ann,
and finally
3!1*L d D% = ,'IQ\L 5 J i
N an o = (—1) oo (Hormander’s notation).

9.1.2 Definition of distribution

Definition 23. Let Q be an open set in R™. Let T : D(Q2) — R (or C). Suppose
that

i) T is linear, i. e. T(Ap+ pup) = XT'(¢) + pT' (), for all ¢, 1 € D(Q) and
A pER (orC);

it) for all K, compact set in Q), there exist Cx > 0, mg € N such that

T(9)] <Ck Y sup|D*p(x)l

| <mze zEQ

for all ¢ € D(Q) such that Suppy C K.

We call T distribution on the open set Q). The set of distributions on ) is
denoted by D'(Q).

Definition 24. Let T € D'(Q). If the constant my € N in condition i) can be
chosen independently of K, we say that T is a distribution of finite order, and
the minimal m for which this is valid is the order of T'. The set of finite order
distributions is denoted by Dr(Q)
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Figure 14: Laurent Schwartz (1915-2002)

Example 3. Let f € L} (). We define

loc

Ty : D(Q) = R (or C), o= Ti(p) = /Qfgo.

We have, for all compact set K,

ITr ()] < ( / 1) suplel for all p € D) with Supp € K.
K

Setting [ |f] = Ck, we have that Ty is a distribution of order 0. Remark that
iffl) f2 € Llloc(Q) and

Tfl ((P) = Tf2 ((,0) for all p € D(Q)7

then fi = fo (as functions of L, (), remember Lemma 11 in Lesson 9). Con-
sequently
Lie(Q) > D'(Q), [>Ty

is an injective functional. We can think that L} (Q) is a subset of D'(2) or,

loc
conversely, D'(Q) is an extension of L}, .(Q) (in early Soviet Union mathemat-

ical tradition, distributions are called “generalized functions”).
Example 4. Let xy € Q2. Consider
020 : D(Q) = R (or C), @ d20(0) = p(0).

Since
1020 ()] = lp(20)| < 1 sup lo|  for all ¢ € D(),
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where the improper function §(z) is defined by

[m S(x)de =1
"7 8(@) =0 (for 2 £ 0).

Figure 15: From page 64 of Dirac’s book [5]

0z, s a distribution of order 0. We call it Dirac’s delta at the point xo. We
show now that 8., is not a distribution obtained from a function in L} ().
Suppose, by contradiction, that there exists f € L}, .(Q) such that

&a@:w@mzljwznw> for all o € D(S).

Consider » € D2\ {zo}), then
0=vlm) = [ fo=Tyw)
\{zo}

and consequently f = 0 almost everywhere in Q\ {xo}. This means that f =0
almost everywhere in Q 4. e. Ty =0 and this a contradiction.

Example 5. Consider Q =10, 1] C R and o € Q. We set, for ¢ € D(Q),

dip,, () = ¢ (wo)-
We have that dip,, € D'(2) with order equal to 1.

Example 6. Consider Q =10, 2[ CR. We set, for ¢ € D(Q),

+oo
T(e) = 3¢9 () = P+ ¢ (1/2)+ 9" (1/3) + o+ D1 /m) + .
j=0

T is a distribution of infinite order. In fact let K be a compact set in |0, 2.
There exists it € N such that K C [1,2 — 1] If o € D(Q) with Suppy C K,
then

T(6) = 3 ¢ ()
=0

and consequently
_— |
IT(p)| < Z sup || for all ¢ € D(Q) with Supp e C K.
— Q
7=0

Obviously the index n depends on K and cannot be chosen independently of it.

Remark 19. The set D'(Q) is a vector space with the addition and multiplica-
tion by scalars given by

(AT + uS)(p) = A T(p) + p- S(p).
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On the space D'(Q) we shall always use the weak topology, i. e., given a sequence
(T;); in D'(92),

T; RN will means T;(p) SN T(p) for all ¢ € D(R).

A consequence of the Banach-Steinhaus theorem is the following: given a se-
quence (Tj); in D'(Q) such that, for all ¢ € D(Q), there exists, in R or C,
lim; T; (), then the functional

@ = lim Tj(p)
J

s a distribution T' and lim; T; = T in the weak topology.

Example 7. Let (pn)” be a family of mollifiers on R (remember: p € D(R),
p >0, Suppp C | . Jgp(x)de =1 and p,(x) = np(nzx)). Consider the
sequence of the dzstmbutwns assoczated to the functions py, i. e. (T, )n. We
have

T,, — do.

In fact, for ¢ € D(R),

+oo +oo +oo s
T, (¢) = / pult)p(t) dt = / np(nt)p(t) dt = / p(s)o( ) ds.

—o0 —o0 —o0 n

We have

S n

p(s)p(-) — p(s)p(0)  for all s € R,

and

s
[p(s)e( ) < lp(s)llell =
The dominated convergence theorem gives
—+oo +oo
lim 7, (¢) = lim / 5y ds = / p(5)p(0) ds = (0) = 6o(¢0).

Looking at the behavior of the sequence (pp)n, i e. functions with support in
[—L, L], with value in 0 equal to np(0) which goes to +o0o and with integral

n’

equal to 1, this convergence is the reason why, very naively, some one says that
Dirac’s delta is a function with value 0 outside of 0, with value 400 in 0 and
with integral equal to 1.

We state now a theorem with a characterization of the distributions.

Theorem 33. Let T : D(Q2) = R (or C). Let T be a linear functional. The
following two conditions are equivalent

i) T is a distribution.
i1) For every sequence (py)n in D(Q) such that

a) there exits a compact set K C € such that, for all n, Supp ¢, C K,
b) for all « € N*, D%p,, — 0 uniformly,

we have that T(p,) — 0.
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Proof. i) = ii). Let T be a distribution. Consider a sequence with the prop-
erties a) and b). Since T is a distribution, there exist Cx > 0, mg € N such
that

T(pn)] <Cx Y sup|Dpp(x)].

lal<mx zeQ

Then b) implies that 3, <, . Supq [D%pn| 5 0 and consequently

T(pn) = 0.

i) = ). Suppose by contradiction that T is not a distribution. Then there
exists a compact set K such that, for every C' > 0 and m € N there exists a test
function ¢ € D(Q) such that

Suppy C K and T ()| >C Z sup | D%y|.

la|<m

Choose C' = m = j. There exists ¢; € D(2) such that

Suppp; €K and  [T(p;)| >4 > sup|D%g.
jal<

Consider

oy p;(z)
Ui = G g D]

We have, for all j, Suppv; C K and, if |5] < j,

sup,eq | D7p;(z)|  _ 1
sup | DAy (z)| = —Peeal D705@)| - 1
z€eQ J Z|a|§j supq [D*p;| ~ j
Hence, for all 3,
sup | DPy;] -1 0.
Q
We have proved the sequence (1,); satisfies a) and b) but, since, for all j,
|T(¢;)| > 1, the condition %) is not verified, and this is impossible. O

Definition 25. Given a sequence (pn), in D(Q) such that
a) there exits a compact set K C § such that, for all n, Supp ¢, C K,
b) for all o« € N*, D*p,, -5 0 uniformly,

we will say that (¢n), is converging to 0 in the sense of D.

9.1.3 Topology of D(Q) (see [19])

The idea is the following: we would like to put a topology on D(2) in such a
way that D/(Q) is the dual space, i. e. the space of linear functionals defined
on D(Q) which are continuous with respect to this topology. This is possible
but not easy, and, for our purposes, not so useful. Actually in applications, it
will be much more useful the definition we have given at the beginning or the
characterisation given in Theorem 33.

Let 2 be an open set in R™. Let m € N. Consider the space C™(£2) consisting
of all the continuous differentiable functions on €2, with continuous derivatives
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up to the order m. On C™()) we put the topology of uniform convergence on
compact subsets of €2, for the functions and for all the derivatives up to the
order m. Consider a sequence of open relatively compact sets (€2;); contained
in , such that
ﬁj Q Qj+1 and UQJ = Q.
J

The cited topology is generated by the countable set of seminorms

pi(f)= D sup|Df|

jal<m ¥

and C™() is a Fréchet space (complete and with a topology that can be ob-
tained from a metric). U is a neighborhood of 0 in C™(Q) if there exists jo € N
and there exists r > 0 such that

{f € C™Q) | pjo(f) <r} CU.

Similarly, considering C*°(2) = N,,C™ (), we take the topology of uniform
convergence on compact subsets of €2, for the functions and for all the derivatives.
This topology is generated by the countable set of seminorms

P => sup|D*f].

leef <5~

and C*(9) is a Fréchet space. It will be denoted by £(2). U is a neighborhood
of 0 in £(Q) if there exists jo € N and there exists r > 0 such that

{f € C=() | pjp(f) <r} CU.

Consider now a compact set in 2. We denote by C5°(K) the set of C>°(Q)
functions having support contained in K. The topology of C*(Q) induces on
C§°(K) the topology of uniform convergence of all derivatives, i. e. the topology
generated by the family of norms

g;(f) =) sup|[Df].
laj<i ¥

Remark that, on C§°(K), ¢; is a norm and no more a seminorm, as p; on
C>*(Q). C§°(K) is a Fréchet space. Consider finally

+oo
Coe(@) = U 657 (@)

The correct topology to consider on C§°(Q2) is the so called inductive limit
topology from the topologies of the spaces C§°(£);), i. e. the maximal locally
convex topology such that, for all j, the immersion

C(y) = C(Q), o

is continuous. This topology makes C§°(§2) complete but not metrizable (this
last thing can be seen using Baire’s theorem). It can be proved that a linear
functional T on C§°(2) is continuous with respect to this topology if and only
if T is a distribution according to Definition 1.
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9.1.4 Radon measures (see [2, Ch. 4])

Let 2 be an open set in R™. Consider Cy(f2) the set of continuous functions
having compact support on 2. We call Radon measure a linear functional

w:Ch(2) = R (or C)
such that, for all K compact set in €2, there exists Cx > 0 such that

[u(f)] < Cxsup|f|  forall f e Co(€2) with Supp f C K.
Q

It can be proved that u is a Radon measure if an only if 1 is linear and continuous
with respect to the inductive limit topology from the topologies of the spaces
Co(Q;), i. e. the maximal locally convex topology such that, for all j, the
immersion

Co(Y) = Co(R), [ f

is continuous. It can also be proved that if p is a Radon measure then u| p s
a distribution of order 0 and, conversely, T is a distribution of order 0 if there
exists a Radon measure p such that ;L| p="T.

Definition 26. Let v be a complex measure on B(SY), the Borelian sets of Q. v
is said to be a regular Borelian measure if, denoting by |v| its total variation,

i) |v| is finite on compact sets;
it) for all B € B(£2),

sup{|v|(C) | C' compact,C C B} = |v|(B) = inf{|v|(A) | A open, A D B}.

Theorem 34 (Riesz’s representation theorem, see Th. 6.19 in [14]). p is a
Radon measure if and only if there exists v reqular Borelian measure such that,

for all [ e CQ(Q),
M = dv.

Exercise 3. Let T be a linear functional from D(Q) to R. Suppose that, for all
© € D(Q), if p >0 (this means that, for all x € Q, p(x) > 0), then T'(¢) > 0.
Show that T is a distribution of order 0.

Hint. From the positivity of T' we deduce the monotonicity, i. e. if ¢, ¥ € D(Q)
and for all z € Q, p(z) > ¥(z), then T(p) > T(¢). Let now ¢ € D(Q) and
denote by K its support. Take x € D(2) such that, for all z, 0 < x(z) < 1
and such that y is identically equal to 1 in a neighborhood of K. Then, for all
x €,

—max|[¢| - x(z) < ¢(x) < max|¢| - x(z),
so that

T(—max || - x) < T(¢) < T(max|¢| - x),

and then
IT(¢)| < T(x) max|g|.

Setting Cx = T'(x), the conclusion follows.
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9.1.5 Local character and support of a distribution

The following results says that it is sufficient to know the behavior of a distri-
bution in a neighborhood of each point, to know its behavior in general.

Theorem 35. Let Ty and Ty be two distributions in D'(Q). Suppose that, for
all xg € Q, there exists a neighborhood Uy of xg such that, for all p € D(Q), if
Supp ¢ C Uy, then T1i(p) = Ta(p).

Then Ty = Ts.

Proof. Let ¢ € D(2). Denote by K the support of . We know that, for all
x € K, there exists an open neighborhood U, of x such that, for all ¢ € D(Q),
if Supp ¢ C Uy, then T1(p) = T(y). Form the open covering {U, | = € K} we
extract a finite subcovering of K,

Uy, Us,...,.Un.

We use now the theorem on partition of unity (Theorem 32). There exist

©1,...,n in D(Q), with, for all j, Suppy; C Uj, such that, for all z € K,
>_;¢j(z) = 1. Then

Tv(y) =Ty, ¢;5)

=T1(32; vej)

= Zj T (7/’903')

=2 To(¥y;)

=132, ¢¥))

=T, ;) =T (V).

with  Supp vy, C U;

Now we define the support of a distribution.

Definition 27. Let T € D'(Q). Let x € Q. We say that x ¢ SuppT if there
exists a neighborhood U of x such that, for all ¢ € D(Q), if Suppy C U, then
T(p) = 0. SuppT is the smallest relatively closed set in Q outside of which T
is identically equal to 0.

Remark 20. Let f € C(Q2). Then f € L}, .(Q) and consequently we can con-

loc
sider the distribution Tt associated to f. The support of f as continuous func-

tion coincides with the support of f as L}, function and with the support of T
as distribution.

10

10.1 Derivative of a distribution, multiplication of a dis-
tribution with smooth function

The content of this paragraph can be found in [8, Ch. 1.4] (see also

[15]).
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La plus belle nuit de ma vie

Jai toujours appelé cette nuit de découverte ma nuit merveilleuse,
ou la plus belle nuit de ma vie. Dans ma jeunesse, j'avais souvent des
insomnies de plusieurs heures et ne prenais jamais de somniferes. Je
restais dans mon lit, lumiére éteinte, et faisais souvent, évidemment
sans rien écrire, des mathématiques. Mon énergie inventive était décu-
plée, j'avangais avec rapidité sans ressentir de fatigue. J'étais alors tota-
lement libre, sans aucun des freins qu'imposent la réalité du jour et
I'écriture. Aprés quelques heures, la lassitude survenait quand méme,
surtout si une difficulté mathématique se présentait obstinément. Alors
je m'arrétais et dormais jusqu'au matin. J'étais fatigué tout le jour sui-
vant, mais heureux ; il me fallait souvent plusieurs jours pour tout
remettre en ordre. Cette fois-1, jétais sr de moi et plein d'exaltation.
Dans ce genre de circonstance, je ne perdais pas de temps pour tout
expliquer par le menu a Cartan qui, comme je l'ai dit, habitait a c6té.
11 était lui-méme enthousiasmé : « Bon, voila que tu viens de résoudre
toutes les difficultés de la dérivation. Désormais, plus de fonctions sans
dérivées », me dit-il. Si une fonction est sans dérivée (Weierstrass), c'est
qu'elle a des dérivées qui sont des opérateurs mais ne sont pas des
fonctions.

Il existe une propriété tout a fait essentielle des distributions, donc
des opérateurs : sur tout ouvert relativement compact, tout opérateur
est somme finie de dérivées (naturellement au sens des opérateurs) de
fonctions continues. C'est un théoréme de finitude comme il en existe
un grand nombre dans cette théorie. J'en ai donné plusieurs démons-
trations dans mon livre des distributions. Je ne parvins pas a trouver
de tels théorgmes, que d’ailleurs je ne soupgonnais pas, avant plusieurs
mois, & Grenoble.

Figure 16: Page 243 of Laurent Schwartz’s autobiography [16]

10.1.1 Derivative of a distribution

Let f € C'(Q). We notice that both f and 9,,f are in L}, (), so we can
consider the associated distributions, i. e., for ¢ € D(Q),

To)= [ fo amd Tose)= [ 000

To,,1(0) = [ 00,010 = = [ 0r,0) = ~Ty01,0)

integration by parts

Consequently, if you want that a (to be defined) derivative, with respect to
x;, of the distribution T, associated to f, behaves like the distribution Tawj I
associated to the classical derivative of f, you have to set

(0, T5)(p) = =T§ (0, 0)-

Definition 28. Let T € D'(Q2). For all p € D(QY), we define

(awj T) ((P) = _T(awj QO) :
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We have that 0,,T € D' (), in fact 0,,T is linear and
(00, T) (@) = IT(00,0)| < Cxc Y sup D"y 0)| <O Y sup|DPy
laf<mx IBl<mk+1

for all ¢ € D(Q) such that Supp ¢ C K. Remark that, if T is a distribution of
order m, then 0., T is a distribution of order less or equal to m + 1.

Example 8. Let H be the Heavisde function, i. e.

1 for x>0,
H:R — R, H(z) =
0 for x <O.

1 H(x)

-2 -1 0 1 2

HisalLl

1oc Junction. We denote by H also the associated distribution, i. e.

+oo
H:DR) — R, H(@):/RH@:/O o(t) dt.

Let’s compute the derivative of H as a distribution.

+oo
H'(p) = —H(g) = — / (1) dt = — ()] = p(0) = dolp),

i. e. H =g, the derivative of the Heaviside distribution is Dirac’s delta at 0.
Remark that the Heaviside function possess finite classical derivative equal to 0
for all x € R\ {0}. The derivative in the sense of distribution is more precise:
Dirac’s delta at 0 coincide, as distribution, to 0 in a neighborhood of each point
of R\ {0}, but gives a precise information also at 0.

Exercise 4. Consider, for all ¢ € D(R),

PVi(p) = lim ¢lz) dx.

e—0+ |z|>e X

Prove that PV is a distribution of order <1 (we call it principal value of %)
Denote by Tog the distribution associated to the L}, .(R) function x + log |z|.
Prove that T},, = PV1.

Hint. Let ¢ € D(R) with Supp ¢ C [-M, M]. Remark that in this case

PVi(p) = lim ) 4o

e—0+ e<|lz|l<M T

Remarking that

1
/ @dngo(O)/ —dx =0,
e<lz|l<M T e<|z|l<M T
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Figure 17: Olivier Heaviside (1850-1925)

we have that

o) o plx) —¢(0)
/55x|§M z /s§|z|5M z

Consider now the function

We have that ¢ € C([-M, M]). Consequently

M
lim #lz) dx = lim Y(x)de = / Y(x) dx,
e<|z|<M —-M

e=0t Jigi>e T e—0t

so that the limit exists and it is finite. Moreover

M
[, F@d oM s Wl ad s (] < suplel)
-M

sup
[— M, M] [-M,M
We obtain finally

|PVi(p)| <2Msup|¢| forall ¢ € D(R) with Suppy C [-M, M],
g R

1. e. PV; is a distribution of order < 1.
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Counsider, for ¢ € D(R) with Supp ¢ C [-M, M],

M
Tiog () = /  (log a)g(a) do.
We have o
T}, (0) = ~Tiog() = — / (g o' (2) do.

Since the function x — (log |z|)¢’(x) is a L! function, we have that

M —€ M
[ olel)e'(@)de = tim ([ (oglel)e'(@)da+ [ (loglal)g! () o).

-M

Now

/—6(10g |$|)(p/(x) dr = (log |g|)s0(_€) _ /__1; ‘P($> de

-M €T
and

xT

M M
| toglel) (@) do = —(rog eote) — | 2@) 4,
We finally obtain

M
: p(x)

[ oglal)y (@) do = tim [log e o(-2) — () - [ P

-M e—0t e<|z|<M T

and the conclusion follows. Remark that the second part of the exercise already

contains the first part, i. e. if one proves that PV. is the derivative of a

distribution of order 0, then PV is immediately a distribution of order < 1.

1

Remark 21. The function x +— = is not a L}, .(R) function, so that it is not

possible to define a distribution associated to this function. The distribution
PV is the correct substitute.

Exercise 5. Consider, for all ¢ € D(R),

0
FP. (p) = lim ( &f)dx—ZM).
Z e—0+ lz|>e T 5
Prove that FPJ%2 is a distribution of order <2 (we call it finite part of m%)
Prove that PV{ = —FP,_.
The following result shows that, at least locally, a distribution is always a
derivative (of order mn, in the sense of distributions) of a distribution associate
to a bounded function.

Theorem 36 (“Structure locale d’une distribution” Th. XXI of [15]). Let T €
D'(Q). Let w be an open set in Q such that @ is a compact in Q (i. e. w is a
relatively compact open subset of Q).

Then there exist m € N and f € L>(w) such that

T=D""Dy"...D)'Ty in w,
i. e., for all ¢ € D(w),

T(¢) = ()" T (DY D ... Dye) = (1™ [ f@)DP DY ... Dyola) da,
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Proof. Suppose that

f(z)DT' Dy ... D p(x)dx  for all ¢ € D(w). (16)

=
)

I
T
=

3
3
T

Consequently

1) < flz=c) [ IDPDF .. DY ()] do

w

i. e. there exists C' > 0 such that
T (p)] < C/ |DI"DY ... D™ p(x)|dz  for all ¢ € D(w). (17)

We prove now that (17) implies (16). In fact, suppose (17) holds. Let’s define
V ={D"...DJ'¢ | ¢ € D(w)}
and consider the functional
V — C, DT ...D o — T(p).

Thinking at V as a subspace of L (w), we have that the above functional is linear
and moreover condition (17) implies that it is continuous with respect to the
norm of L!(w). We use now Hahn-Banach theorem. There exists ® € (L!(w))’
such that

(DT ...D"p) =T(p) for all ¢ € D(w).

From Riesz’s theorem we have that there exists g € L (w) such that

O(v) = / gv  forall ve L'(w).

Consequently
T(p) =®(DT"...DMp) = / g(x)DT ... D™p(x)dx for all v € L' (w).

Taking f = (—1)""g, we have (16).
To conclude the proof it is sufficient to show (17). T is s distribution, then,
in particular, there exist Cz > 0 and mgz € N such that

T ()| < Cxm Z sup |D%p| for all ¢ € D(2) with Suppy C @.

la|<mz

and consequently there exist C' > 0 and m € N, such that

IT(p)| <C Z sup | D%p| for all p € D(w).

|a|]<m

Since w is relatively compact, there exists a > 0 such that the diameter of w is
less or equal than a. Consequently, if ¢ € D(w), then

D%P(z) = /jn Oy (D*P(t,2') dt
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and hence
sup |[D| < asup DY DY
w w

Using several times this argument we obtain that, for some C' > 0 and F,

Z sup |D%p| < C'sup | DY ... DEw|.
w

la]<m
Consequently

|T(p)| < Csup |D¥F...DEp| for all p € D(w). (18)
Finally, remarking that, for v € D(R™),

1 Ty
1/)(37):/ / Opy -0, (Y1, yn) dyr - . . dyn,
—o00 —00
we have that, for ¢ € D(w),
sup|DY ... DFy| < / |DEFL . DE+Ly). (19)
Putting together (18) and (19) we deduce (17) with m =k + 1. O

10.1.2 Multiplication of a distribution with a smooth function

Definition 29. Let T € D'(Q) and a € C*(2). We define, for all p € D(Q),

aT(¢) = T(ap).
We have that aT € D'(Q), in fact aT is linear and
|aT ()| = |T(ap)| < Cx Y sup|D*(ap)|
laf<mx
for all ¢ € D(Q) such that Supp ¢ C K. Remarking now that
D*(ayp) = Z (g) D> FaDPy (Leibniz formula),
B«

then
« _
sup |D*(ap)| < Z( )sup|Da S| sup| DA,
Q iz 8) K Q

and consequently
aT(p)| < Cx Y sup|DY|,

la|<mk

where C depends also on supy |D%a| for all o such that |o] < mg.
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Example 9. Let T € D'(R) and a € C*(Q), with Q C R. We want to compute
(aT)'. Only for this time we will denote by T'Y) the derivative of T in the sense
of distribution.

(@T)D(p) =—(aT)(¢')
= —T(ay")
~T((ap)" —a'p)
—T((ap)') +T(a'p)

~ 7 <d>< ?) -+ Tla'p)
)+

@)(p T)(¢)

= (aT (a/
= (aT"D +a'T)(p)

so that (aT)D = aT"D 4+ a/T, i. e. Leibniz formula remains valid also in the
case of the multiplication of a distribution with a smooth function.

The following result shows that if a continuous function has a derivative in
the sense of distributions which is another continuous function, then the function
is classically differentiable and the classical derivative coincides with that one
in distributional sense.

Theorem 37 (du Bois-Reymond). Let f, g € C(S2). Suppose that 0., Ty = Ty,.
Then f is differentiable, in the direction of x;j, and 0., f = g.

Proof. Suppose first that f, g € Co(2). Let (py,)n be a mollifier. We have
f*pn —f and g¢*p, — ¢ uniformly

and

Frpon(@)= | FW)on(@ = y)dy =Tr(pn.a),

g* pn(r) = / 9Y)pn(x —y) dy = Ty(pn,z),

where ¢, . (y) = pn(z — y) (here we have to think at = as a parameter). By
hypothesis,

(893]' Tf)(gpnw) = Tg(‘pn,w) (20)
Remarking now that

6yj @n,x(y) = _(aszn)(x - y)7

we have
(aﬂﬂj Tf)(%"n,m) = Tf(_ayj Pn, z)

= (83:Jpn( —))
= / fly x]pn r—y)dy
fWpn(z —y) dy)

Rn

= 8a:j (f * pn)(l’)
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Condition (20) implies that
O, (f * pn) (@) = g * pn ().
Consequently
f*pn — f and Oz, (f * pn) % ¢ uniformly,

the conclusion follows from a classical result (see e. g. [6, Teor. 13.3]).
Suppose now that f, g € C(2). Let g € 2 and let x € D(Q) such that
Xx(z) =1 in a neighborhood of xzy. We know that

8y, Ty = T

We have
Ou;(Tyy) = 9u;(XTy)

= XTy + (0u;xX)T
= Txg+(3mj x)f

Remark now that the functions x f and xg + (9., x)f are continuous functions
with compact support in €2, so that from the first part of the proof, the function
xf is differentiable with respect to the direction of z; and its partial derivative
is the function xg + (0z;x)f. Finally in the neighborhood of x¢ in which the
function x is identically equal to 1 we have

xf=f and  xg+(0,X)f =9

The theorem is proved.

11

11.1 Distributions with compact support
The content of this paragraph can be found in [8, Ch. 1.5] (see also

[15]).

Remark 22. Consider ), open set in R™. Suppose

Q= UQj with €, open, ﬁj compact and ﬁj C Qjyq forall j.
J

Consider f € C*(Q) and, for j € N,

Bi(f) =Y sup |[D*f(x)|- (21)

jal<j *E
D; 18 a seminorm, i. €.

pi(Af) = AB;(f)  and  pi(f+g) < p;i(f) +Di(9)
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We denote by E(QY) the Frechét space C°()) with the topology generated by the
countable family of seminorms (p;);.

Let S : £E(Q) — R (or C) be a linear functional. S is continuous if there
ezists jo € N and Cy > 0 such that

IS(H)I < Copjo(f)  forall feC>(Q). (22)

We denote by E'(Q) the dual space of E(Q).
We remark that S € £'(Q) if and only if there exists K compact set in Q and
there exist Cx > 0 and myg € N such that

S(HI<Ckx Y 832|Daf(x)| for all fe&(Q). (23)
ol <mx

In fact (21) and (22) imply (23) with K = Q;,, Cx = Co and mg = jo.
Conversely, if (23) holds, there exists jo such that mg < jo and K C Qj,.
Consequently

IS < Crpjo(f)  forall feC™(Q).

The next result shows that the subspace of distributions with compact sup-
port in § can be identified with £'(£2).

Theorem 38. Let T € D'(Q) and let Supp T be a compact set in .
Then there exists a unique S € E'(Q) such that S|D(Q) =T.

Conversely let S € £'(QY).
Then S|D(Q) is in D'(Q) and it has compact support.

Proof. Let T € D'(Q) and let SuppT be a compact set in Q. Let x € D(Q)
with x = 1 in a neighborhood of Supp 7. We define, for all f € £(Q),

S(f) =T0f)-

We show that S is in £'(€2). In fact S is linear and, considering K’ a compact
set in ) containing the support of x, we have

IS =T < Crr Y sup [D*(x(2)f(x))]

and
sup [D*(x(x)f(x))| < C Y sup |D?f(x)],

e B<a reK’

where C depends on x but not on f. Consequently

1S(f)| < Cx Z sup/|Daf(x)\ for all f e &£(Q).

rzeK
We show now that S(¢) = T'(¢) for all ¢ € D(2). In fact

S(p) =T(xp) =T(p) +T((x — D)

but, remarking that the function  — x(z) — 1 is identically equal to 0 in a
neighborhood of Supp T, we have T'((x — 1)) = 0, for all ¢ € D(Q2) (for this
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last fact, see Exercise 5 below). Finally we prove that S is unique. Suppose
that S1, So € £'(2) such that

Si(p) = S2(p) =T(p)  for all p € D(Q).

We know that, for j = 1, 2, there exists K; compact set in £} and there exist
C; > 0 and m; € N such that

1S; (I < Cj Z sup |D*f(x)] for all f e &E(Q).

Si(f) = Sixf+ 1 =x)f)

= S (xNH+5(A-x)f)  with Si((1-x)f) =0
= Si(xf)

)
= S(xf)+ 50 -x)f)  with S3((1-X)f) =0

Conversely, let € £'(2). Then S is linear and there exists K compact set in
) and there exist Cx > 0 and mg € N such that

IS() <Ck Y sup|Df(z)] forall feE&(Q).

la|<mz zeK

Consequently, for all K compact set in Q,

|S(p)] < Ck Z sup |[D%p(z)| for all ¢ € D(Q) with Suppy C K,

|| <mx zeN

i e. S|D(Q) € D'(Q) and if K N Supp ¢ = 0, then S(p) = 0. i. e. the support
of S|D(Q) is contained in K. O

Remark 23. Let Q be an open set in R™. D(Q) is dense in E(2). Remember
that U is a neighborhood of 0 in E(Q) if there exists jo € N and there exists
r > 0 such that

{f e C®Q) | pjo(f) <r} CU.

Consider a sequence of functions (xn)n in D(), such that for every n, x, €
D(Qj41) and Xy, is identically equal to 1 in a neighborhood of Q,. Given f €
E(Q) and given W, a neighborhood of f in the topology of £(Q), we see that
there exists n such that, for alln >n, x, - f € W.

Remark 24. Let (f,), be a sequence in E(Y). The sequence will converge to 0
in the sense of E(Q) if, for all k € N,

lim i (fa) = 0,
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i. e., forallk € N,

Z sup |D*f,(z)| = 0.
laf <k €

If a sequence (pp)n in D(Q) converges to 0 in the sense of D(QY), then it con-

verges to 0 also in the sense of £(£2).

11.2 Solutions of some exercises

1) Let h be a function in C'([0,1] x R). Let g : R — R such that

1
g(z) z/ h(s,z) ds.
0
Prove that g is in C'(R) and

' oh
o) —
g'(x) = ; aT/(sw) ds.

Hint. Let (t,), be a sequence in [~1, 1], such that t,, — 0. Denote by

h(s,x +t,) — h(s,x) .

fu(s) = t

We have
fa(s) = S(s,z) pointwise,

oh
|fn<5>| < max |%<U’y)|

oe[0,1]
yele—1,0+1]

<C

Using the dominated convergence theorem we have

— 1 —
n tn n Jo tn
1
= lim/ fn(s)ds
nJo
L on
=, %(s,x) ds.

Since this is valid for all the sequence ()., the conclusion follows.

2) Let 9 be a function in C*°(R). Let g : R — R such that

v =90 oy
x

Y'(0) if x=0.

Prove that g is in C*°(R).
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Hint. We have

1
0

¢(x)—¢(0)=/;¢’(t)dt=/ 2 (s) ds,
so that .
o(z) = / o/ (sz) ds.

Define now h(s,x) = ¢’(sx). Using recursively Exercise 1, we obtain that g is
C* with

1
g(")(m):/ s (sz) ds.
0

3) Find all the distributions in T' € D’(R) such that = - T = 0.

Hint. Remark that if ¢ € D(R) and Supp ¢ € R\ {0}, then
z-T=0 implies T(p) =0.

In fact, if Supp ¢ C R\ {0}, then the function x @ is in D(R) so that
p(x)
1(e) = T2y~

Consequently, if z - T'= 0, then SuppT C {0}.
Consider now x € D(R), with x equal to 1 in a neighborhood of 0. Let
© € D(R). We have ¢ = x¢ + (1 — x)¢. Then

T(p) =T(xe)+T((1-x)p) (but T((1 - x)¢p) =0)
=T(x - (p(z) —¢(0)) + T(x - (¢(0)))
=T(x- ple) — (0) @) + ¢(0)T(x)

N
€ C>(R) (Ex. 2)

It is easy to see that T'(x) does not depend on Y, in the sense that taking
x1 and x2 in D(R), with x; and x2 equal to 1 in a neighborhood of 0, then
T(x1) = T(x2). We can conclude that

if -T=0 then T = ¢dy, for some c € R.
4) Find all the distributions in T € D’(R) such that = - T = T3.
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Hint. The problem, at level of functions, should be “find all the functions f(x)
such that x f(z) = 17. The solution would be, roughly speaking, f(z) = % This
suggests to try with PV1. We have

x - PVi(p) = PVi(zp(z)) = lim z(@) dx
® ® =0t Jigl>e T
= lim o(x) dxz/ 1-o(x)dx =Ti(p),
e—0+t |z|>e R

l"PV; :Tl.

The problem is now to find all the the possible distributions with such a property.
Suppose that there exists another S such that

x-S ="1T.
We have
r-PVi—z-S=T—T =0, i e. z-(PVy—5)=0.
Using Exercise 4 we can conclude that

if - T=1T then T = PV1 + cdg, for some c € R.

5) Let T € D'(Q) and let ¢ € D(Q) such that
Supp 7 N Supp ¢ = 0.

Prove that T'(¢) = 0.

Hint. Let x € Suppy. Then z ¢ SuppT. Then there exists r, > 0 such
that, for all ¢ € D(Q), if Suppy C B(x,rs), then T(¢)) = 0. Remark that
{B(z,7:) ’ x € Supp ¢} is an open covering of the compact set Supp . Let

B(z1,71),...,B(zNn,TN)

be a finite subcovering and let

,(/)17"'7,(/)]\/'

a partition of unity of Suppe, i. e. forall j =1,...,N, Suppy; C B(z;,r;)
and, for all z € Supp ¢, >, ¢¥;(x) = 1. Then

T(e) = T(p D 5) =T wwy) = D_Tlpvy) =0.
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12

12.1 Convolution of distributions

The content of this paragraph can be found in [8, Ch. 1.6] (see also
[15]). We begin defining the convolution of a distribution with a test function.
Also in this case we will use the analogy with the behavior of the convolution
of functions. If we take f € L} (R™) and ¢ € D(R"), then

loc
(fxp)(x) = - fWe(x —y)dy =Ts(2),  where ¢, 1 y = @(x —y).

This suggests the following definition.
Definition 30. Let T € D'(R™) and ¢ € D(R™). For all x € R™, we define

(T*xp)(x) =T (), where Yy : y — o(x —y).

We have seen in the preliminary results that, if f € L}, (R") and ¢ € D(R"),
then f x p € C°(R™) and

Do, (f %) = [+ (Dz,0).
A similar result holds for the distributions.

Theorem 39. Let T € D'(R™) and ¢ € D(R™).
Then T x ¢ € C*(R") and

Dy (T x¢) = (Dg;T) %0 =T % (Dy,; ).

Proof. Let’s show only that T« is a continuous function, letting the other part
of the proof as an exercise. Fix Z and consider (z,),, a sequence in R™, such
that lim,, z,, = Z. Consider, for all n € N,

Un(y) = @(zn —y) and ¢(y) = o(Z —y).

Since the functions 1, are translations of the compactly supported function
y — p(—y) and the sequence (), is bounded, then there exists a compact set
K such that, for all n, Supp#, C K. On the other hand, using the uniform
continuity of ¢ and its derivatives, we have that 1, — 1 uniformly with all
its derivatives. This means that (1,), converges to 1 in the sense of D(R™).
Consequently

O
Now we give a results on the convergence of convolution of distributions.

Theorem 40. Let T be a distribution in D'(R™) and (pn)n be a sequence in
D(R™) converging to @ in the sense of D(R™) (this means that (@, — @) s
converging to 0 in the sense of D(R™)).

Then (T * @y, )y converges to T x @ in the sense on E(R™) (this means that,
for all seminorms p;, we have lim,, p;(¢, — @) =0).
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Proof. Remarking that T x ¢ is linear in ¢, i. e. T * (a1¢1 + aapa) = a1 (T *
©1) + ao(T * 9), it is not restrictive to suppose that ¢, —5 0 in the sense of
D(R™). Let K be a compact set such that, for all n, Supp ¢, C K. Recalling
that, for f € E(R™),

() = sup [D°f(x),
lal<j e,

we have to show that, for every fixed 7,

1i£n( Z sup |D(T * pp)(x)|) = 0.
|Ot|§J CEGQJ‘

Now

DY(Txpn)(x) = (T*«D%p)(z) =T (Ynz), where ¢y, o © Yy — (D% ) (x—y).

=

f 2 € Qj, then the support of y ~— 1, »(y) is contained in the compact set
K = Q; — K. Consequently, for all = € Q;,

T (o)l < Cx D sup D u(y)]

B<my yeR™
and then
sup [D*(T# n) ()| < Ci D sup [DPpn(2)]
jal<s "€ B<mp+j TR
and the conclusion follows. O

The following result says that the convolution of a distribution with two test
functions is, in some sense, associative.

Theorem 41. Let T € D'(R™) and ¢, 1 € D(R™).
Then

(Tx@)xp =T (p 1),
Proof. Remark that, if f € Cyo(R™), then
de = li " .
| f@de=lim e gz; f(ev)

Consequently, denoting by 7, f the function x — f(z — a) for a € R",

prule) = [ -y = lm 3 plo - i)

e—0t
vEL™
= lim &" Z Y(ev)Ten ()
e—0t
vezr

Moreover, defining

fe(z) =& Z oz —ev)(ev) =& Z Y(ev) (),

vEZL™ veLn
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fe is in D(R™) and it is possible to see that
fo = pxv in the sense of D(R"),

and, using Theorem 40,

Txfo—sTx(pxv) in the sense of £(R™). (24)
Now
(Txfo)(@) = T (") (ev)map)(@)
vezLn
=" > Y(En)(T * Tep) (@)
vEL™
= " Z PY(ev)T(0, 4) where 0,,: y— p(r —ev —y),
veEL™
= " Y P(en)(T )z —ev))
vEL™
= " ) (T*@)(x —ev)i(ev).
vETN
Hence
T (T« f2) (@) = Tim & 37 (T @) a — ev)(ew) = (T ) (). (25)
vEZL™

Putting together (24) and (25) we have the conclusion.
O

Remark 25. Let T € D'(R™). There exists (fn)n, sequence in E(R™), such that
Ty, =T in the sense of D' (R™),

i. e. for all g € DR™), T(p) = lim, T}, (¢).
In fact let (pp)n be a mollifier. We have

Pr % Q —= in the sense of D(R™)
and consequently
Tx(ppr@) —>Txp in the sense of E(R™).
But, form the Theorem 41, T % (py, * ¢) = (T * pn) * @, so that
(Txpn)*xo —=Txp in the sense of E(R™),

and consequently
(T % pu) * ©)(0) = (T * 9)(0). (26)
Remark that T * p,, is in E(R™).
Denote now by ¢ the function © — p(—x). We have, for T € D'(R™) and
¢ € D(R"),
(T'*)(0) = T ().

Considering (26) with ¢ at the place of ¢, we deduce that

Trip, (9) = (T * pu) x §)(0) = (T + ¢)(0) = T().
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The following result gives another property of the convolution of a distribu-
tion with a test function, in particular the convolution of a distribution with a
test function commutes with the translation operator 7y,.

Theorem 42. Let T € D'(R™), ¢ € D(R") and h € R™.
Then
Th(T * @) =T * Tpep.

Proof. We have
(T %)) = (T * @) — ) = T(Yarn), where go_p : 4+ oz — h— ).
But

e —h—y)=me—y),

so that R R
T("l)m—h) = T("/’m% where ¥, : y— Th‘p(x - y)

Finally

T(z) = (T * Thp) ().
O

The final results gives a characterization of the convolution of a distribution
with a test function.

Theorem 43. Let @ : D(R™) — E(R™) be a functional such that
i) ® is linear.

it) ® is continuous (i. e. if (pn)n is converging to 0 in the sense of D(R™),
then (®(pn))n s converging to 0 in the sense of E(R™)).

iii) ® commutes with 1, (i. e., for all ¢ € D(R™) and h € R", 7,(p) =
().

Then there exists a unique T € D'(R™) such that, for all ¢ € D(R™),

() =T xop. (27)

Proof. Define
T(p) = 2(¢)(0),  where p(z) = p(—x).
We verify now that T is a distribution. From i) and i) we deduce that 7' is
linear and if (p,,), is a sequence in D(R™) which goes to 0 in the sense of D(R"),
then (®(p,))n goes to 0 in the sense of £(R™) and consequently (®(p,,)(0)),
goes to 0 in R (or C), so that T is a distribution.
We verify that T satisfies (27). We have

T x p(x) =T () = (02 (0),
where 1, : y — p(z —y) and ¥, : y+— o(x +y) = 7_,0(y). Consequently,

T+ p(x) = ©(1:)(0) = D(1—090) (0) = 7. () (0) = () ().

from 41)
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After all this work, we are now ready to define the convolution of two dis-
tributions.

Definition 31. Let T € D'(R") and S € E&'(R™) (i. e. S is a distribution with
compact support). Consider

®: D(R™) — E(R™), D(p) =T (S * ).
i) ® is linear. In fact, e. g.,

Tx(Sx(p1+92)) =T*((Sxp1)+(S*p2)) =T (S*kp1)+T (S *p2).

it) @ is continuous. In fact if (pn)n is converging to 0 in the sense of D(R™),
then (S * vp)n is converging to 0 in the sense of E(R™), but, since S has
compact support, (S * ©n)n is converging to 0 in the sense of D(R™), so
that (T * (S * pn))n is converging to 0 in the sense of E(R™).

i1i) ® commutes with T,. In fact, from Theorem 42,

Tx(S*7hp) =T (1h(S * ) = 1,(T % (S *p)).

From Theorem 43 we deduce that there exists U € D'(R™) such that
Tx(S*p)=Uxo.

We define
U=T=xS.

Remark 26. It is possible to define, in a similar way, S * 1, for S € &'(R™)
and ¥ € E(R™) and so on. It is also possible to show that convolution of two
distributions, one of them with compact support, is commutative. Similarly the

convolution of three distributions one of them with compact support, is associa-
tive. All the details can be found in [8, Ch. 1.6].

13

13.1 Fourier transform of functions

The content of this paragraph can be found in [8, Ch. 1.7] (see also

[15]).

13.1.1 Fourier transform of L! functions

We introduce here the Fourier transform of a L' function.

Definition 32. Let f € L'*(R"). Let £ € R™. We define
fo = [ e i,

where x - & = x1&1 + ...+ T2 &n- f is called Fourier transform of f. The Fourier
transform of f will be denoted also with F(f).
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Theorem 44. Let f € L*(R").
Then

i) f e L>®(R™)NC(RM).
i) | fllee < N1 fle-
i) 1im |4 o0 f(€) = 0 (Riemann-Lebesgue lemma,).

Proof. The boundedness of f and the point i) are consequence of

fe1<1 [ e radnl < [ 1@lde = 7l

Rn

while the continuity of f can be obtained, e. g., using the dominated convergence
theorem. In fact, if (£,), is a sequence in R™ converging to &, then,

{ e e f () e_i””'gf(x) almost everywhere,
e f ()| < | f ()]
Consequently, for all the sequences (&,),, converging to &,

e~ f(z) dx = / €_m'éf($) dz = f(§)

n

lim f(&,) = lim
n n Jrn
and the continuity of f follows.

Let’s prove the Riemann-Lebesgue lemma. Consider ¢ € C§°(R™). Let
j=1,...,n. We have

§o) = A e~ p(x) do

= —Dy,; (e7 ™) p(z) dx
RTI,

= | Dy (e Sp(a)) da+ / D, p(x) do
Rn n
- =0

= ij‘ﬁ(&)

Consequently

(AL+16P)2(©) = (1= A)¢)(©).
where A is the Laplacian operator 97 +...4+02 = f(Djz +...4+D?). Remarking
that (1 — A)p is in L', we have, from the point 4), that (1TX)90 is in L*° and
then o
(1= A)elz~

(p(e)] <

for all £ € R"™.

Hence

lim (€)= 0. (28)
|| =400
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Suppose now that f € L'(R") and fix ¢ > 0. We know that there exists
¢ € C§°(R™) such that

€
1f =l < 3
From (28) we have that there exists R > 0 such that, for all { € R™, if |{| > R,
then |p(£)| < 5. As a consequence, if || > R, then

FOI< 161 +17©) = 2] < 19 + 1 = Pllu= < 5 +1If el <.

O
Exercise 6. Show that, for f in L*(R"), f s uniformly continuous.

Hint 1. Let ¢ > 0. We know that there exists R. > 0 such that

d €
Amﬂsﬂwlx<4

(try to convince yourself about). Then

1f(&) - f&)l = (e 8 — e f() da|

|
Rn

<[ e el 5.
lz|<Re

2
From prostapheeresis formulas we have

e — eT e < g — &l fal,
and then

1f(&) = f(&)] < |& — &|Re| I + g

Choosing 6. = , we deduce that

€ __
2R€Hf”[,1

€ — &1| < 6. implies  [f(&) — f(&1)| <e.

Hint 2. We know that f is continuous and that lim|¢| 00 f(¢) = 0. Conse-
quently, for all € > 0, there exists R. > 0 such that, for all £ € R™,

€| > R. implies |f(5)\<%_

On the other side f is uniformly continuous on the set of £ such that €] < R.
So that, for all € > 0, there exists § = d(g, R) > 0 such that, for all £, & € R™,

Gl SR &l SR Je—&l<d mplies |f(&) — f(&)] < 5.

Fix now € > 0 and obtain R, and § = d(g, R.) as above. Taking &, & € R
such that |£2 — &1| < §, distinguishing the three cases:

L4 ‘€1| S RE) |£2| é Raa
4 ‘€1| §R67 |€2| >R67
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L4 ‘€1| > RE) |£2| > Rsa
we can conclude.

Exercise 7 (from [18]). Show that, denoting by C.(R™) the space of continuous
functions such that lim ||y f(x) = 0, the functional F : LY(R™) — C.(R"),

F(f) = f 18 not surjective.

_ Hint. Let’s consider the problem in R. The first remark is the following: if
f is odd then

floy = HOIED 0 [ it - ey p(aydo = —i [ sinae)f(o) .

The second remark is the following, which can be easily obtained by integration
by parts: there exist C' > 0 such that, for all b > 1,

b .
|/ Sln:vdx| <cC
1 T

Consequently, if f is odd then there exist C' > 0 such that, for all b > 1,

" 1© -
|/1 Hag<c.

|/1bf(§)d£| =|/1b/RSin(;§)f(x)dxd£

§A|Abwd£|f(x)ldx-

As a consequence we have that if an odd function g is in C,(R), to be a Fourier
transform of an L' function, it is necessary that

+oo
|/ 9(@) dz| < +oo.
1 1.

Obviously this not the case for all the odd functions in C.(R). Let’s remark
that the book of Stein and Wiess [18, p.2| says “there seems to be no simple
satisfactory condition characterizing Fourier transform of functions in L(R™)".

Theorem 45. Let f in C'(R™) N L*(R™). Suppose that Dy, f in L'(R™).
Then

In fact

— ~

Dy £(§) = & 1(6)
Proof. We have

Do1©) = [ D, fa)ds

= Dy, (e”™ ¢ f(z)) dz + Eje T f(x) da
R‘IL Rn

The conclusion follows from observing that

Dy, (e"™* f(z))dz = 0.
Rn
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In fact, we know that if g is in L}(R) and lim,_, o g(x) exists, then

AP 907 =0
Suppose now g is in C1(R) and both g and ¢’ are in L'(R), then lim, 1 g()

exists, since
xr

lim g(z) =g¢(0)+ lim g'(t)dt.

xr——+00 xr——+00 0

Theorem 46. Let f and x +— x;f(z) be L' (R™) functions.
Then f is differentiable with respect to &; and

De, f(€) = —a; (@) (€).

Proof. Let’s prove the result in the case of n = 1. Consider a sequence (&k)k in
R\ {£}, converging to £. We have

£ e—ixgk _ e—ixé
fe {0 ey,

& —¢ & —¢
= /Rfi (el;(zlf)g)l)e”'gxf(x) dx
=i (w)
Now
Yr(z) N —ie_”"gxf(x) for almost every x,
and

[r(2)] < Clzf(x)], where C' does not depend on k.

The dominated convergence theorem gives

e fE) - @

F1(6) = tim TR LS = i (@)(6)

13.1.2 Explicit computation of some Fourier transforms

Example 10. Let a, b > 0. Consider

_J e if —b<z<b,
o= 0 if |z| > 0.
If¢=0 b
(0) = dz = 2ab
f0) = [ adr=2
If§#0
o b i 1 i —ib¢ __ _ib¢ in(be
f(f):[be 6adac:a_iige §|bb_ab6_ib;—2absmb(€ )



Finally
R sin(b€) ;
f(é)—{ 200 e fezo
2ab if €=0.

Example 11. Let a, b > 0. Consider
ae bz if x>0,
fl) =

aeb® if x <.

Let’s make the computation in the case a = b =1.

A~ 0 . +OO .
f(& / eI oy 4 / e ETT g
0

1 ) 1 . 1
= — e‘”“x}o 4+ e imEm oo -
—i+1 oo —if—1 0 1—1d¢
Finally
A 2
Example 12. Let a > 0. Consider
flo) =",

We have to compute
)= [ et
R

. . a2
Since the function x +— xe™**

F1e = /R—iace*””g*a“62 dz.

On the other hand, from Theorem 45,

+

1
1+ié

is in L', from Theorem 46 we have that

1§f(§) = ?7 (5) = / €_i$£(—2a$€_a12)d$ = _2a/ xe—iw&—azz de.
R

R

Consequently . .
Ef(&) = —2af'(€)

and, from a standard computation,

f(0) = /R e g — \/Z

i. e. the function f is a solution of the Cauchy problem

{ 2au/(€) + &u(§) =0 in R,

u(0) = /%
Finally
~ m _i
f(&) = a
In the case of x € R™, we have
f@y=e"and  f(e) = () 2)e
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Example 13 (from [18]). Let a > 0. Consider
f(x) = e~alel, for x € R™.

We start with establishing the following identity

1 oo gmu
e P = e=B/4u du, for 8> 0.

Vil Va®

This can be obtained considering the two following ones

1 T~
1+y2: ; e Y% du, foryeR,
2 [T cos Py
== d > 0.
eh=2 /0 Sy, for

The first one is immediate, while the second one is a consequence of the theory

of residues applied to the function 1+B 5. We have
8 — 2/+°° cos By
™ Jo 1 + y2

) +o0 +o0 2
f/ cosﬁy(/ e~ VU gy, dy
T Jo 0

9 [t +oo R
f/ e_“(/ cos Bye ¥ “dy) du
0 0

™

2 [Fee L[
= 7/ 67“(7/ e iPYevu dy) du
™ Jo 2/

oo

9 +oo 1 2
= f/ e " \/?e T du
T Jo 2V u

1 oo g—u

Vil Vu©

Let’s now compute the Fourier transform of f(x) = e~ 1%, for x € R™.

—ix-& —\w\d :/ —za:ﬁ / —|m|2/4ud )d
(& (& €T u)ax
Je N
+o0 e U ) R
\f/ T /n e eI/ gay

Ta) e~ e gy
\f \f(?f) d

-1 +oo —1 2
WT/ uw'T e OFIER) gy
0

n—

n—1 +OO
:2”7r77"+1/ s 2z e ®ds
(1+1€12) 0

(1+lg= " 2 7

76 /4% o,
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As a conclusion, if f(x) = e~ ** with a > 0 and = € R",

R a F(n+1)
f&)=c,———, where ¢, = (21)" —2~.
(a2 + [€[)*F i
Exercise 8. Prove that, for alln > 1,
2 27T
o T2
——— g A= — = surface area of the unit sphere in R" .
/R (02 + [¢]?) " L)

13.1.3 Rapidly decreasing functions and tempered distributions
We introduce the Schwartz space S(R™) and its dual S’(R™).
Definition 33. Let

S(R™) ={f e C*[R") | for all a, B € N*,  sup |:L'aDﬁf(x)| < 00}
xER™

S(R™) is a vector space which is called Schwartz space or space of rapidly de-
creasing (at infinity) functions.

Remark 27. For «, € N”,

Ta,5(f) = sup [2°DP f(z)]
zeR™

is a seminorm on S(R™). We put on S(R™) the Fréchet topology generated by
this countable family of seminorms. Remark that

S(R™) ={f € C®(R") | for all k €N, suﬂg) (1 + |z))* Z |DP f(z)]) < oo}
rert |B1<k

and the topology of S(R™) can be obtained using the sequence of norms (7i)
with
P(f) = sup (14 |=)* Y [DPf(a)]).

vele 1BI<k

Definition 34. The dual space of S(R™), S'(R™) is called space of tempered
(or temperate) distributions, i. e. the functional S : S(R™) — R (or C) is a
tempered distribution if

i) S is linear;

i) there exist C > 0 and oy, B1,...ax, Br € N™ such that, for all f € S(R™),
k
IS(H < CD_ pays, ()
j=1

Given a sequence (fn)n in S(R™), we will say that (f,)n converges to 0 in the
sense of S(R™), if, for all a, B € N™,

Pa.p(fn) = sup |2 DP f ()] = 0.
TER™
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Remark 28. We have
D(R™) C S(R™) C E(R™).
It is possible to show that

i) given (n)n in D(R™) such that ¢, —= 0 in the sense of D(R™), then
©n —= 0 in the sense of S(R™), i. e. the immersion D(R™) — S(R™) is
continuous;

i) given (fn)n in S(R™) such that f, — 0 in the sense of S(R™), then
fn = 0 in the sense of E(R™), i. e. the immersion S(R™) — E(R™) is
continuous;

iii) given f € S(R™), there exists (pn)n in D(R™) such that (¢n — f) —= 0 in
the sense of S(R™), i. e. D(R™) is dense in S(R™);

) given ¢ € E(R™), there exists (fn)n in S(R™) such that (fn, — 1) —= 0 in
the sense of E(R™), i. e. S(R™) is dense in E(R™).

A S a consequence
£(R™) C S'(R™) C D'(R™).

Exercise 9. Let f € S(R™). Prove that, for all p € [1,+cc], f € LP(R™).
Exercise 10. Let f € LP(R"), for some p € [1,+00]. Prove that Ty € S’'(R").

13.1.4 Fourier inversion formula
We study the behavior of Fourier transform on the Schwartz space.

Theorem 47. Let f € S(R?).
Then A
feSRe)
and, for all a € N™ and £ € R™,
DofE) =€ f(©),  amf(@)() = (~)*ID*f(&). (29)

Moreover the functional F : S(R}) — S(RE), F(f) = f is linear and continu-
ous.

Proof. We give only a sketch of the proof. We remark that if f € S(R"),
then, for all o, B € N, 2*DPf € L'(R"), so that the inequalities in (29) are
consequences of Theorem 45 and Theorem 46, applied recursively. We remark
also that the function & — £*DF f (€) is the Fourier transform of the function
z + (=1)IPID*(28 f(2)) which is a function of S(R?). Consequently

sup [€°D°F©) = I D2 f(©)l1= < 1D f@)]r < oc.
e n
Finally the continuity of F can be deduced from the fact that, for all f € S(R™),

1£ @)l < CIA A+ |2)™ ! f(z) ]| oo

where C' depends only on the dimension n. O
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Theorem 48. Let f € S(RY).
Then, for all x € R™,

_ 1 i€ f
Proof. Let f € S(R?). We have
[ e = [ eme( [ s a e (30)
R? Rp R

We notice that the function

(& y) = e TTYEL(y)

is not in Ll(R? x R}}), so that it is not possible to exchange the order of inte-

gration in (30). Consider now g € S(R}). We have that, for all 2 € R", the
function

(& y) = TG f(y)
is in L'(R? x R}), hence

J RO L /R,g “Sgl)( | S
- /n/ TV Eg () f(y) dy dé.

- // eV g(€) f(y) dé dy.
f(

n
3

= [t erege g dy.

3 3

Na)Y
—
~—
QU
&
—
w
—
~—

/ g f©)de= [ fz+o)
R Rn

n
£ z

Let, for k € N\ {0},

2 212
gk (&) = e 5E and consequently Gu(2) = (2mk)%e” =
Substitute g with g in (31). We have
iz _le? 4 n _klz1?
e 2k f(&)dE = (2mk) 2 flz4+z)e” 2 dz. (32)
R 34

Using the dominated convergence theorem we have

/R e SE feyde 5 [ eef(e) de

n n
(3 R&
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and
2 2
(27k) 2 f(z—|—x)e_k‘2l
Rn

z

dz

ly

Je 5 gy A (QW)%f(a;)/ e~ gy,

- 3 Yy
= (2m) s flz+ T

Recalling that
2
/ e dy = (2m)%,
R

n
Yy
we obtain the conclusion. O

Corollary 11. F: S(R}) — S(RE), F(f) = f is an isomorphism.

14

14.1 Fourier transform of tempered distributions

The content of this paragraph can be found in [8, Ch. 1.7] (see also
[15]).

14.1.1 Fourier transform of tempered distributions

We introduce the Fourier transform of tempered distributions.

Definition 35. Let S € 8'(R™). We define, for all f € S(R™),
S() =5

S is called Fourier transform of the tempered distribution S.

Remark 29. S is a tempered distribution. In fact
S=S5oF.

Let f € L'(R™) such that the distribution associated to f, Ty, is a tempered
distribution. Then e

Ty =T;.
In fact, for all g € S(R™), the function (z,£) — e~ @g(x) f(£) is in L*(R? x
RE), so that

o) =T19) = | 1©a(€)de

-/ 1© / ) deds
- / ) / € Ogle) d de

_ /R 9(2) /R e~ £(¢) dE da

n
3

— [ s@)i@ds=T(0).

T
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Example 14. We denote by Ty the distribution associated to the constant func-
tion equal to 1. Ty is a tempered distribution. Let’s compute Ty. We have

L =1 = [ feds=n"

3

/R VEf(e)de = (2m)" £(0)

n
3

1
(2m)"

=f(0) (inv. Fourier trans.)

T, = (27)"5,.

Similarly, let’s compute (%. We have

5alf) = 8o(f) = £(0) = / ¢0f () de = [ f(x)da

R R

n
T

5o =T).

Example 15. We denote by H the distribution associated to the Heaviside
function. Let’s compute H. We have

—

cH(f) = H(xf(x)) = H(xf(x)).

Recalling that
zf(z)(€) =if'(€)
we obtain

~ +OO ~ ~
eA(f) = H(if') =i / 7€) de = —if(0) = —i / f(z) dz.

This, in particular, implies that itH = Ty, i. e. iH is a solution of the equation
T = Tl-
Consequently (see Exercise 4) of Lesson 11) there exists ¢ € C such that

H = —iPVi + cd,.

It remains to compute c. Consider f(x) = e=*"/2. We know that f(é) =
2me="/2. Then

+oo
™= / V2re™/2 de = H(f) = H(f) = —iPVi(f) +cbo(f) = cf(0) = .
0 N———
=0 (f even)

direct computation

Finally
H = —iPVi + 1.
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14.1.2 Fourier transform of L? functions

In this subparagraph we show what happens to the Fourier transform of a
distribution associated to a L? function.

Theorem 49. Let f, g € S(R™).

Then
i) Joy J@)5(@) dz = [y, F(€)9(€) d&;
i) fRn g(z)dr = fR” &) d¢ (Parseval’s identity);

iti) fg(§) = (2m)7"f = §(&);
i) fxg(z) = f2)g(x).
Proof. Identity i) is a consequence of the fact that in the integral

[ 1w [ @ dcan

we can exchange the order of integration.
The Fourier inversion formula gives

= [ G
)= (s [, T e

and i) follows in a similar way.
For proving #4), we have

/ e de

/; e—ix'ff(x) (271r)n /}K7 RERT () dn dz
- (271T)” / L) / e~ € £ () dx dny

n

= e [ AIE = 21T 300,

fa(€)

We let the proof of iv) as an exercise. O

Theorem 50 (Plancherel theorem). Let f € L?(R™).
Then there exists a unique g € L*(R™) such that

Ty =T,
We write g = f and we call it Fourier transform of f. We have, moreover,

1Fllze = 2m) 2 (1f ) 2
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Proof. We know that S(R™) is dense in L?(R™). Consequently, there exists a
sequence (), in S(R™) such that

On — f in L?(R™).
Using Parseval’s identity, we have
”‘Pn - @m”LQ = (271-)_% H@n - (ﬁmHLz'

Since (¢n)n is a Cauchy sequence in L?(R"), the same is valid for (), and
this implies that there exists g € L?(R") such that

Gn —=g  in L*(R"™).

Since the strong convergence of (¢, ), and (@, )y, to f and g respectively, implies
the weak convergence, we deduce that, for all h € S(R™),

T,(h) :/gh:hTrln/@nh:hTrln/goniL:/fiL:Tf(iL)

ie T, = 7/? Similarly, the strong convergence of (¢,,), and ($n)n, to f and
g respectively, implies that

enllre = 2m) % f 2.

lgllz2 = lim ||y 2 = lim(27)
n n

Remark that g does not depend on the sequence (¢y,), but only on f. In fact
if one choose another sequence (¢, ), in S(R™) such that

Yn = f  in L*(R"),
then v, — ¢, — 0 in L?(R™) and consequently, again from Parseval’s identity,
Vn — Pn —= 0in L2(R"), i. e.
lim ’l/AJn =limp, =g.

To end, let’s prove that g is unique. Suppose that there exist g; and g» € L?(R™)
such that, for all ¢ € S(R"™),

Ty, () = Ty (%) = Ty, (9).

It is sufficient to remark that each function in S(R™) can be represented as
Fourier transform of a function in S(R™). Consequently, for all ¢ € S(R"™),

Ty, (d)) = Ty, (¢)7

so that g; = gy a. e. and consequently as L? functions. O

14.1.3 Fourier-Laplace Transform of a distribution with compact
support

Definition 36. Let T € &'(R™) be a distribution with compact support. For
¢ € C™, consider the C*°(R?) function

T e (x) = e = e® 3¢ (cos(x - RC) — i sin(z - RC)).
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The function
C" - C, ¢ T(e)

is called the Fourier-Laplace transform of the distribution T and we denote it
with TFL.

Lemma 12. Let T € &'(R™) be a distribution with compact support.
Then TFL is a C> function.

Proof. We prove that TFL is a continuous function on C™, letting the rest of
the proof as an exercise. Let ( € C" and suppose that the sequence (Cr)k is
converging to (. Then the sequence of C* functions (v, )k, where ¢, (z) =
e~ Ck s converging, in the sense of £(R™), to the function ¢z(z) = e,
Consequently

lim T7(G) = lim T'(4,) = T(te) = TH(O),
i. e. TFL ig a continuous function. O

Remark 30. Let f be a continuous function, with compact support, defined
on R™. Let Ty be the distribution with compact support associated to f. The
Fourier-Laplace transform of Ty, evaluated on § € R™, coincides with the Fourier
transform of f as L' function, in fact

FL

O =100 = Ty =) = [ @) do = ).

On the other hand, the tempered distribution associated to the Fourier trans-
form of f as L' function, coincides with the Fourier transform of the tempered
distribution associated to f, in fact, for all ¢ € E(R™),

Tiw)= | f@u©de= | f@)ie)de=T1()) =Ty (4).

n
R.’c

exchange the order of integration

As a conclusion, if f is a continuous function with compact support,
. ~FL N —~
f = Tf on R and Tf = Tf.
Definition 37. (see [4, Ch. IV.2]). Let f € C*(Q2), where ) is an open set in
R™. f is said to be analytic in Q, if f is locally the sum of its Taylor series, i.

e., for all xo € Q, there exists r > 0 such that, for all x € B(xo,T),
1
f(z) = Z o 0" f(xo) (x — x0)".
veN”
f is said to be entire analytic if, for all x € R™,
1 1% 1%
flo)y= 2 — 0"f(0) 2",
veN™

Remark that an entire analytic function can be extended to a function, defined
in C™ (we continue to denote it with f), setting

fe) =3 o)

veN”®
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Lemma 13. Let f € C*°(R™). Suppose that, for all R > 0 there exist Mp, Cr >
0 such that, for all « € N",

sup [D° f(x)] < CrME.
|z|<R

Then f is entire analytic.

Proof. See [4, Ch. 1.4.2]. O

Lemma 14 (Convergence of entire analytic functions). Let (fy,)n a sequence of
entire analytic functions defined in C™. Suppose that there exists a function f
on C™ such that

fo = f uniformly on compact set of C".

Then f is entire analytic.
Proof. See [4, Ch. V.1.1]. O

Lemma 15. Let T € &'(R™) be a distribution with compact support and let
(pn)n be a family of mollifiers.
Then
Trip, — T in the sense of E'(R™).

Proof. We recall that

(T % pu)(@) = T(Whns),  Where ¥ty pu(z — ).

Consequently, for ¢ € £(R™),
Trop () = [ T(na)ola)da
= tim e Y T ole)

veN”?

= lim T(c" Y ¥newp(ev))

e—0
veNn

= T(lim " D Vnew plev))

veN"
= T(pn *¥).

The conclusion follows remarking that p, * ¢ —= ¢ in the sense of £(R™)
(actually p,, * ¢ —= ¢ in the sense of D(R"), if ¢ € D(R™)). O
Remark 31. In the previous situation

Trep, (0) = (T pn) * 2)(0) = (T * (pn * ¢))(0) = T((pn * ) ")

and
(pnxp) — in the sense of E(R™).

Theorem 51. Let T € &'(R™) be a distribution with compact support.

Then the the Fourier-Laplace transform of T is an entire analytic function.
Moreover the distribution associated to the Fourier-Laplace transform of T co-
incides with the Fourier transform of T in the sense of tempered distributions.
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Proof. Recall that we denote by T and TFL the Fourier transform and the
Fourier-Laplace transform of 7" respectively.
Let f be a continuous function with compact support. We have already

remarked that
FL

f = If“\f and Tfe = T}
We show that f is an entire analytic function. In fact, since, for all o € N”,
x =z f(x)

is a L'(R™) function, we have, from Theorem 46, that f ia a C°°(R") function
and

IDf(e)] < / @l s CRI.

where we have supposed that Supp f C B(0, R) and C = || f||:. Consequently,
from Lemma 13, f is an entire analytic function.
Let T € &'(R™) and let (pg)x be a family of mollifiers. From Lemma 15 we

have that T, %5 T in the sense of & (R™), consequently
fT*pk —T— 57 in the sense of D'(R™). (33)
We have

T Q) = Txpulirc) (where tic(x) = e~*)
— (T % pr) + ) (0)
= (T (pr + 90))(0)
= T((pr )"
= T(pr *Y¢)-

Considering that
prxPe(n) = / pry)e” < dy
—e / pr(y)e’™ s dy = e 5 (0) = P “ (e (),

we deduce

_——FL

Topr Q) =T(pr ) = T(BE“(Ove) = B “(OT () = PE(OTTH(Q)-

Remark now that

prl(e) = ﬁFL(%) N prr0) =1 uniformly on compact sets of C".
Hence P
Txpi (€)=pEHOT () = T (Q) (34)
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_—_FL
uniformly on compact sets of C™, but the functions 7" * p,  are entire analytic

functions (recall that the T x pg’s are continuous functions with compact sup-
port), and (34) implies, from Lemma 14, that 77" is an entire analytic function.
To conclude the proof we have to show that

~

Ty =T.
We notice that (34) implies that
Tm LN Tsre in the sense of D'(R"),
and the conclusion follows from (33). O

14.1.4 The Paley-Wiener theorem

Theorem 52. Let U be an entire analytic function defined on C™.
U is the Fourier-Laplace transform of a distribution with compact support
contained in B(0, A) if and only if there exist C > 0 and N € N such that

U@ <c@+|¢hNeAlSS forall ¢ eCm. (35)

U is the Fourier-Laplace transform of a C* function with compact support
contained in B(0, A) if and only if, for all N € N, there exist Cy > 0 such that

U] < Cn@+[¢)) Nel™ forall ¢eC™ (36)

15

15.1 Sobolev spaces in one space dimension - 1

The content of this paragraph can be found in [3, Ch. VIII].

15.1.1 First definitions
Definition 38. Let I be an open interval in R. Let p € [1,+o0]. We define

WP(I) = {u € LP(I) | 3g € LP(I) : V¢ € Cy(I), /u¢>’ = - /g¢}.
I I
WLP(I) is called Sobolev space (of indezes 1 and p).

Remark 32.

i) In the definition of WhP(I) it is sufficient to ask [, u¢’ = — [, g only for
all p € D(I). In fact let ¢ € C3(I) and let (pn)n be a family of mollifiers.
We have py, * ¢, pn * ¢ € D(I) and

Pn ¥ O —= @, (pn % @) = pn ¢ — ¢ uniformly

(actually in LY(R) for all ¢ € [1, +00]). We can pass to the limit in

J sy == [lpu o)
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Figure 18: Sergej L’vovi¢ Sobolev (1908-1989)

ii) The function g in the definition of WP(I) is unique and we denote it
with u'. In fact, if there exist g1, g2 € LP(I) such that, for all ¢ € C3(I),

/IU¢/=—/IQ1¢=—/192¢

then fI(gl —g2)¢ =0 for all ¢ € CY(I) and this implies that g1 — ga = 0.
u' 1s called weak derivative of u.

iii) The definition of WHP(I) can be given in the framework of distribution
theory.
WhP(I) ={ue LP(I) | 3g € LP(I) : T, =T,},

i. e. WHP(I) is the subset of LP(I) functions the derivative of which is a
distribution associated to another LP(I) function. In this sense we can say
that the weak derivative of u is the derivative in the sense of distributions.

Definition 39. We set
. 1
lullwre = lJulle +1W'[|Le (o, equivalently, (|[ull7,+[|u'[[7,)7 forp# +oo).

Theorem 53. W1P(I) is a Banach space. If p € [1,4+o00|, then WLP(I) is
a separable Banach space. If p € |1, +oc[, then WYP(I) is a reflexive Banach
space. If p = 2 and ||ullyre = (Jul|2, + |[o/]2.)7, WY(I) = HY(I) is an
Hilbert space.

Proof. The proof is based on the following remark. Consider
o WhP(I) — LP(I) x LP(I), O ous (u, ).

® is an isometry between W1P(I) and a subspace of LP(I) x LP(I). If this
subspace is closed, then we obtain all the wanted properties, since LP(I) x LP(I)
is a Banach space, a separable Banach space and a reflexive Banach space for
p € [1,400], p € [1,400] and p € |1, +00[ respectively.

Let (un)n be a sequence in WHP(I) such that (®(uy)), converges to (u,v)
in LP(I) x LP(I). This implies that

Up — u, ul, v in LP(I).
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We know that, for all ¢ € D(I),

and, for%—l—i =1,

| / (tn — 0| < llm — ullzo @ s | / (s — )| < [y — vll o ]l ot
I S——— I N—_——
0 50
Consequently

/ n !/
[ = [
I I

- Upp - vy,
I 1

i. e uw € WHP(I) and v = /. As a consequence ®(W1P(I)) is closed in
LP(I) x LP(I). 0

Remark 33. It is interesting to remark that in the proof of the previous theorem

we have seen also that if u, — u and ul, — v in LP(I) then w € W'P(I) and
!

v=u.

Exercise 11. Let p € |1, +00]. Let (uy)n in WHP(I). Suppose that u, — u
in LP(I) and there ezists C > 0 such that, for all n, ||u,||Lr < C.
Prove that u € WP (I).

[—

Hint. Let p’ € [1,+00] such that %—!—
theorem there exist a subsequence (u;, ) and a function v in LP(I) such that

u, v, i e forall we L¥(I),

Nk
/ n
Up, W — [ vw.
1 1

Consequently, for all ¢ € D(I),

Un,y, P up
I I

’ k
- Unp, P — = vy,
I I

i. e. u e WHP(I) with v/ = v.

> = 1. From Banach-Alaoglu-Boubaki

3

15.1.2 Continuous representative

Lemma 16. Let T be a distribution on the open interval I C R. Suppose that
T =0
Then there exists ¢ € R such that T =T,.
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Proof. Consider x € D(I) such that [, x = 1 (obviously such a x exists!). For
all ¢ € D(I), if one consider

Y(x) = /; e(y) dy — (/_:O e(y) dy) /_; x(y) dy,

then ¢ € D(I) and ¢’ = ¢ — ¢y, where ¢ = fjo(f o(y) dy. We have

0=T'(¢) =-T¥') =T(p —ex) = T(p) — T (x),
i. e, for all ¢ € D(I),

const.

O

Theorem 54. Let u € WHP(I). B
Then there exists . € C(I) such that u =14 a. e. in I and, for all z, y € I,

Proof. We have v’ € LP(I) C L}, .(I). Fix z¢ € I and denote by

w(z) = /x ) d.

0

We deduce that w € AC(I) for all bounded interval I which contains zo and
which is contained in I. We use the theorem on integration by parts in AC
(Corollary 5 and subsequent topics, p. 27). We have, for all ¢ € D(I),

/wgp’z—/u'gp.
I I

But, since u € WP(I), we have, by definition,

/wp’:—/u’go.
I I

Consequently, for all ¢ € D(I),

J=we =0

i. e. T/ _, = 0 and, from Lemma 16, there exists ¢ € R such that T;,_,, = Te.
We define
w(z) = w(z) +c.

@ is continuous on I and, since Ty = Tyyi = Ty, for all ¢ € D(I),
J@-we=o.
I
i. e. u(z) = a(x), for almost all z € I. O

Corollary 12. Wh(I) = AC(I).
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15.1.3 Characterization of W1?(I), for p € |1, +o0]

Theorem 55. Let p € |1, +00]. Suppose u € LP(I).
Then the following conditions are equivalent.

i) ue WhP(I).
it) There exists C > 0 such that, for all ¢ € D(I),
) 11
| [ ug'| <Cllollper,  where —+ — =1
I p D
iit) There exists C > 0 such that, for all w relatively compact open set in I

and for all h € R such that |h| < dist(w, OI),

| Thu — ul| r )y < Ch|, where Thu(x) = u(z — 7).

Proof. Let u € WHP(I). The definition of W1?(I) and Holder inequality give
that, for all ¢ € D(I),

\/Iw’\ - I/IU'sD\ < e llze Il

and ) follows with C' = ||u/|| L.
Suppose ). Thinking at D(I) as a subspace of L? (I) and considering the
linear functional

®: D) —R (or C), D(p) = /pr’.

condition ii) gives the continuity of ®. Using Hahn-Banach theorem it is possible
to extend ® to a (unique) element ® of the dual space of LP (I). Recalling that
p’ € [1, +00[, from Riezs’s theorem we obtain that there exists g € LP(I) such

that, for all v € L (I),
d(v) = /gv.
I

Consequently u € WP(I) with ' = —g. We notice that this implication is not
valid if p = 1.

Suppose that the condition i) is valid, i. e. u € WP(I). Let w be a relatively
compact open set in I and suppose h € R, such that |h| < dist(w, OI). Let z € w.
We have, using the same symbol u to denote the continuous representative of
the function wu,

(@ —h) — u(2) =/:hu’(t)dt=h/01 o (& — sh) ds.

Consequently
1
lu(z — ) — u(z)| < |Al] / o (@ — sh) ds|
0

and, from Hoélder inequality,

lulz — ) — u(@)|P < \h|”/0 /(@ — sh)|P ds.

99



Hence

IN

/w lu(z — ) — u(z)P do

|h|p// |u/(z — sh)|P ds dx
|h|p/ /|u (x — sh)|P dz ds,

< Hu/HLP(I)

IN

so that
[ 1w =)~ ut@)? do < P

and iii) follows with C' = ||/ || s (1.

Suppose now that the condition ii) holds. We will deduce 7). Let ¢ € D(I)
and take w relatively compact open set in I such that Suppp C w. Let A > 0
such that |h| < dist(w, OI). Then

/w(u(x — h) —u(x))e(x) dx /u(x — h)p(x) dr — /u(x)cp(m) dz

I I

/ w(@)p(x + h) do — / w(@)p(z) dz

I I

::/mmwu+mf¢@»w.

I

The previous identity and condition i) imply

IA

|/ (@ +h) — p(x)) daf ‘/mw—m—u@mmex

IA

| Thu — uHLl"(w)H<p||LP/(I)

C|h|H<P||Lp/(1)»

A

hence

e AT N =D, 40} < Ol (37)

Passing to the limit, for A — 0, in (37) we obtain that

|ﬂwﬂscwmw”

We remark that only in the proof of the fact that ii) implies i), we have used the
hypothesis that p # 1. All the other implications are valid also in this case. [

Remark 34. It is possible to prove that, in the case p = 1, we have
i) = i) < iii).

(what it would remain to prove, considering what it has been done in the proof
of the previous theorem, is ii) = iii)). Moreover, it is possible to prove that

||7'hU7uHL1(w) Sc‘h| — UEBV(I)
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15.1.4 Characterization of W12(R)

We want to characterize W12(R) = H*(R). We need the following lemma, the
proof of which we let as an exercise.

Lemma 17. Let f, g € L*(R).

Then
/Rf9=/ng an /fg—f fg.

Remark 35. In the proof of the previous lemma it is not possible to write
fo) = [ e sy da
R

since f ¢ LY(R).
Theorem 56. Let u € L*(R).

we H'(R)  ifand only if (14 ]¢2)7a(¢) € LA(R).

Moreover

el = ( /R (1+ [€P)]a()[ de) . (38)

Proof. Let u € H*(R). We have u, v/, 4, u' € L*(R). Consider ¢ € S(R). We

have
/ &) d¢ = / - /R u(z)) (z) da

_ / u(@)EDE) (o) do = —i [ a(€) €v(¢) de.
R R

Consequently iv/(€) = £ 4(¢) a. e. in R and then |¢]a(¢) € L2(R).
Conversely suppose (), £0(€) € L?(R). Let ¢ € D(R). We have

[ @ @an = 5ol [ i@

I AGETOLS

< %Hfﬁ(f)HmWHLz < Cllgll 2

and the fact that u € H'(R) follows from condition i) of Theorem 55. The
identity (38) is a consequence of Plancherel’s theorem. O

Remark 36. Let s € R. We will define
H*R) = {ue S'R) | (1+[¢*)Fa) € L (R)},

with

lullz = ( / (1+ [€2)°a(o)[2 de)*.

101



16

16.1 Sobolev spaces in one space dimension - 2

The content of this paragraph can be found in [3, Ch. VIII].

16.1.1 Extension operator

Consider u € W1P(I). The problem is now to find a function in w € W?(R)
such that wy; = u with a fixed relation between the norms of v and w. We need
the following lemma.

Lemma 18. Let 6 € C°°([0, +o0|) such that, for all z € [0, +oo[, 0 < 0(z) <1

and
1 of 0<z< 7,
TEE
0 if z>¢<
Let w € WHP(]0,1[ ). Denote by
u(z) if 0<z<1, ~ w(z) if 0<z<1,
u(z) = () =
0 if ©>1, 0 if ©>1,

and set v = Ou. B
Then v € WhP(]0, +oo[ ) and v' = 0"t + 0u'.

Proof. Since 6 € L*°(]0, +o0o[) and u € LP(]0, +o00[), we have 8u € L”(]0, +o0]).
Let ¢ € D(]0, +o0[). Remark that f¢p is a test function on ]0, +o0[ that can be
considered also as a test function on ]0, 1[. Hence

/ o =/ 7 (6¢)
10, +o0] 10, +o00]

The lemma is proved. O
We state the extension theorem.

Theorem 57. Let I be an open interval in R. Let p € [1, +00].
Then there exists an operator P : WP (I) — WYP(R) such that:

i) for all u € WHP(I),
Pujr = v
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ii) there exists Co > 0 such that, for all u € WP (I),

[1Pull ey < CollullLrry;

iii) there exists C1 > 0 such that, for all u € WP (1),
| Pullwir®) < Cillullwir -

Moreover Cy and Cy depend only on |I|.

Proof. Let I = ]0, 4+oo[ and u € W1P(I). Remark that we think at u as its
continuous representative, so that u € C[0, +o00[. Consider now

u(x) if ©>0,
vie) = { u(—z) if <0,

i. e. v is the extension of u to the whole R, made by reflection with respect to
the y axis.

Y

, , T , , , ,
0l 1 2 —2 -1 0l 1 2

We have that v € L?(R) and

so that v € AC(R) and
u'(x) fora. e. x>0,
v'(x) =

—u/'(—z) fora.e z<0.

Consequently v’ is an LP function and moreover, from the result on integration
by parts on AC functions, we have that v’ is the weak derivative of v. As a
conclusion we set

Pu=w.
We have
[Pull ey < 2l|ullzeqy and  [|Pullwiem) < 2l|ullwre ).

Suppose now I =10, 1[. Using Lemma 18 we construct 0u and we extend it
by reflection to the whole R. Similarly, if we consider

- u(z) if 0<a <1, ~ u'(z) if 0<az<1,
0 if <0, 0 if <0,
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we have that (1—0)u € WP(] — oo, 1]) and ((1—0)a)' = —0'u+ (1 —0)u’. We
extend (1 — 0)u to R with a reflection in 1. We set

Pu = 0i+ (1—0)u.

We let as an exercise to check the correctness of the points i), ii) and éii). O

16.1.2 An approximation result

We want to prove an approximation result. We need two lemmas.

Lemma 19. Let f € L'(R) and u € WHP(R), where p € [1, +0o0].
Then fxu € WHP(R) and (f *u) = f*u'.

Proof. We know that if f € L*(R) and u € LP(R), then fxu € LP(R). Similarly
f=u' € LP(R).
Suppose first that f has compact support. For all ¢ € D(R), we have

[uswe = [(] 1@t i@ o

[ ([ = )¢' @) oy

/RU(f*so’)

I
T
]
—~
—
*
AS)
~

Consequently f*u € WHP(R) and (f xu) = f*u'.

Suppose now that f has not compact support. Let (f,), be a sequence in
L*(R) such that, for all n, f,, has compact support and f, — f in L'(R) (it
is sufficient to take f, = xp(0,n) - [, see the next lemma). Then

fo¥u —= fxu  and (foxu) = foxu' =5 fxu/ in LP(R).
The conclusion follows from Remark 33. O

Lemma 20. Let x € D(R) such that

1 oaf |z <1,
x(z) = { ,
0 if |z|>2.
Consider, for alln > 1, xn(v) = x(%). Let f € LP(R), with p € [1, +oo.
Then

Proof. Tt is an application of the dominated convergence theorem. O
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Theorem 58. Let u € WYP(I), with p € [1, +o0f.
Then there exists a sequence (up), in D(R) such that

un|li>u in WHP(I).

Proof. Suppose first that I = R. Let u € WHP(R) with p € [1, +o0[. Let (pn)n
be a family of mollifier and let (x,)n the sequence of truncation (or cut off)
functions defined in Lemma 20. We set, for all n,

Up = Xn * (Pn * ).
We have u,, € D(R) and, using also Lemma 20,

X - (pn o+ u) — ul|
xn - (pn % w) = X - |0 + | X0 - 0 = wf| o

[un — ul| o

IA

< xnllze [[(pn * w) = ullze + |Ixn -u—ullzo .
——

<1 50 50

Finally, also from Lemma 19,
[y, — [l v
= X5 (pn * u) + X+ (pn *w) — ||
< Ixullz= lon*ulle + [Ixn - (o x0') =)o + X0 - 0" —u/|lLe -
——

<< <lullLe <pnru’ )= || Lo —250 0

Consequently
U, —»u  and  ul, —=>u in LP(R).

Suppose now u € WHP(I), with I C R. Consider, from Theorem 57, Pu
extension of u to R. From the first part of the proof, we have that there exists
a sequence (wy), in C§°(R) such that

w, — Pu in W'P(R).
Hence

W1 5 Pup=u in WHP(I).

Corollary 13. Let p € [1, +o0].
Then D(R) is dense in WP (R).

Remark 37. As we will see, if I # R, then D(I) is not dense in W1P(I).

17

17.1 Sobolev spaces in one space dimension - 3

The content of this paragraph can be found in [3, Ch. VIII].
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17.1.1 Sobolev embeddings

Theorem 59 (Sobolev). Let I be an open interval in R. Let p € [1, +00]. Let
u e WHP(I).

Then u € L*™(I) and there exists C' > 0, depending only on p and |I|, such
that

ull oo 1y < Cllullwre iy,

i. e. WHP(I) is contained in L°°(I) with continuous immersion (embedding).

Proof. Suppose first that I = R. If p = 400 there is nothing to prove. Let
p € [1, +o0[. Consider the function

G:R =R, G(t) =t|t|P~.

G is a CH(R) function and G’(t) = p|t|P~1.
Let u be a C§°(R) function and define

We have
P eCoR),  [p®)]=u@®)’ and  ¢'(t) = plu(®)P~ ().

Consequently
Jull?. = sup [$(8)] < / ' (s)] ds = p / ()Pl () ds, (39)
teR R R

but, thinking at [u[P~! as a function in L*’, with % + ﬁ =1, we have

1
v

_ —_1\p p=1 _
([ [FP% Z(/R Ju(s)| P~V ds) 7 :(/R lu(s)P ds) 7 = |75,

so that from (39) and Holder inequality, we finally get

-1
[ullfee < pllullp,” [1W]|ze.

Hence
I AT
l[ull o < pPlullpe ” [[u'll 2o
We apply the Young’s inequality (see the Appendix) and we finally obtain
1 1
[ullzoe < p?([lullr + 1@ [|r) = p? ullwre. (40)

Let now u € W1P(R). From Corollary 13, possibly passing to a subsequence,
exists a sequence (uy, ), in C§°(R) such that

Up —= U in WH?(R) and almost everywhere.
Condition (40) implies that (uy), is a Cauchy sequence in L*(R) which con-

verges almost everywhere to u. Consequently the convergence is in L*°(R) and
moreover u € L°°(R). Passing to the limit in

1
ltn || < PP ||unl|lwir,
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we obtain (40) for u € W1P(R).

Suppose finally that v € W1P(I) with I C R. Consider the extension
operator P : WhP(I) — W1P(R). We apply to Pu the first part of the proof.
Then )

Pue L*(R) and ||Pulpem®) < p? ||[Pullwiem)-

Consequently v = Puj; € L*°(I) and
lull oo (1) < [[PullLe®) < p? [Pullwir®) < Cllullwisy,
where C' depends only on p and |I|. O
Theorem 60 (Rellich). Let I be an open interval in R, with |I]| < +o00.
i) If p €1, +00], then

Whr(1) € O(I) with compact embedding.

it) Ifp=1 and q € [1, +o0], then

whi(1) C LY(I) with compact embedding.

Proof. Let’s prove i). We already know that W1P(I) C C(I) (from the theo-
rem on continuous representative) and that the immersion is continuous (from
Sobolev theorem, when on C(I) we put the sup-norm). It remains to prove
that the embedding is a compact embedding, i. e. a bounded set in W1P (1) is
a relatively compact set in C'(I). To see this we use Ascoli-Arzela’s theorem,
showing that the functions in a bounded set of W1P(I) are equicontinuous. In
fact, for all w € WHP(I) with ||ul|yr») < C, we have

4 1 1
[u(z) —u(y)| < |/ [/ ()] dt < |z —y[*" |v||Lrry < Clz —y|#.

Holder

Let’s prove i¢). Also in this case the only thing to prove is that the embedding
is a compact embedding, i. e. a bounded set in W11(T) is a relatively compact
set in LY(I). We use, in this case, the Riesz-Fréchet-Kolmogorov theorem (see
[3, Cor. IV.26]). We recall that a set B is relatively compact in L(I) if the
following two conditions hold.

a) For all € > 0 and for all relatively compact set w in I, there exists 0 < § <
dist (w, 0I) such that,

ITnf — fllLaw) <€, forall h € R with |h| <9, and for all f € B.

b) For all € > 0 there exists a relatively compact set w in I such that

I fllce(nw) <€, and forall f € B,

We set
B={ue Wl"l(I) | lu|lwrr < Co}.
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Let u € B and let w be a relatively compact set in I and let h € R with
|h| < dist (w, I). We know, from the Theorem 55 and Remark 34, that there
exists C' > 0 such that

[Thu — ull 1) < C'|A].

Consequently

t/IU@%JU—uQOPdet/Iu@%JU—uwﬂKﬂthwV‘l¢rSCHhK2WMLwW‘3

hence
1 —

(/ u(z = ) —u(x)|" dz)s < C'[h] [|ull ",

where ¢/ = 2173(C'. From Sobolev theorem we have that there exists Ci >0
(depending only on ¢ and |I|) such that

l[ulle < Cullullwra,
then
I = ullzag) < €' (CoC)' 7 [R]s
and a) follows taking § = €7/((C")4(CyC1)?~!). Concerning the condition b), it
is sufficient to remark that, for u € B,
lull oy < llullzs [T\ |7 < Co Gy T\ w]7
and, since || < +o0, it will be possible to find a relatively compact set w such

that |I '\ w| < &9/(CoC1)971. The proof is complete. O

Remark 38. Let u € D(R), with u # 0. Consider the sequence (un)n, where
un(z) = u(r —n). The sequence (uy)n is bounded in WLYP(R), for all p €
[1, +00], but a subsequence which is converging in C(R) or in LI(R) does not
exists: the boundedness of I is a necessary condition in Rellich theorem.

Remark 39. Forn > 1, consider the function
1 if xell/n, 1],
up(x) = ¢ nx if ©e€l-1/n,1/n],
-1 if xel[-1,—1/n].

1t —————— un(2)

For all n, u, € Wh(] — 1, 1[) and

[[tnllwra =/ |u|+/ /| <242<4.
1-1,1] 1-1,1]

s

The sequence (uy)n does not have a subsequence which converges in C([—1, 1]).
In fact the sequence (uy,), converges pointwise to a non continuous function.
The immersion of Wh(] — 1, 1[) in C([—1, 1]) is not a compact immersion.
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17.1.2 Corollaries to Sobolev embedding theorem

Corollary 14. Letp € [1, +oo[. Let u € WHP(R).
Then
Proof. Let ¢ > 0 and consider (u,), in D(R) such that u, — u in WHP(R).
Then, by Theorem 59, u,, — u in L. As a consequence, there exists 7 such
that, for all n > n,
[t — uflLee <e.

In particular ||uz — ul/L~ < e and, since u; has compact support, there exists
R > 0 such that, for all z € R, if |z|] > R then uz(x) = 0. In conclusion,
for all € > 0, there exists R > 0 such that, for all z € R, if || > R then
u(@)] < un () — u(@)| < e. O

Corollary 15. Let p € [1, +o0o]. Let u, v € WHP(I).
Then
uv € WHP(I) and  (w) =u'v+uwv'.

Proof. We show first that uv and u'v 4+ wv’ are in LP(I). If p = oo, there is
nothing to prove. If, on the contrary, p < oo, we use Sobolev theorem, deducing
that « and v are in L?(I) N L*°(I) and the conclusion follows.

It remains to prove that

(uwv) = u'v + uv'.

Let p € [1, +oo]. Consider (uy,), and (v,), in D(R) such that

Un|1 LAY and Un|1 25 in Wl’p(I).
Hence
unui>u and vnui)v in L*(I).
We have
||unuvn|1 - UUHLP(I)
< Ntn rVn)r — wvnrllLe(ry + U vnr — wol|Le(r
< HUn\IHLoo(I) Hunu - U”L”(I) +||U||LP(I) anu - U||L°°(1)
—_——
bounded 0 50
and
||U%|1Unu —u'v o)
< g pvngr = @ vngrll ey + 6 vy — ']l Loy
< Nlonjrllpee oy 145 = wlleeny +lw'll Loy vnr = vllzen
—_——
bounded " "0
Consequently
Un|[Vn|1 S uw and u;uvn“—i—un“v;}u s wv+w’ in LP(I)
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and the conclusion follows from Remark 33.
Let p = co. We have to prove that, for all ¢ € D(I),

/I w g = — /1 (W'v + uv')p. (41)

Fix ¢ € D(I) and consider an open relatively compact interval J such that
Suppyp € J C I. We have that u;, v|; € Whe(J) for all p € [1,+o00[. Then

(41) is valid for the first part of the proof. O
Corollary 16. Let p € [1, +o0] and u € WHP(I). Let G be a CY(R) function,
with G(0) = 0.

Then

Goue WhP(I) and  (Gou) = (G ou)u'.

Proof. u € WP(I), so that, from Sobolev theorem, u € L*°(I) and conse-
quently there exists M > 0 such that ||u||pe(y < M. Then, considering the
continuous representative,

forall ze€l, wu(x)e[-M, M.

On the other hand, since G € C(R) and G(0) = 0, we have that there exists
C > 0 such that,

for all se[-M, M], |G(s)|<C|s|.

Hence
forall x €I, |G(u(x))| < Clu(z)l].

Consequently G ow € LP(I) N L (I). Similarly there exists C’ > 0 such that
forall z €I, |G'(u(z))]<C’
and then (G’ ou)u' € LP(I).
Suppose that p € [1, +oo[. We have to prove that, for all ¢ € D(I),

JiGowe == [(&owu)e. (42)

I I
There exists (uyp), in D(R) such that
Un |1 o in WYP(I), in L>®(I) and a. e. in I.

We remark that, since for all n, G o u,, is in C¢(R), then, for all ¢ € D(I),

J@oue == [(@ ouyite.

1

We know that ||ul| ;) < M, so that we can suppose, without any restriction,
that, for all n, [|uy||z~)y < M + 1. Consequently

|G oup —Goullpeomy < ( sup |G'(t)]) [Jun — ullLoe (),
|t <M+1

and we deduce

/I(Goun)go' L /I(Gou) o (43)
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On the other hand

I(G" 0 un) g, = (G 0 u) || o)

< G o un) uy — (G o w) up [l Lory + (G 0 u) uz, — (G o uw) u'||o(r)

< (G o un) = (G" o)l poo () lup |l Lo(ry + I1G" 0 wll Loyl — 'l o1y
Remark now that, since G’ on the interval [-M — 1, M + 1] is uniformly gii
tinuous, we have that for all € > 0 there exists § > 0 such that, for all

t1,ta € [—M -1, M + 1] , if |t2 — t1‘ < § then |G/(t2) — G,(t1)| < g, con-
sequently

if [wn — uf poery <90 then [(G" o un) — (G" o w)||peery < e.

We deduce that
lim [[(G" o up) — (G" o u)||oe(r)y = 0
n

and finally, from (44),
lim [[(G" o up) up, — (G o u) /|| Lo(ry = 0

and hence
[ ouwyuiye s [ enyuyy. (45)
I I

The conclusion is reached from (43) and (45) in the usual way.

Let p = oco. Also in this case we have to prove (42). Fix ¢ € D(I) and
consider an open relatively compact interval J such that Suppy C J C I. We
have that w7, v|; € WLP(J) for all p € [1,+o0c[. Then (42) is valid for the first
part of the proof.

O

17.1.3 The space W™P(I)

Definition 40. Let I be an open interval in R. Let p € [1,400] and m €
N\ {0, 1}. We define

W™ P(I) = {u € W IP(I) | u' € W™=HP(I)}

WmP(I) ={ue LP(I) |/, ", ..., u'™ € LP(I)},
where derivatives are to be considered in distributional sense. We set
lullwms = lullze + [/ llze + .+ [[u™ ] Lo
or, equivalently, in the case of p € [1, +00],
m 1
lullwme = (lallfo + 1w/ [Fp + -+ [ )7,) 7
Remark 40. We set W™?2(I) = H™(I). For m > 2, it is possible to show that

i) € L*(R)}.

m
2

H™R) = {u € L*(R) | (1 + [¢]*)
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17.1.4 The space W "*(I)

Definition 41. Let p € [1, 4oo[. Let I be a bounded open interval in R, i.
e. an open interval such that |I| < +oo. We denote by Wy (I) the closure of
C(I) in WhP(I).

Remark 41. W, (I) is the closure of C5°(I) in W'P(I). In fact, for every
function f of C§(I) there exists a sequence (up), in C§°(I) such that w, — f
and u!, 5 f" uniformly. This implies that u, — f in WHP(I).

Theorem 61. Let p € [1, +oo[. Let I be a bounded open interval in R. Let
u € WHP(I) and consider the continuous representative of u (we indicate it with
the same letter u).
Then
w e WyP(I) if and only if  wor =0.

Proof. Let u € W, P(I). There exists a sequence (u,), in C$°(I) such that
U, —= u in WP(I). From Sobolev theorem, u, — u uniformly in C(I). In

particular 0 = u,, (z) — u(x) for x € OI. As a consequence ujpr = 0.
Conversely suppose u € WHP(I) with ujpr = 0. Consider a function G €

C'(R) such that,
s if |s| > 2,
G(s) =
0 if |s|] <1,
and, for all s € R, |G(s)| < |s|. Consider

un(x) = 1 G(nu(z)).

n

From Corollary 16 we deduce that u, € WP(I). Moreover u, € C(I) and
un(z) = 0 if [u(z)] < L, hence Suppuy, is a compact set contained in I, i. e
u, € WyP(I). Tt remains to prove that u, — u in WHP(I). We let it as an
exercise. O

Corollary 17 (Poincaré inequality). Let p € [1, 4oo[. Let I be a bounded open
interval in R.
Then there exists C' > 0 such that, for all u € Wy"*(I),
ullwrery < Cllu'|| o),

i. e. |||l pe(ry s an equivalent norm in WyP(I).

Proof. Let I = la, b[. We have, for u € W, (]a, b]),

T b )
u@l=| [ W< [ W@lds < 0-0F i,

Consequently

b b
ﬂ, 1+5
[ u@Prde < [ o= a)F o, ) do = 6 - @ F ol
a a

and hence
lullzecry < (b—a)llu'l|Lo(ry-
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We conclude
lullwiry < ((0—a) 4+ DJu |-

Remark 42. We denote by HA(I) the space Wy *(I).

18

18.1 Sobolev spaces in one space dimension - 4

The content of this paragraph can be found in [3, Ch. VIII].

18.1.1 Examples of boundary value problems

Example 16 (Homogeneous Dirichlet problem). Let f € C([0, 1]).
Find u € C?(]0, 1[) n C([0, 1]) such that

{ " +u=Ff in 10, 1],

u(0) =u(1) =0. (46)

Problem (46) is known as the (classical) homogeneous Dirichlet problem. The
strategy for solving it will be the following.

a) Introduce a modified (weak) problem. The correct setting of this modified
problem will be crucial.

b) Solve the weak problem, using some suitable functional analysis results.

c¢) Check that the solution of the weak problem, with the conditions of the
classical problem, is actually the solution of the classical problem.

a) Let f € L*(]0, 1]).
Find w € H}(]0, 1]) such that

/ w' v Jr/ wo = fu, for all v € H}(]0, 1]). (47)
10,1 10,1] 10,11

Problem (47) is the weak homogeneous Dirichlet problem.

Remark 43. If u is a solution of the classical problem then u is a solution of
the weak one, if f = f. In fact, suppose that u € C*(]0, 1[) N C([0, 1]) is a
solution to the classical problem, then

/ (—u" +u)v = fo, for all v e Hy(J0, 1]).
10,1] 10,1]

and, integrating by parts,

/ u’v’—i—/ uv = fo, for all v € Hy(]0, 1]).
10,1[ 10,1] 10,1[

Finally, since u(0) = u(1) =0, u € H(]0, 1]).
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b) Let’s solve problem (47). We use Lax-Milgram theorem (see [3, Cor. V.8]).
We choose as Hilbert space H the space H}(]0, 1[), as bilinear form a, the form

a(wm):/ w’v'—i—/ W
10,1] 10,1]

and as ¢, element of H', the functional

¢:Hy(]0, 1) = R,  ¢(v) = fo.
10,1]

The existence and uniqueness of the solution w € H{(]0, 1[) follows. Remark
that, in particular,

/ w'e'= | (f-w)p,  forall peD(0,1]),
10,1[ 10,1]
with f —w € L2, so that w’ € H'(]0, 1[) and consequently w € HZ(]0, 1[) N

Hy (]0, 1]).

c) We show that the solution of problem (47) with f = f is the solution of
problem (46). Suppose that f = f € C([0, 1]). Take u = w. Since u €
HL(]0, 1[), we have u € C([0, 1]) with u(0) = u(1) = 0. Moreover

/ u’v’:/ (f —uw)w, for all v € HJ(]0, 1]).
10,1[ 10,1]
In particular

[ we= [ (r-we  oral ge (o),
10,1] 10,1]

i. e. v/ € HY(]0, 1]) (notice that, in particular, f —u € L?) and (v/) =u — f
in the sense of distributions. Consequently

/]0 1[(—(u/)'+u—f)30=0, for all ¢ € D(]0, 1]).

It remains to prove that u is in C? and (u’)’ is the classical second derivative.
This is a consequence of the du Bois-Reymond theorem. In fact u’ is continuous
(it is in H*(]0, 1])) and its derivative in the sense of distribution is u — f,
which is continuous. Remark that we can obtain the same conclusion using
the fundamental theorem of calculus. In fact the theorem on the continuous
representative implies that

V@) —i) = [ @Y= [ @ - o)

but w — f is continuous, so that v’ is a C! function.

Example 17 (Non-homogeneous Dirichlet problem). Let f € C([0, 1]).
Find v € C2(]0, 1[) N C([0, 1]) such that

" +u=f in 10, 1],
u(0) =a, u(l)="0, a, beR.
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Consider
v(z) =u(z) — (a+ (b—a)x).

Then

" "

vV =u and  —v"(z)+v(z) = —u"(2)+u(z)—(a+(b—a)z) = f(z)—(a+(b—a)z)

and
v(0)=a—a=0, v(l)=b—(a+(b—a)) =0,

1. e. v is the solution of

{ " fuv=7f in |0, 1],

where f(z) = f(z) — (a + (b— a)x).

Example 18 (Homogeneous Neumann problem). Let f € C([0, 1]).
Find v € C?(]0, 1[) N C*([0, 1]) such that

{ " tu=f in )0, 1],

v (0) = /(1) = 0. (49)

a) We introduce the weak problem considering f € L2(]0, 1[) and looking
for w € H'(]0, 1) such that

/ w’v'—i—/ wv = fu, for all v € H'(]0, 1]). (50)
10,1] 10,1] 10,1

‘We remark also in this case that the solutions to (49) are solutions to (50)
if f=f. In fact, if

—u"+u=f in ]0, 1],
u'(0) = /(1) =0,
then
(=" +u—flv=0, for all v € H(]0, 1]),
so that
/ —u'" v +/ uv = fo
10, 1] 10, 1] 10, 1]
and

"y = (= ()|} u' v = (W (0)v(0) —u (1) v u v
/Mu v=(~( >|0>+/]0’1[ (w(0) w(0) — /(1) “”*/]0,1[
We obtain

/ u’v’—l—/ uv:/ fo, for all v € H'(]0, 1]).
10, 1] 10, 1] 10, 1]
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b) We show now that, by Lax-Milgram theorem, problem (50) has a unique
solution. We choose as Hilbert space H the space H'(]0, 1[), as bilinear form

a, the form
a(w,v):/ w'v’—!—/ wv
10,1] 10,1]

and as ¢, element of H’, the functional

¢:H'(0,1) =R,  ¢(v) = fo.
10,1]

The existence and uniqueness of the solution w € H'(]0, 1[) follows.

¢) Let w be the solution of (50) with f = f € C([0, 1]). We have, in particular,
[ we=[ (-we  torall weD(o 1),
10, 1] 10, 1]

so that (w') = —(f —w) € C([0, 1]) and, consequently, w’ € H1(]0, 1[), w €
H2(]0, 1]), and finally (remember du Bois-Reymond theorem or the fundamental
theorem) w € C%(]0, 1[) N C*([0, 1]) with

—w" +w=f.

We have, for all ¢ € H(]0, 1[),
0 = [ (uu-pu
10, 1]

- / W'+ / wp— [ - (0)(0) — ' (1)i(1))
10, 1] 10, 1]

10,1]

=0 from (50)
= w'(1)¥(1) — w'(0)(0).
choosing ¢ in such a way that (1) = 1 and (0) = 0 we obtain that w(0) = 0
and, similarly, choosing ¢ in such a way that (0) = 0 and ¥(1) = 1, we deduce
that w(1) = 0.
18.1.2 Maximum principle for the Dirichlet problem
Theorem 62. Let f € L%(]0, 1]). Let u € H?(]0, 1[) be the solution to

" +u=f in 10, 1],
(51)

u(0) =a, u(l) =5, a, BER.

Then, for all xz € [0, 1],
min{«, S, infess f} < u(z) < max{a, B, supess f}.
Proof. We have
/ u' v —|—/ uv = fu, for all v € H}(]0, 1[). (52)
10,1] 10,1] 10,1[
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strictly increasing if s>0.

0 if s<0,
G(s) =

Let K = max{a, 3, supess f} and suppose that K < +o0.
We show that u(z) < K for all z € [0, 1] . Consider

v(z) = G(u(z) — K).

v € H(]0, 1]) and
v(0) = G(u(0) - K)
v(1) = G(u(l) — K)

Gla—K)=0,
G- K)=0.

Consequently v € Hg(]0, 1]) and we use it inside (52), taking into account that
v'(z) = G'(u(z) — K)u/'(z).
We have

/ u'G’(u—K)u’—i—/ uGu—K) = fGu—K)
10,1] 10,1 10,1]

1. e.

WG (u—-K u—K)YGu—K) = —K)Gu-K).
/Mu (u—K)+ /]071[< ) Glu— K) /]071[(f ) Glu— K)

>0 <0

We obtain
/ (u—K)Gu—K)<0.
10,1]

Remarking finally that the function z — x G(x) is nonnegative, we have that
(u(z) — K)G(u(z) —K) =0 for all z €0, 1],

and hence u(x) — K < 0 for all « € [0, 1]. The computation to show that
u(z) > min{a, B, infess f} is similar. O

19

19.1 Sobolev spaces in N space dimensions - 1

The content of this paragraph can be found in [3, Ch. IX].

19.1.1 Generalities
Definition 42. Let 2 be an open set in RN. Let p € [1, +00]. We define
WhP(Q) = {ue LP(Q) | Ig1,....9n € LP(Q) :

Vo e Cy(Q), Vi=1,...,N, /Quajas:f/ﬂgm}-

W12(Q) will be denoted by H'(£2).
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Remark 44. i) In the definition of W1P(S) it is sufficient that
/uaﬂpz—/gj% for all ¢ € D(Q).
Q Q

ii) The functions gi1,...,gn are unique and, for each j, g; is the (function
associated to the) j*" partial derivative of u in the sense of distributions.
We set g; = Oju.

WhP(Q) = {u € LP(Q) | Vu € (LP(2))"},
where Vu is the gradient of uw in in the sense of distributions.
Definition 43. We define

N
lullwr ) = lull o) + IVl @o@py = llullze@) + D 105ullzr (@)

j=1
and
N
1 1
lull @) = (lullfz) + IVullfre@)yn)? = (lullfz) + > 105ulliz)?-
=1

Theorem 63. WP(Q) is a Banach space. If p € [1,+oc[, then WHP(Q) is
a separable Banach space. If p € |1, +oc[, then W'P(Q) is a reflexive Banach
space. H'(Q) is an Hilbert space.

Proof. The proof is the same in the case N = 1. O

Remark 45. Also in the case of WP(S), it will be useful to remember that if
a sequence (uy,)y, is such that u, — u in LP(Q) and, for all j, Oju, — v; in
LP(R), then uw € WHP(Q) and, for all j, Oju = v;.

19.1.2 Properties of WP(Q)

We give a first result of density.

Theorem 64 (Friedrichs). Let p € [1, +oo[. Let u € WhP(Q).
Then there ezists (u,)n, € D(RY) such that

i)

Un |0 o in LP(Q).
i1) for all w, relatively compact open set in Q,

Vg, = Vauy, in (LP(w))N.

In the case of Q = RN, there exists (uy), € D(RY) such that

Up —= u in WHP(RY).
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Proof (sketch). First of all, we consider the function
u(z) if ze€qQ,
{ 0 if zeRV\Q.
We have @ € LP(RY). With (p,,),, a family of mollifiers, we define
Uy = Pn * U.
Finally we take y € D(R™) such that
1 if |z <1,
X = { 0 if |z >2,

S|

and, for all n > 1, x,(z) = x(
We define

Up = Xn(pn * ).
While the proving of u, o s win LP (R™) is standard, a little more complicated
it will be to show that Vuy,, BLLEN Vuy, in (LP(w))™N, for all open relatively
compact set w of . For this it will be useful to remember that if f € L(RY) and
v e WHP(RYN), with p € [1, +00], then fxv € WHP(RN) and 9;(f xv) = fx0;v.
O

Remark 46. In general, if N > 1, a sequence (wy,), € D(RY) such that
Wn |0 5w in WYP(Q) does not exist, differently from what happens for N = 1.
We will se that this depends on the regularity of 0S2.

Remark 47. Let Q be an open set in RY. Consider WP (), withp € [1, +o0].
Let

H={ueC®®Q)|ueL’(Q) and Vu € (L?(Q))V} = C™(Q) nW'?(Q).

It is possible to prove (see [12] and [1, Th.5.16]) that H is dense in WP(L), i.
e. for allu € WHP(Q) there exists (vy,)n € C°(Q) such that

i) Un —= u in LP(),
i) Vv, —= Vu in (LP(Q))V.

Concerning this theorem, R. A. Adams says “it is surprising that this elementary
result remained undiscovered for so long” [1, p. 45].

We give a result on W1P(Q), for p > 1.

Theorem 65 (Characterization of WhP(Q), for p > 1). Let p € ]1, +o0].
Suppose u € LP ().
Then the following conditions are equivalent.

i) u € WhP(Q).
i1) There exists C > 0 such that, for all ¢ € D(Q) and for all j=1,... N,

1 1
‘/ udjp| < Cllll s where — 4 — = 1.
Q2 p P
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i11) There exists C > 0 such that, for all w, relatively compact open set in €,
and for all h € RN, such that |h| < dist(w, 09),

lThu — ul| ey < C|h, where Thu(x) = u(z — h).

Proof. The proof is the same as in the case N = 1, apart from the implication
i) = iii). Let’s see the details. Suppose first that u € D(RY), h € RV, and
define

v(t) = u(x — th), teR.

We have v'(t) = —h - Vu(x — th) and hence

1 1
u(z) —u(z —h) =v(0) —v(l) = 7/ V' (t)dt = / h - Vu(z —th) dt.
0 0
As a consequence, using Holder inequality,
1
|Thu(z) —u(z)P < |h|p/ |Vu(z — th)|P dt,

0

and

/\Thu< ) —u(a |”dat<|h|p// V(e — th)P dt de

<|h|p//|Vux—th|pdxdt<|h|p// V() de dt.
w—+th

Considering now the fact that |h| < dist(w, 0€2), it will exists a relatively com-
pact open set w’ in Q such that w + th C w’ for all ¢ € [0, 1], so that

Il < P [ 9l (53)
Let now v € W1P(Q), with p € [1, +oo[. By Friedrichs’ theorem there exist a

sequence (up,), in D(RY) such that u, o 5w in LP(Q) and Vn | % Vu
n (LP(w'))N. But from (53), for all n,

1
||7-hun - un”LP(w) S |h|(/ |vun‘p)pa
w/

so that we can pass to the limit with respect to n. It remains to consider that
case p = +oo. Given u € WH*(Q) we have

1
s =l < BIC [ 190,

for all p € [1, 400 and we can pass to the limit with respect to p, obtaining
I7nw = ull oo () < [R] V]| poo ). (54)

O
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Remark 48. The difference in the proof of Theorem 65 above, with respect to
the Theorem 55, is due to the fact that for v € WHP(Q) with N > 2 there is
no a continuous representative. An example is given by the function u(x,y) =
(22 +92)"% in Q = {(z,y) € R? | 2% +y? < 1}. uw € WH(Q) but there is no
continuous functions defined on Q which coincides with v almost everywhere.

Remark 49. From (54) it is possible to deduce the following fact. Let u €
W1oo(Q). Then for all zg € Q) there exists vy, > 0 such that, for almost all
T,y S B($07T:L’o);

u(z) = u(y)] < [IVull Lo () [ =yl
Remark 50. Let u € LY(Q) such that there exists C > 0 such that, for all
p€D(Q) and for allj=1,...,N,

| / udspl < Cllgl.

This is equivalent to the fact that there exists C' > 0 such that, for all w relatively
compact open set in Q and for all h € RN such that |h| < dist(w, 09),

lThu — 1wy < Clhl.

The functions satisfying these properties are called BV () functions (functions
with bounded variation on ). We have

WhH(Q)GBV(Q).

We list finally three various properties on W?(€2). The proofs of the theo-
rems can be found in [3, Ch. IX].

Theorem 66 (Derivative of a product). Let p € [1, +o0]. Let u, v € WHP(Q)N
L>(Q).
Then uv € WHP(Q) N L*>®(Q) and, for allj =1,...,N,

0;(uv) = djuv + ud;v.

Theorem 67 (Derivative of a composition). Let G € C(R) with G(0) = 0
and |G'(s)| < M, for some M > 0 and for all s € R. Let p € [1, +00] and
u € WhP(Q).

Then G ou € WYP(Q) and, for all j =1,...,N,

9j(Gou) = (G ou)dju.

Theorem 68 (Change of variables formula). Let Q and Q' open sets in RN and
suppose there exists a bijective function ® : Q' — Q such that

® e CH), o le (), Jac® e L>™(Q), Jac®™! € L=(Q),

where Jac ® and Jac® ! are the Jacobian matrices of ® and ®~1 respectively.
Let u € WhP(Q).
Then uo ® € WHP(Q') and, for all j =1,...,N,

N
ayj (u © (b)(y) = Z 69:;1”((1)(?4)) ayj Dy, (y)
h=1
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19.1.3 The space W™P?(Q)

Definition 44. Let Q2 be an open set in RN . Letp € [1,+00] and m € N\{0, 1}.
We define

W™P(Q) ={ue W™ P(Q) | Vu e (W™ P(Q)N}

W™P(Q) = {u € LP(I) | D*u € LP(Q), for |a| < m},

where derivatives are to be considered in distributional sense. We set

lallwms = D 1D Lo

la]<m

or, equivalently, in the case of p € [1, +00],

1
lullwme = (Y I1D%ul7,)7

laj<m
Remark 51. We set W™?2(Q) = H™(Q). It is possible to show that
H™RY) = {ue LXRY) | (1+[*)Fa(€) e L*(RY)}.

19.1.4 Extension operator for u € W1P(Q)

As we will see, the possibility of extending a function of W1P(Q) to the whole
RY will depend on the regularity of the border of (2.

Definition 45. Let

r=(21,...,TN), ¥ = (z1,...,on_1), so that r=(2,zn).

Let R, r > 0 and
Br.+(zf, Tno) = {(2',zn) € RY | |#" — x| < R, |zn —2Nno| <7}

Bpg, will denote Bg (0,0). Let Q be an open set in RYN. Q is said to be of
class Ct if, for all zg € 09, there exists U, open neighborhood of xo and there
exists ® : U — Bpg, such that

i) ® is invertible and ® € C*(U), ®~! € CY(Br,,);
i) ®(UNIN) ={x € Br, | any =0} and 2(UNQ) = {z € Br, | xn <0}

Theorem 69. Let p € [1, +oc]. Let  be an open set of class C* in RY.
Suppose that O is bounded (or Q is an half-space).
Then there exists an operator P : WP (Q) — WLP(RYN) such that:

i) for allu € WHP(Q),
Pujg = u;

ii) there exists Co > 0 such that, for all u € W1P(Q),

| Pull r vy < Collull e )
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iii) there exists C1 > 0 such that, for all u € WHP(Q),
| Pullw1.p@yy < Crllullwreq)-
Proof (sketch). The first result needed in the proof is the following lemma, the
proof of which can be found in [3, Ch.IX].

Lemma 21. Let p € [1, +00]. Let u € WHP(Q), where
Q={z € Bg,, |y <0}.

Let

'LL((E/,.’EN) Zf (xlva) € Qv

vz’ xy) =

w(z',—xn) if (&/,—xNn) € Q,

i. e. v is defined with a reflection with respect to the hyperplane {xn = 0}.
Then v € WY?(Bg,) and

lvllr(Br.) < 2lullLr ), lvllwir(Bg.) < 2lullwie@)-

Secondly, a modification of the usual partition of unity result will be es-
sential. The proof can be obtained suitably fitting out that one of Theorem
32.

Lemma 22. Let K be a compact set in RN . Let Uy, ..., Us be open sets in RV,
with K € U5_, U;.

Then there exist ¢y € C(RN) with Supp g C RN \ K and, for all j =
1,...,k, v; € C§°(U;) such that,

Z@j(ﬂC) =1, for all zeRVN.

If Q is a bounded open set and K = 08, then vg o € C5°(€2).

Let us come to the sketch of the proof of the extension theorem. If 2 is an
half-plane, a reflection (Lemma 21) will be sufficient to obtain the conclusion.
Suppose then that © is bounded and of class C'. Every point of the border of
will have an open neighborhood U satisfying the requests of Definition 45. It is
possible to consider a finite sub-covering Uy, ..., U. We use Lemma 22 and we
construct a partition of unity. Take now the function u € W1?(€2) and consider

We extend each of the u; to RY. In particular uo will be extended considering

{ uo(z) if z€Q,

W@ =1 it 2 g Q.

To conclude let’s see how to do with u;. We consider the function v on U; N ).
Using the function ® from Definition 45 and the result of Theorem 68, we
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obtain a WP function on the set {# € Br, | 2y < 0}. Lemma 21 extends
this function to the whole Bg, and ®~! gives a function on W?(U;) which
coincides with u on U; N ). We call it v1. We set

- B p1(x)vi(z) if €Uy,
=9 if g U

To conclude the proof it will be sufficient to verify that

satisfies all the requested properties. O

Corollary 18. Let p € [1, +oo[. Let Q be an open bounded set of class Ct in
RN, Let u € WHP(Q).
Then there exists a sequence (U, )y in D(RN) such that

Un |0 s u in WHP(Q),
i. e. the restrictions to Q of the functions of D(RY) are dense in W1P(Q).

Proof (sketch). We extend the function u to Pu defined on the whole RY
using Theorem 69. Then the sequence (see Theorem 64)

Up = Xn(pn * Pu)
will give the wanted conclusion. O

Remark 52. In Corollary 18, the hypothesis of boundedness for the open set ()
can be removed.

20

20.1 Sobolev spaces in N space dimensions - 2

The content of this paragraph can be found in [3, Ch. IX].

20.1.1 Sobolev embeddings

Remark 53. From now on we will use the notation

IVullLomyy instead of  [[Vull(pr@yyy~.

Theorem 70 (Sobolev-Gagliardo-Nirenberg). Let p € [1, N[ and let p* such
that ) ) N
— == 1. e. pt = note that p* > p).
P p N N-p ( /
Then

WP (RN) € L7 (RY)
and there exists C' > 0 such that, for all u € WHP(RYN),

[l Lo+ vy < ClIVull Lo @y (55)
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Remark 54 (important). Let p € [1, N[. Suppose that there exist ¢ € [1, +o0[
and C > 0 such that

WL (R") C LI(RY) (56)
and
lull oy < CVullpory,  for all we W(RN), (57)
Then necessarily
pN
q= .
N—p

This result is due to the so called property of “scaling”. In fact, suppose (56) and
(57) are valid and consider u € WP (RY). Then, taking A\ > 0, the inequality
(57) should be true also for the function v(x) = u(Ax) with the same value of
C, i e.

[uA)[La@yy = [0l Lo@ny < CIVOlLe@yy = OV (w(X)) || e @)

We have

1 — 1 _N
[ Loy = (/ [u(Az)|? dz)s = (/ u(@)|PA dy)s = A7 |l o).
RN RN

change of variables Az=y

On the other hand
9jv(x) = 0j(u(Ax)) = Adju(z),

so that
V(u(A)) = A(Vu)(A-)

and

V@D, = ([ NV do)

B (/RN AVu) ()P AN dy)r = A5 [Vl Lo ).
Resuming, if (56) and (57) hold, then
A7 ull pagery < ONT 7 | Vull poeny,  for all w€ WHP(RN) and for all A > 0.

Choose now u € WHP(RN) C LY(RY) such that ||u]| parny # 0 (for this it would
be sufficient to take u € D(RN) with u # 0). We deduce

IVullze@y)

Ar i< . forall x> 0. (58)

”u”L‘I(]RN)

If % — % —1 > 0, then, letting A — 400 in (58), we obtain a contradiction.

Similarly, if % — % —1 < 0, we obtain a contradiction letting A — 0%. As a
consequence, necessarily,

1
- —1=0, i. e. =
P q q N

D=
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Lemma 23. Let N > 2 and let f1,..., fy € LN"YRYN~1). Denote
Ti = (w1, Tim1, Tig1,. .., oy) €RNT

and define
f(@) = f(z1,....2n) = f1(31) f2(22) ... [N (ZN).
Then

N
feL'(RY) and  ||fllpr@yy < H Il fill Lv—1@my-1y-

Proof. The case of N = 2 is the simplest. In fact, by hypothesis, we have
fi, fo € LY(R) and f(21, 22) = fi(22) fo(z1). Consequently f € L'(R?) and

e = [ 1A @)l dode,

- / i (2)| d / alen) dar = | fulle | ol
Consider N = 3. Then fi, fo, f3 € L?*(R?) and

f(ﬂ?h 172,333) = f1($27I3)f2(171,I3)f3(931,$2)-

The function
(22, 23) > fi (22, 73)

is in L'(R?), so that, for almost every 3 € R and x; € R respectively, the
functions
Ty > fE (20, 23) and Ty > fo(x1, o)

are in L'(R). Hence for almost every z3 € R and z; € R respectively, the
functions
zo > fi(z2,23)  and  zp = f3(z1,72)

are in in L?(R). Consequently, for almost every (z1,z3) € R?, the function

xo — f1(xe,x3) f3(x1, 22)

is in L*(R) and, from Cauchy-Schwarz,

/ |f1<x2,x3>f3<x1,x2>\dx2§(/ \f1<x2,x3>|2dx2>%</ sl a2)? di)E.
R R R

(59)
Now the functions

$3F—>/|f1(x2,1173)|2d1’2 and IL’lF—>/|f3(£171,ZZZ2)|2dZL'2
R R

are both L!(R) and then

($1,$3 /|f1 552,333\ déUz 3 /|f3 $1,$2)| dfﬂz)%
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is in L?(IR?). Hence, from (59), we have that the function
(z1,23) / | f1(z2, 23) f3(21, 22)| do
R
is in L?(R?) and

/ | / i (@ay 3) (@1, 22)| daal? dardas
R2 R

S/RQ(/R|f1(302>$3)|2d$2/R|f3($1,$2)|2d$2)d$1d$3

//|f1 2, 23)|? das) das - //|f3 x1,22) % dwg) day

= [l £ill72rey) 1111722y

In conclusion the function
(xlaxS)'_>/R|f1(1'2>$3)f3(x17x2)|dx2
is in L?(R?) with norm < || f1 | z2(r2) || f3]|L2(r2). We obtain that the function
r1, 73— fa(T1,23) - /R |f1(z2,73) f3(z1, 72)| d2o

is in L*(R?) and, again from Cauchy-Schwarz, we deduce

/|f2(931,5E3)f1($27583)f3(€ﬂ1,$2)\d$1d$2d$3
R3

=/ |f2($1a333)|(/ |f1(z2, 23) f3(w1, 72)| dv2) dz1dTs
R2 R

< | fellez@2) 1 f1ll 22y 1 3]l 2 (m2)-
The case N > 4 is obtained with an intricate procedure of recursion on N. The
details can be found in [3, Ch. IX, Lemma IX.4]. O

Proof of Theorem 70. Let u € C}(RY). We have, for all j =1,2,..., N,

Zj +o0
|u(a:)|:|/ aju(xl,...,xj_l,t,xj+1,...,xN)dt\g/ Oular, .oty an)|dt.
— 00

— 0o

We set, for all j =1,2,..., N,

+oo
gj(fij):/ |6ju(£€1,...,t,...,l’1\])|dt

—0o0

and consequently

N < Hga(i’ )
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Defining

£i(@5) = (95(27)) 71,
we have f; € LN (RN ~1) with

||fjHLN—1(1RN—1) = (/]RN |9J x9)|d$1) = ||8 U||L1 (RN) < HVUHLl (RN)

and

\ /\

s <1l

We apply Lemma 23 and we obtain

N

lull ™ %
LN I (RN

N
r w1
= I ey < Tl < TLIVIE G,
j=1 j=1

In conclusion, we have proved that if u € C}(RY) then

il < [IVullLr @) (60)

LN T (RN)

Remark that (60) is actually (55) in the case p = 1. Suppose p > 1. Now, for
t > 1, we apply (60) to the function v(x) = |u(x)|*~lu(z). Remarking that

djv(x) = tlu(z)[*~ dju(x)
we obtain

ull’ g =l < IVollpr@yy = tlul =" Vull 11 gy,

N 1(]RN) LN T(RN) —

Since u € C3(R™), we infer
"' e LP(RY)  and  Vue LP(RY) with % + 1% =1.
Using Holder inequality we have
el Yl pr @y < el o vy Vel o@eyy = llull b @y Vullze @y

Putting all together we finally obtain

I, g, ey < Sy [Tl (61)
The trick is to choose t > 1 is such a way that
tN P
t—1 i. e. t= N —1). 62
=P e T (62)
With this choice, (61) becomes
p(N —1) . 1 1 1
p* < —||V th —=-——.
flull L (RN) = N—p I UHLP(RN) w1 > » N
——
=Cn.p
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Suppose now u € WHP(RY). From Friedrichs theorem we know that there
exists a sequence (uy), in D(RYN) such that u, — w in WHP(RY). Tt is not
restrictive to suppose that u,, — u a. e.. This sequence is a Cauchy sequence
in W?(RN) so that, from (55), it is a Cauchy sequence in LP (RY) and it
converges a. e. to u. Consequently u € LP (RM) and we can pass to the limit
n (55). The proof is complete.

O

Corollary 19. Let Q be an open set of class C' in RN . Suppose that 0 is
bounded (or Q is an half-space). Let p and let p* as in Theorem 70.
Then
WhP(Q) C LP ()

and there exists C > 0 such that, for all u € WP(Q),
[ullL ) < Cllullwr)-
Proof. Use the extension theorem (Theorem 69) and Theorem 70. In particular

lull Lo @y < 1Pull Lo vy < CllPullpro@yy < Clluflwrr()-

Corollary 20 (case p = N). For all ¢ € [N, +o0|,
WI,N(RN) g Lq(RN)
and there exists Cy > 0 such that, for allu € WHN(RN),

lullpa@yy < Collullwrny @ny-

Proof. Let u € C}(R™). We know that (remember that, in the proof of Theorem
70, up to the point (61), we did not use the fact that p < N; this condition was
only used in determining the correct ¢ in (62))

el g, <t

N-1(RN) LP'(t=1) (RN) HVUHLP(]RN)a

and this is valid also in the case p = N, so that

t t—1
I, gy < O IV e,

for all t > 1. We deduce

1
1-%

1
lull g, o < Cellul I90ll} v e

N-T(RN) —

N
VNS (RN)

and finally, from Young inequality,

[l | e < Ci([lull

LN=T(RN) — N + ”VUHLN(RN)) (63)

VNS (RN)

Choosing t = N in (63) we have

HUHL]@['Z] ) < On(Jullpry @yy + VUl v way)
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and, by interpolation, we infer that

[ullpo@yy < Cngllullwr~ @) (64)
for all ¢ € [N, NN—_QI] = [N,N + :%5]. Choosing t = N + 1 in (63) we have

Il g S Onalll g, 4 IVl a)

and, from (64),
[ull v2enw < ON+1(||U\|LN(RN) + [IVullpy @yy)-
L N—-1 (RN

Finally
HUHLQ(RN) < CN,qHUHWLN(RN)

for all ¢ € [N + %, N + %] Iterating this procedure we obtain that

Hu”L’I(RN) < CN7q u”Wl,N(RN)

for all u € C}(RY) and for all ¢ € [N, +oc[. An approximation procedure like
in Theorem 70 gives the conclusion. O

Corollary 21. Let Q be an open set of class C' in RN . Suppose that 0 is
bounded (or Q is an half-space). For all g € [N, +0o0],

whN(Q) C LY(Q)
and there exists Cq > 0 such that, for all u € WL (Q),
HUHL‘?(Q) < Cq”uHWl,N(Q).

Proof. Use the extension theorem (69) and Corollary 20. O

21

21.1 Sobolev spaces in N space dimensions - 3

The content of this paragraph can be found in [3, Ch. IX].

21.1.1 Morrey theorem
Theorem 71 (Morrey). Let p € |N, +0o0].
Then
WHP(RY) C L®(RY)
and there exists C > 0 such that, for all u € WP (RYN),
[[ul| oo mvy < Cllullwre ). (65)

Moreover there ezists C' > 0 such that, for all u € WHP(RY),

lu(z) —u(y)| < C’ ||vu||Lp(]RN) |z — y|® for almost every xz,y € RY, (66)

whereazl—%.
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Proof. In the case p = 400, (65) is immediate and (66) has been proved in
Remark 49. Let p € N, +oo[. Let u € CL(RY). Let @ be a cube in R, con-
taining 0 and such that the sides, of length > 0, are parallel to the coordinate
axes. Let z € . We have

1
u(z) —u(0) = /0 V' (t) dt, where v(t) = u(tz).

Consequently
1 1 N N 1
u() —u©)] < [ W@l [ 3 falloutta)lde < r > [ (0juta)
0 0 = = Jo
(67)
Defining
0= @ de =g [ (@)
U= — U\xr)axr = —= u\xr)axr,
|Q\ Q rN Q
we have

i u(0)] = jv/Qu<:c>dx—u<o>|

1 1
o | o)~ ) o] < i [ fuke) - o)t

so that, from (67),

u—u(0)] < 3= 12/ / |8;u(tz)| dt) dx

erl/ E /|5utw|daz
1 ! N
< t~ d;u dy) dt
= erl/O (;:1 /tQI u(y)| dy)

Considering the fact that, for all ¢ € [0, 1], tQ C @, from Hoélder inequality we
have

N

/@-u( dy < |(tr)N | </ Dyu(y)lP dy)s <o
tQ

\\2

1
([ iy}
Putting together we obtain

@ — u(0)]

1—-N
T

1
1+5-N N_N P
Ty ||vu||L”(Q)/ tr N dt = N [VullLr @)
. N
p

IN
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This last inequality remains valid, by translation, for all cube @ with length
side 7, so that we have, for all for all cube @ with sides of length r,

1 N
i@ — u(z)| < f, VUl  forall zeQ. (68)
P

Consequently, for all z, y € Q,
1—-N

_ _ ror
u(@) = u(y)l < |a - w(@)] + o - u(y)] < 20— IVullzr@)-
P

Since for every couple of points =, y € RV we can construct a cube of length
side r = 2|x — y| (with the sides parallel to the coordinate axes) containing x
and y, we have, for all z, y € RY,

bl

(2l — ) "
lu(z) —u(y)| <2 THVUHLP(Q) < 'z —y[' 7 |Vl e

p

and (66) is proved for u € C¢(RY). To obtain (66) for u € WIP(RN) we
use Friedrichs theorem as done in the proof of Sobolev-Gagliardo-Nirenberg
theorem.

It remains to prove (65) in the case p € [N, +oo|. Let u € CL(RY), let Q be
a cube of side of length 1 and let € Q. From (68) we have

u(@)] < |al+]a—u(@)| < [a]+C|Vullzr(g) < Cllullwre@) < C'llullwrr@y),
where C' and C’ depend only on p and N. Hence there exists C' > 0 such that
||U||Loo(]RN) < CHUHWl,p(RN), for all u e Cé(RN)

This last inequality can be proved for all u € W1?(RY) with the usual applica-
tion of Friedrichs theorem. O

Remark 55. The condition (66) says that, if p > N, u € WHP(RY) has an
Holder-continuous representative, 1. e. we will write

Wl,p(RN) g CO,Q(RN)’

where a =1 — X,

P
Corollary 22. Letp € |N, +oo|. Let u € WHP(RY).
Then
lim wu(z)=0.
|z] =400
Proof. Exercise. ]

Corollary 23. Let Q be an open set of class C' in RYN. Suppose that 0 is
bounded (or § is an half-space). Let p € |N, +0o0].
Then
Wi (@) € L2(Q)

and there exists C > 0 such that, for all u € WP(£),

el < Cllullwsoer-

Proof. Exercise. O
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21.1.2 Rellich theorem

Theorem 72 (Rellich). Let 2 be an open bounded set of class C* in RY.
i) If p € [1, N[, then WtP(Q) C L4(Q), for all q € [1, p*[, with p% = %— %

i) If p= N, then WP(Q) C L4(R), for all q € [1, +o0].

iii) If p € |N, +oc], then WP(Q) C C(9Q).

All the above embeddings are continuous and compact.

Proof (sketch). Sobolev-Gagliardo-Nirenberg theorem, Morrey theorem and
corollaries, give the continuity of the embedding

WhP(Q) — L9(Q)

in the the cases p < N and ¢ =p*, p= N and q € [p,+oo[and p > N, ¢ = 400
respectively. Since (2 is bounded, remarking that, for all 1 <7 < ¢

Q) CL(Q)  and  ullpr) <197 |ullpaq)  for all ue LI(RQ),

we have the continuity in all the cases quoted in points i), %) and 4ii). Conse-
quently only the compactness is of interest (remark also that, in any case, every
compact operator is continuous).

The point 444) is the same as in the case of N =1 and it is a consequence of
(65), (66) and Ascoli-Arzela theorem.

The point i) is a consequence of the point ), since, for {2 open bounded, a
bounded set in W?(Q) is bounded also in W7 (Q), for all r € [1, p].

The point ) will be proved using Riesz-Fréchet-Kolmogorov theorem (see
[3, Cor. IV.26]). We recall that a set B is relatively compact in L4() if the
following two conditions hold.

a) For all € > 0 and for all relatively compact set w in €, there exists § <
dist (w, 092) such that,

|Thu — ullpaqy <€, forall h € R, with |h| < ¢, and for all u € B.
b) For all € > 0 there exists a relatively compact set w in € such that
ull Lago\wy < €, and for all u € B,

Let ¢ € [1, p*[ and « € ]0, 1] such that

1 a 11—«

Let w be an open relatively compact set in ©Q and |h| < dist (w, Q). From
interpolation inequality we have

17—l paqy < Imnu = ullfa ) I — ull 5%,
From point i) of Theorem 65,

[Thu — ullLrwy < TRVl ),
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so that
7t — ull Loy < (R IVUllL @) @llull Lo ()~ < C |

and finally ||7,u — ul|pa() < € for |h| sufficiently small, for all v in a bounded
set of WLP(Q). Similarly, it is possible to choose w open relatively compact set
in  such that

lull orw) < Ml o @) 2\ w777 < CIQ\ w757 <.

Holder
|
21.1.3 Sobolev embeddings for W™ P spaces
Example 19. Let u € W2P(RYN), with p € [1, N[. We know that
ue WHPRY)  and  Vu e WHP(RY),
so that, by Sobolev embedding,
wel” (RY)  and  Vue I’ ®V), with ~-—1_21
P p N
In conclusion, if p € [1, N|,
W2P(RY) € wheT(RY), with  ~-1_1
- P p N
Example 20. Let u € W2P(RN), with p € ]%, N[. We know that
. 1 1 1
uwe WP (RN), with ~— — == — —.
(&) P p N
We have
N 1 1 2 1 1 1 1
— N e —<-<-=— that —=-—— < — *> N.
2<p< ZeN<p<N soap)k pN<NZe p >

In conclusion, if p € ]%, NI,

W2P(RN) C L= (RY).

Example 21. Let u € W22 (RYN). We know that
x 1 2 1 1
whr (RN ith —=—= ===
weWRERY),  with SR TNTW

so that u € WHN(RN). In conclusion

N
W22 (RN) C LYRY)  fordll g€ [+ ool
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Example 22. Let u € W2P(RN), with p € [1, §[. We know that

. 1 1 1
ue Wh? (RV), with —~— — =-— —.
P p N
We have
N 2 1 1 1 1 1
<= de —<- that —=-——> — * <N
P45 de , so tha v NON i. e. p
In conclusion, if p € [1, &,
« 1 1 1

W2P(RY) C LPT(RY),  with =— - _=
p

Theorem 73. Let m € N\ {0, 1}. Let p € [1, +0].

i) If p < %, then WmP(RN) C LP™ (RN), with -tz = 1

i) If p= 2 then WmP(RN) C LYRN), for all g € [X, +o0].
iii) If p> &, then W™P(RN) C L>(RY).

All the above embeddings are continuous. Moreover if m — % > 0 (i.e. in the

case iii)) and m — % s mot an integer, denoting by

N N
k = integer part of m — —, 0 = fractional part of m — —,
p p
we have
wmr(RY) C CHRY),
and there exists C' > 0 such that

> D[ oo rry < Cllulwomr @)
o<k

and
|D%u(x) — D*u(y)| < Clluflwmr@ny |z —yl°

for a. e. x, y € RN and for all o with |a| = k (we will say that u € C*9(RN)).
Proof. Exercise. ]

Corollary 24. Let Q be an open set of class C' in RN . Suppose that 0 is
bounded (or Q is an half-space). Let m € N\ {0, 1}. Let p € [1, +0o0].

i) If p< X, then WmP(Q) C LP"(Q), with - =1

Pt

b
i) If p= 2 then W™P(Q) C L1(Q), for all ¢ € [&, 400l

2fs

iii) If p> &, then WmP(Q) C L=(Q).
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All the above embeddings are continuous. Moreover, in the case iii), i. e. if
m — % >0 and m — % is mot an integer, denoting by

N N

k = integer part of m — —, 0 = fractional part of m — —,
p
we have -
wmP(Q) € CF(Q),
and there exists C' > 0 such that
> D[l ry < Cllullwmr(q)
lal<k

and
|D*u(z) — D*u(y)| < Cllullwm.ro) |z —y|°

for a. e. x,y € RN and for all o with |a| = k. i. e. u € C*9(Q).

22

22.1 Sobolev spaces in N space dimensions - 4

The content of this paragraph can be found in [3, Ch. IX].

22.1.1 The space W, 7”(Q)

Definition 46. Let p € [1, +oo[. Let Q be an open bounded set in RYN. We
denote by Wy (Q) the closure of CA(Q) (or equivalently C3°(Q)) in WhP(€).
We set

Wy ?(Q) = Hg(Q).

Remark 56. Let p € [1, 400[. We have defined Wy (I) and Wy P(Q) for I C R
and Q@ C RY open bounded set, in particular I is an open bounded interval.
Suppose to define Wy P(I) and Wy (Q) for I and Q open sets different from R
and RY respectively. In such a case we know that

Wa(1) G Who(I).

In fact, for all u € Wol’p(I), u is continuous on I and uppr = 0. On the
contrary, for Q open set in RN, N > 2, it is not the case, in general. E. g.
consider = R?\ {0},

Wy P(Q) = WhP(Q)

for p € [1, 2[. The proof is let as an exercise.

It is possible to prove the following result (details can be found in [3, Ch.
IX]).

Theorem 74. Let p € [1, +oo|. Let Q be an open bounded set in RY. Let Q be
of class C*. Let B
ueWhHP(Q)NC(Q).

Then
ue WyP(Q) if and only if  ujpg = 0.
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Remark 57. We remark that, given u € WP(Q) N C(Q),
if  wea=0  then wueWyP(Q),

without any hypothesis in the regularity of 0. In fact consider a function
G € CL(R) such that,

s if |s| =2,

G(s) =

0 if |s|<1,

and, for all s € R, |G(s)| < |s|. take

() = % Glnu(z)).

From Theorem 67 we deduce that u, € WYP(Q). Moreover u, € C(Q) and
un(x) =0 if Ju(z)] < %, hence Supp u,, is a compact set contained in Q. It is
possible, using the usual technique of approzimation by convolution with a family
of mollifiers, to show that u, € Wol’p(Q). It remains to prove that u, — u in
Wr(Q).

Here a characterization of WO1 P(Q), for p > 1.

Theorem 75 (Characterization of Wg’p(Q), for p > 1). Let p € ]1, +o0[. Let
Q be an open bounded set in RN . Let Q be of class C. Suppose u € LP(Q).
Then the following conditions are equivalent.

i) ue WyP(Q).
ii) There exists C > 0 such that, for all o € D(RY) and for all j=1,...,N,

1 1
\/uf’ﬂpI <Cllgllpy, — where — 4= =1.
a2 p P

111) The function
{ u(z) if e,
u(x) =
0 if ©¢Q,

is in WHP(RY).

Proof. Let i). Let (uy), be a sequence in D(Q) such that u, — u in WP(Q).
Then, for all ¢ € D(RY) and for all j =1,..., N,

| /Q tn 50| = | /Q Byt 9| < [ Vtnl| ol oll -

Passing to the limit in n, we obtain ).
Let 4i). We have

| / ad;0] = | / wdpl < Cllollys  forall e DRY).
RN Q

Applying Theorem 65 we obtain that @ € W1P(RN), i. e. iii).
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Let finally 4ii). Using a local change of variables and the partition of unity
the point i) is obtained proving the following statement: let u € LP({x €

Bpr., |zy < 0}) and suppose that the function

u(z) if z€ Br, and xy <0,
u(z) = ’
0 if € Bgr, and znx >0,

is in W'P(Bpg,.). Then
Yu € WoP({x € Br, |zn <0})  forall ¢ € D(Bg,).
It would be sufficient to take a family of mollifier (p,,), such that
Supp p C{mERN{i<x <l}
"= 2n "
and to consider v, = p,,*(1@) for obtaining, for n sufficiently big, v,, € C§°({z €
BR,r’:EN < 0}) and v, - Yu in Wl’p({xEBR,r|xN<O}). O

Remark 58. In the previous proof the implications i) = ii) = iii) are true
without any assumption on the regularity of 0. We remark also that it is
possible to prove directly that u € Wol’p(ﬂ) implies that the function u is in
WLP(RN), for all p € [1,+00], using Remark 45.

We end this subparagraph showing the Poincaré inequality.

Theorem 76 (Poincaré inequality). Letp € [1, +o00[. Let § be an open bounded
set in RN,
Then there exists C > 0 (depending on N, p and Q) such that

lulloq@) < ClIVullow), — for all ueWy™(9),
i. e. [[Vulpriq) is an equivalent norm in WyP(Q).
Proof. Let u € W, P(Q). As said in Remark 58,
u(z) if z e,
u(x) =
0 if x¢Q,

is in WP (RY) without any condition on the boundary of €.
Consequently, if p € [1, N[, from Sobolev-Gagliardo-Nirenberg theorem,

6]l Lo+ mvy < ONpl| Vil Lo mr)-
But, on one side, being {2 bounded,
1_ 1 1_1
lulle) < 19217777 [[ull o= () = 1217777 @l Lo @)
On the other side
IVl e @y = [Vl e )

Hence L
[ullr ) < COnp Q1P 77 [[VullLe(o)-
—_———

=C(N,p, Q)
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If, on the contrary, p € [N, +oo[, let ¢ = NN—fp. Remark that, since we can

suppose N > 2, ¢q € [1, N[. We have ¢ < p, so that 4 € LY(RY) and Vu €
L4(RY). Moreover
1 1 1 1

¢ g N p
Consequently, again from Sobolev-Gagliardo-Nirenberg theorem,
6l e @~y = |8l Lor mvy < Ongll V| parny-

But L
V|l Loy = [Vullpa) < 19777 |Vl e ),

and the conclusion follows also in this case. O

22.1.2 Examples of boundary value problems

Example 23 (Homogeneous Dirichlet problem). Let  be a bounded open set
in RN, of class C*. Let f € C(Q).
Find u € C(Q) N C?(Q) such that

—Autu=f in Q,
(69)
u=0 in OS.
As in the case of N = 1, the strategy for solving it will be the following.

a) Introduce a modified (weak) problem. The correct setting of this modified
problem will be crucial.

b) Solve the weak problem, using some suitable functional analysis results.

¢) Check that the solution of the weak problem, with the conditions of the
classical problem, is enough regular to be the solution of the classical
problem.

We remark that the most difficult point will be the point c).
a) Let f € L().
Find w € H}(2) such that

/Vw-Vv—&-/wv:/fu for all v € H} (). (70)
Q Q Q

Problem (70) is the weak homogeneous Dirichlet problem.

Remark 59. If u is a solution of the classical problem, then u is a solution of
the weak one, if f = f. In fact, suppose that u € C(2) N C?(Q) is a solution to
the classical problem, then, multiplying the first line of (69) by v and integrating
on €,

/(—Au+u)v:/fv7 for all veH&(Q).
Q Q

and, integrating by parts,

/Vu-Vv—i—/uv: f, for all v € H3(Q).
Q Q 10,1]

Finally, since u=0 on 09, we have that u € H}(Q).
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b) Let’s solve problem (70). We use Lax-Milgram theorem (see [3, Cor. V.8]).
We choose as Hilbert space H the space H} (), as bilinear form a, the form

a(w,v)z/Vw-Vv+/wv
o Q

and as ¢, element of H’, the functional
p: H} Q) =R, o) = /va.

The existence and uniqueness of the solution w € H}(Q) follows.

¢) To show that weak solutions to (70) are in fact regular (continuous, with con-
tinuous first and second derivatives) is a complicate matter, which presuppose
also a certain regularity of the border of Q. Details can be found in [3, Ch. IX,
Par. 6]. Here we suppose, a priori, that w, solution of the weak problem, is in
C()NC?(Q). From Theorem 74 we have w)pq = 0 and moreover, since w is in

C2(Q),

/Vw~V<p+/w30:/(wa+w)g0:/fga, for all p € D(Q).
Q Q Q Q

As a consequence —Aw + w — f = 0 almost eveywhere in €2, but, since —Aw +
w — f is a continuous function in , —Aw + w = f everywhere in 2.

Example 24 (Non-homogeneous Dirichlet problem). Let Q be a bounded open
set in RN, of class C*. Let f € C(Q). Let g € C(99).

Find u € C() N C%(Q) such that
—Autu=f in Q,
(71)
u=g in OS.

It is possible to prove that there exists a function g € H(2) N C(Q) such
that g = g on 09. Introducing the set

K={ve H'(Q)|v-geH}(},

from Theorem 74, K does not depend on g but only on g. The weak non-
homogeneous Dirichlet problem associated to (71) is the following: find w € K
such that

/Vw-Vv—&—/wv:/fv7 for all v € H'(Q). (72)
Q Q Q

By Stampacchia’s theorem (see [3, Th. V.6]), (72) has a unique solution. It is
possible to prove that, under particular regularity conditions on 902, the solution
of (72) has a sufficient regularity and it is the solution to (71).

Example 25 (Homogeneous Neumann problem). Let 2 be a bounded open set
in RN, of class C*. Let f € C(Q).
Find u € C1(Q) N C?(Q) such that
{ —Autu=f in €,

(73)
Opu =0 mn 09,

where Opu denote the external normal derivative of u with respect to 982, i. e.
Onu = Vu - n, where n is the external normal vector to 02 of length 1.
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The weak homogeneous Neumann problem is the following: find w € H*(Q)
such that

/Vw-Vv+/wv:/fv, for all v € H'(Q). (74)
Q Q Q

Lax-Milgram theorem guarantees that (74) has a unique solution. Again, under
particular regularity conditions on 052, it is possible to prove that the solution
of (74) has a sufficient regularity and it is the solution to (73).

22.1.3 Maximum principle for the Dirichlet problem

Theorem 77. Let Q be a bounded open set in RN. Let f € L*(Q). Let u €
HY Q)N C(Q) be such that

/Vu~Vv+/wv:/fv, for all v e Hy(Q). (75)
Q Q Q
Then, for all x € §,
. . . N <
min{ min w, 1gf f} <u(x) <max{ max u, sgp f1

where here above inf and sup denote inf ess and supess respectively.
Proof. Let G € C*(R) such that
0 if s<0,
G(s) =
strictly increasing if s>0

and G'(s) < M, for all s € R.

Let
K = max{max u, sup f}
o0 Q

and suppose that K < +o0o. We show that u(z) < K for all x € Q. Consider
v(z) = Gu(z) — K).
v € HY(Q) (see Theorem 67) and, for all = € 99,
v(z) = Gu(r) — K) =0.
Consequently v € HZ(£2). We use v inside (75), taking into account that
Vo(r) = G'(u(z) — K)Vu(z).
We have

/QG’(u—K)Vu-Vu—i—/QuG(u—K):/QfG(u—K)

/Q IVl G’(u—K)—l—/Q(u—K)G(u—K):/(f—K)G(u—K).

Q

>0 <0
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We obtain
/(u—K)G(u—K) <0.
Q

Remarking finally that the function s — s G(s) is nonnegative, we have that
(u(z) — K)G(u(z) —K) =0 for all €,

and hence u(z) — K < 0 for all z € Q. The computation to show that u(z) >
min{ mingq u, info f} is similar. O
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Appendix
Young’s inequality

Let o, B € [0, 1], with « + 8 =1 and let x, y € ]0, 4o0].
Then
z%y? < az + By.

In fact it is sufficient to remark that, since the logarithmic function is concave,

log(z®y?) = alogx + Blogy < log(ax + fy).

logy
log(az + By)
log(z%y®) = alogz + Blogy

log x

Equivalently, for p, ¢ € [0, 1], with p + ¢ =1 and for a, b € ]0, +o0],
ab < pa% + qb%.

Lax-Milgram Theorem

Theorem 78. (|3, Cor. V.8|). Let a(u,v) be a bilinear, continuous and coercive
form, defined on the Hilbert space H.
Then, for all ¢ € H', there exists a unique u € H such that

a(u,v) = ¢(v), for all ve H. (76)
Moreover, if a is symmetric, then u, solution of (76), is characterized by

1 1
ue H and ia(mu) — ¢(u) = 7r}nellr{l{ia(v,v) —¢(v)}.
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