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1.1 Continuous nowhere differentiable functions
Let f : I → R, where I is an open interval in R. Let x0 ∈ I. We recall two
fundamental notions.

Definition 1. f is continuous at x0 if

lim
x→x0

f(x) = f(x0).

f is differentiable at x0 if

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0) ∈ R.

f continuous or differentiable (on I) means continuous or differentiable at every
point of I.

It is well known that a differentiable function (at a point) is continuous (at
the same point), but vice versa is not true. Anyhow immediate examples are
available only in the case that the point in which a function is continuous and
not differentiable is an isolated point in the domain of the function (e.g. the
function x 7→ |x| at the point 0).

To Karl Weierstrass it is due the first example of everywhere continuous
nowhere differentiable function. The proof of the following theorem can be
found in [7, § 17]

Theorem 1 (Weierstrass’ example). Let

f(x) =

+∞∑
k=0

bk cos(akπx), with ab > 1 +
3

2
π and 0 < b < 1.

Then f is continuous and not differentiable at every point of R.

We present here a similar example, may be easier from the point of view of
computation, taken from [11].
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Figure 1: Karl Theodor Wilhelm Weierstrass (1815–1897)

Example 1. Let g : R→ R, periodic of period 4 and such that

g(x) =

{
1− x if x ∈ [0, 2],

1 + x if x ∈ [−2, 0].

0

1

-1

1 2-1-2

g(x)

We define

f(x) =

+∞∑
n=1

2−ng(22nx).

f is continuous: in fact all the functions x 7→ 2−ng(22nx) are continuous
and the series is totally and, consequently, uniformly convergent, so that the
limit is continuous.

We want to prove that f is not differentiable at any point. Let x̄ ∈ R, k ∈ N.
Consider 22k x̄. We have 22k x̄ ∈ [2m, 2m + 2] for some m ∈ Z. We choose
h = 2−2k or h = −2−2k depending on the fact that

22k x̄, 22k x̄+ 1 ∈ [2m, 2m+ 2],

or
22k x̄, 22k x̄− 1 ∈ [2m, 2m+ 2].
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Suppose we are in the first case. We consider

|g(22n(x̄+h))−g(22n x̄)| = |g(22n x̄+22n−2k))−g(22n x̄)| =


0 if n > k,

1 if n = k,

≤ 22n−2k if n < k.

Consequently

f(x̄+ h)− f(x̄) =

k∑
n=1

2−n(g(22n(x̄+ h))− g(22n x̄)),

so that

|f(x̄+ h)− f(x̄)| ≥ 2−k −
k−1∑
n=1

2−n · 22n−2k

≥ 2−k − (k − 1)22k−1−2k

≥ 2−k − (k − 1)2−2k−1

,

and finally

|f(x̄+ h)− f(x̄)

h
| ≥ 2−k+2k − (k − 1)22k−1

.

In this way, for all x̄ ∈ R, we construct a sequence (hk)k in R, such that
limk hk = 0 and

lim
k
|f(x̄+ hk)− f(x̄)

hk
| = +∞.

This implies that f is not differentiable at x̄.

Remark 1. The technique of considering series of functions which are rescaled
in size and in the variable is typical in the construction of nowhere differentiable
functions (see e.g. [9]). Like in the case of Von Koch curve, the graph of such
functions is, in general, a fractal set.

1.2 How many continuous nowhere differentiable functions
are there?

The content of this paragraph can be found in [7, §17]. Nowhere differ-
entiabilty is, in some sense, the normal situation for a continuous function. We
will prove, in fact, that the set of continuous nowhere differentiable functions
is the complement of a set which is contained in the countable union of closed
sets with empty interior, in the metric space of continuous functions with the
sup-distance.

Definition 2. Let ϕ : I → R, with I open interval in R, and let x0 ∈ I. We
define

lim inf
x→x+

0

ϕ(x) = sup
t>0
{ inf
x0<x<x0+t

{ϕ(x)}},

lim sup
x→x+

0

ϕ(x) = inf
t>0
{ sup
x0<x<x0+t

{ϕ(x)}},

lim inf
x→x−0

ϕ(x) = sup
t>0
{ inf
x0−t<x<x0

{ϕ(x)}},

lim sup
x→x−0

ϕ(x) = inf
t>0
{ sup
x0−t<x<x0

{ϕ(x)}}.
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Figure 2: The statue of Ulisse Dini (1845–1918) in Pisa

Definition 3. Let f : I → R, with I open interval in R, and let x0 ∈ I. We
define

D+f(x0) = lim sup
x→x+

0

f(x)− f(x0)

x− x0
, D+f(x0) = lim inf

x→x+
0

f(x)− f(x0)

x− x0
,

D−f(x0) = lim sup
x→x−0

f(x)− f(x0)

x− x0
, D−f(x0) = lim inf

x→x−0

f(x)− f(x0)

x− x0
.

D+f(x0), D+f(x0), D−f(x0), D−f(x0) are the so called Dini’s derivatives of
the function f at the point x0.

We have, for every function f and point x0,

−∞ ≤ D+f(x0) ≤ D+f(x0) ≤ +∞, −∞ ≤ D−f(x0) ≤ D−f(x0) ≤ +∞.

Remark that a function is differentiable at x0 if and only if

D−f(x0) = D−f(x0) = D+f(x0) = D+f(x0) ∈ R.

Theorem 2. Denote by C([0, 1],R) the space of continuous functions on [0, 1]
with the sup-distance. Let

D = {f ∈ C([0, 1],R) | ∃ x ∈ [0, 1[ : D+f(x), D+f(x) ∈ R}.

Then D is contained in the union of a sequence of closed sets with empty
interior.
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Proof. First of all we notice that the set of functions which are differentiable
(from the right) at least in one point, is contained in D so that the set of
continuous nowhere differentiable functions contains the complement of D.

Let

Cn = {f ∈ C([0, 1],R) | ∃x ∈ [0, 1− 1

n
] : ∀h ∈ ]0,

1

n
] , |f(x+ h)− f(x)

h
| ≤ n}.

Obviously Cn ⊆ D.
We prove that D ⊆

⋃
n Cn. Let f ∈ D. Then there exists x̄ ∈ [0, 1[ and

there exists C, C ′ ∈ R, with C ′ < C, such that

inf
t>0
{ sup
x̄<x<x̄+t

{f(x)− f(x̄)

x− x̄
}} < C

and
sup
s>0
{ inf
x̄<x<x̄+s

{f(x)− f(x̄)

x− x̄
}} > C ′.

In particular there exists t̄ > 0 such that

sup
x̄<x<x̄+t̄

{f(x)− f(x̄)

x− x̄
} < C

and this means that for all x ∈ ]x̄, x̄+ t̄[ we have

f(x)− f(x̄)

x− x̄
< C.

Similarly there exists t∗ > 0 such that, for all x ∈ ]x̄, x̄+ t∗[, we have

f(x)− f(x̄)

x− x̄
> C ′.

Consequently there exists α, δ > 0 such that, for all h ∈ ]0, δ],

|f(x̄+ h)− f(x̄)

h
| ≤ α,

and this implies that f ∈ Cn for some n.
We prove that Cn is closed. Let n fixed and let f ∈ C̄n where C̄n denotes the

closure of Cn in the space C([0, 1],R) (remember that the distance in C([0, 1],R)
is d∞(f, g) = supx∈[0,1] |f(x)−g(x)| = ‖f−g‖∞). There exists a sequence (fk)k
in Cn which converges uniformly to f . We have that, for each k, there exists a
point xk such that

xk ∈ [0, 1− 1

n
] and for all h ∈ ]0,

1

n
] , |fk(xk + h)− fk(xk)

h
| ≤ n.

Passing to a subsequence, we can suppose that there exists x̄ ∈ [0, 1 − 1
n ] such

that xk → x̄. We fix now h ∈ ]0, 1
n ], we fix ε > 0 and we choose k in such a way

that

‖f − fk‖∞ ≤
εh

4
, |f(xk)− f(x̄)| ≤ εh

4
, |f(x̄+ h)− f(xk + h)| ≤ εh

4
.
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Consequently

|f(x̄+ h)− f(x̄)|

≤ |f(x̄+ h)− f(xk + h)|+ |f(xk + h)− fk(xk + h)|

+|fk(xk + h)− fk(xk)|+ |fk(xk)− f(xk)|+ |f(xk)− f(x̄)|

≤ εh

4
+
εh

4
+ nh+

εh

4
+
εh

4

≤ nh+ εh.

Since that last inequality holds for every ε > 0, we deduce that f ∈ Cn.
We prove finally that Cn has an empty interior. By contradiction suppose

that there exists n, there exists f ∈ Cn and there exists ε > 0 such that the
ball B(f, ε) = {g ∈ C([0, 1],R) | ‖g − f‖∞ < ε} is contained in Cn. Using the
(Stone-)Weierstrass Theorem (see [13, Ch. 7]), there exists a polynomial p on
[0, 1] such that ‖f − p‖∞ < ε. Let δ = ε− ‖f − p‖∞. As a consequence

B(p, δ) ⊆ B(f, ε) ⊆ Cn.

We construct now a function g ∈ C([0, 1],R) such that ‖g‖∞ < δ, g has a finite
right derivative g′+(x) at each point x of [0, 1[ and, for all x ∈ [0, 1[,

|g′+(x)| > n+ ‖p′‖∞,

(to find such a function g it is sufficient to take a suitable sawtooth function).
Then we have p+ g ∈ Cn, (p+ g)′+ = p′ + g′+ and, for all x ∈ [0, 1[,

|(p+ g)′+(x)| ≥ |g′+(x)| − ‖p′‖∞ > n,

which is a contradiction. This completes the proof.

1.3 How many angles or cusps are there?
The content of this paragraph can be found in [7, §17].

Definition 4. Let f : I → R a function, where I is an open interval in R.
Let x̄ ∈ I. Let f continuous at x̄. x̄ is called angle point (in italian: punto
angoloso) if there exists

lim
x→x̄+

f(x)− f(x̄)

x− x̄
= f ′+(x̄), lim

x→x̄−
f(x)− f(x̄)

x− x̄
= f ′−(x̄),

f ′+(x̄) or f ′−(x̄) ∈ R and f ′+(x̄) 6= f ′−(x̄).
x̄ is called cusp point (in italian: punto di cuspide) if there exists f ′+(x̄),

f ′−(x̄), they are different and both of them are infinite.

Take now a continuous nowhere differentiable function. We pose the follow-
ing question: “how many angles or cusps are there?” We will see that there is
only a finite or countable set of such points. This means that the real cause
of nowhere differentiability is not the presence of angles or cusps, but the fact
that for almost every point the limit of the difference quotient (from the left
and from the right) does not exists. The real cause is oscillation.
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Theorem 3. Let f : I = ]a, b[→ R a function. There exists at most a countable
set of points in I in which f ′+ and f ′− exist and are different.

Proof. Let

A = {x ∈ I | f ′+(x), f ′−(x) exist and f ′+(x) > f ′−(x)},

and
B = {x ∈ I | f ′+(x), f ′−(x) exist and f ′+(x) < f ′−(x)}.

We show that A is at most countable. The case of B will be similar. Let x ∈ A.
We choose

rx ∈ Q such that f ′−(x) < rx < f ′+(x).

We choose tx, sx ∈ Q such that a < tx < x < sx < b and

f(y)− f(x)

y − x
< rx for all tx < y < x,

f(y)− f(x)

y − x
> rx for all x < y < sx.

Consequently

f(y)− f(x) > rx(y − x) for all y ∈ ]tx, sx[ with y 6= x.

Consider now
Φ : A→ Q3, x 7→ Φ(x) = (rx, tx, sx).

We claim that Φ is injective and consequently A will be countable (since Q3 is
countable). By contradiction, suppose there exists x̄ 6= x, e.g. x̄ < x such that

(rx̄, tx̄, sx̄) = (rx, tx, sx);

this means that

for all y ∈ ]tx, sx[, y 6= x̄ ⇒ f(y)− f(x̄) > rx(y − x̄) (1)

and
for all y ∈ ]tx, sx[, y 6= x ⇒ f(y)− f(x) > rx(y − x). (2)

Considering (1) with y = x we have

f(x)− f(x̄) > rx(x− x̄),

and considering (2) with y = x̄ we have

f(x̄)− f(x) > rx(x̄− x),

obtaining a contradiction. The proof is complete.
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Figure 3: Henri Léon Lebesgue (1875–1941)

2

2.1 Differentiation of monotone functions
The content of this paragraph can be found in [10, Ch. 9] (see also
the Ch. 6 of the italian edition of [10]) and in[7, §17].

As we have seen, differentiability can be destroyed by oscillations. Mono-
tonicity may be considered the opposite of oscillations. This general idea is,
in some sense, confirmed by the following fact: monotone functions are almost
everywhere differentiable.

Theorem 4 (Lebesgue’s differentiation theorem). Let f : [a, b]→ R be a mono-
tone function.

Then f is almost everywhere differentiable.

Proof. We give here a proof in the case of continuous monotone functions. We
need the following definition.

Definition 5. Let g : [a, b] → R be a continuous function. Let x0 ∈ [a, b[. We
say that x0 is invisible from the right (or right-invisible) if there exists ξ ∈ ]x0, b]
such that g(ξ) > g(x0). Similarly x0 ∈ ]a, b] is invisible from the left (or left-
invisible) if there exists ξ ∈ [a, x0[ such that g(ξ) > g(x0).

The set of right-invisible points is described in the following lemma, the
proof of which is let as an exercise.
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Lemma 1. Let g : [a, b] → R be a continuous function. The set Ir of right-
invisible points contained in ]a, b[ is an open set. Moreover Ir is the union of a
finite or countable set of pairwise disjoint open intervals ]αk, βk[ and, for all k,
g(αk) ≤ g(βk).

Let’s go back to the proof of Lebesgue’s differentiation theorem. Sup-
pose that f is a continuous increasing function defined on [a, b]. Consider
f̃ : [−b,−a] → R, f̃(x) = −f(−x). Also f̃ is a continuous increasing func-
tion. Let x0 ∈ ]a, b[. We have

D+f(x0) = D−f̃(−x0), D+f(x0) = D−f̃(−x0),

D−f(x0) = D+f̃(−x0), D−f(x0) = D+f̃(−x0).

We know that

D−f(x0) ≤ D−f(x0), D+f(x0) ≤ D+f(x0).

If we are able to prove that, for a continuous increasing function, in a point x0,

D−f(x0) ≤ D+f(x0),

then the same will be true for f̃ in the point −x0, so that

D+f(x0) = D−f̃(−x0) ≤ D+f̃(−x0) = D−f(x0)

and consequently

D+f(x0) ≤ D−f(x0) ≤ D−f(x0) ≤ D+f(x0) ≤ D+f(x0).

As a conclusion we have that, for proving the theorem, it will be sufficient to
prove that

i) D−f(x) ≤ D+f(x), for almost every x ∈ ]a, b[;

ii) D+f(x) ∈ R, for almost every x ∈ ]a, b[.

Let’s show ii). Suppose x0 ∈ ]a, b[ such that D+f(x0) = +∞ (remember
that f is increasing, so that all Dini’s derivatives are non negative). We have

lim sup
x→x+

0

f(x)− f(x0)

x− x0
= +∞,

so that, for all t > 0,

sup
x0<x<x0+t

f(x)− f(x0)

x− x0
= +∞.

Consequently, for all C > 0, there exists ξ > x0 such that

f(ξ)− f(x0)

ξ − x0
> C,

and then
f(ξ)− Cξ > f(x0)− Cx0.
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This last inequality means that if D+f(x0) = +∞ then x0 is right-invisible with
respect to the function x 7→ f(x) − Cx. Let’s denote by Ir,C this set. We use
Lemma 1 and we obtain that

Ir,C =
⋃
n

]αn, βn[

and, for all n, f(αn)− Cαn ≤ f(βn)− Cβn. Consequently, for all n,

βn − αn ≤
f(βn)− f(αn)

C
,

and, since the intervals ]αn, βn[ are pairwise disjoint, we have

λ(Ir,C) =
∑
n

βn − αn ≤
∑
n

f(βn)− f(αn)

C
≤ f(b)− f(a)

C
,

where λ(Ir,C) denotes the Lebesgue measure of the set Ir,C . Notice that in the
last inequality it is essential that f is increasing. Finally denote by A the set of
the points x ∈ ]a, b[ such that D+f(x) = +∞. We have

A ⊆ Ir,C , for all C > 0.

Consequently, for all C > 0, A is contained in a set with Lebesgue measure less
of equal than f(b)−f(a)

C . This implies that A is measurable and λ(A) = 0.

We prove now i). This condition is equivalent, for an increasing function f ,
to prove that

i’) D+f(x) ≤ D−f(x), for almost every x ∈ ]a, b[;

Let
Ẽ = {x ∈ ]a, b[ | D−f(x) < D+f(x)}.

We have to prove that λ(Ẽ) = 0. Consider c, C ∈ Q, with 0 < c < C; denote
by

Ec,C = {x ∈ ]a, b[ | D−f(x) < c < C < D+f(x)}.

If, for all such c, C, we have λ(Ec,C) = 0, then λ(Ẽ) = 0, in fact

Ẽ =
⋃

c, C∈Q
0<c<C

Ec,C .

Let ρ = c
C . We will show that, for all ]α, β[ ⊆ ]a, b[,

λ∗(Ec,C ∩ ]α, β[ ) ≤ ρ (β − α), (3)

where λ∗ denotes the outer Lebesgue measure. From this we obtain the conclu-
sion using the following lemma, the proof of which is let as an exercise.

Lemma 2. Let ρ ∈ ]0, 1[. Let A be a set in ]a, b[ such that for all ]α, β[ ⊆ ]a, b[,

λ∗(A∩ ]α, β[ ) ≤ ρ (β − α).

Then λ∗(A) = 0. Consequently A is measurable and λ(A) = 0.
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Let x ∈ Ec,C ∩ ]α, β[. We have, in particular, thatD−f(x) < c and consequently
there exists ξ ∈ ]α, x[ such that

f(ξ)− f(x)

ξ − x
< c.

This imply that
f(ξ)− c ξ > f(x)− c x,

i.e. x is left-invisible with respect to the function x 7→ f(x) − c x, defined on
]α, β[. We denote by Il the set of these points. We have

Ec,C ∩ ]α, β[ ⊆ Il =
⋃
k

]αk, βk[

with, for all k,
f(αk)− c αk ≥ f(βk)− c βk,

or, equivalently, for all k,

c(βk − αk) ≥ f(βk)− f(αk).

Suppose now x ∈ Ec,C ∩ ]αk, βk[. We know that, in particular, D+f(x) > C.
Consequently there exists η ∈ ]x, βk[ such that

f(η)− f(x)

η − x
> C i. e. f(η)− C η > f(x)− C x.

This means that x is right-invisible with respect to the function x 7→ f(x)−C x,
defined on ]αk, βk[. We denote by Ir,k the set of these points. We have

Ir,k =
⋃
j

]αk,j , βk,j [,

where the intervals ]αk,j , βk,j [ are pairwise disjoint, with, for all j,

f(αk,j)− C αk,j ≤ f(βk,j)− C βk,j

and, consequently,

(βk,j − αk,j) ≤
f(βk,j)− f(αk,j)

C
.

We have

λ(Ir,k) =
∑
j

(βk,j − αk,j) ≤
∑
j

f(βk,j)− f(αk,j)

C
≤ f(βk)− f(αk)

C
.

Finally

λ∗(Ec,C ∩ ]α, β[ ) ≤
∑
k

λ(Ir,k) ≤
∑
k

f(βk)− f(αk)

C

≤ c

C

∑
k

(βk − αk) ≤ c

C
(β − α)

and (3) follows.
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Figure 4: Giuseppe Vitali (1875–1932)

Remark 2. The proof of Lebesgue’s differentiation theorem in the case of non
continuous functions can be obtained with a modification of the above proof. The
key idea is that for monotone functions there exists, at each point x̄, the limit
from the right and from the left and, e.g. if f is increasing,

lim
x→x̄−

f(x) ≤ f(x̄) ≤ lim
x→x̄+

f(x).

The definition of right-invisible points has to be suitably modified, and so on.
In [7, §17] there is a proof (of Lebesgue’s theorem for general monotone

functions) with similar intricate reasoning as in the pages above. There the
main point is the so called Vitali’s covering lemma.

Definition 6. Let A be a subset of R. A family F of closed non degenerate (i.
e. with strictly positive length) intervals of R, is said Vitali’s covering of A if
for all x ∈ A and for all ε > 0 there exists I ∈ F such that x ∈ I and λ(I) < ε.

Lemma 3 (Vitali’s covering theorem). Let A ⊆ R and let F a (non empty)
Vitali’s covering of A.

Then there exists a finite or countable set of pairwise disjoint elements of F
(let’s call it {In}) such that

λ(A ∩ CR(
⋃
n

In)) = 0

(here CR(
⋃
n In) denotes the complement set of

⋃
n In in R).

Suppose moreover that λ(A) ≤ +∞.
Then, for all ε > 0, there exists a finite set {I1, . . . , Ik} of pairwise disjoint

elements of F such that

λ(A ∩ CR(

k⋃
i=1

Ii)) < ε.
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Figure 5: Guido Fubini (1879–1943)

2.2 Fubini’s theorem on the differentiation of a series
The content of this paragraph can be found in [7, §17]. An interest-
ing consequence of Lebesgue’s differentiation theorem is the following result on
differentiation of functions defined as the sum of a series of monotone functions.

Theorem 5 (Fubini’s theorem on the differentiation of a series). Let (fn)n be
a sequence of increasing functions defined on [a, b], with value in R. Note that
for all n, fn is differentiable a. e. in [a, b], with derivative f ′n. Suppose that,
for all x ∈ [a, b], the series ∑

n

fn(x)

is convergent with sum s(x). Then

i) the function s : [a, b]→ R, x 7→ s(x), is almost everywhere differentiable;

ii) the series
∑
n f
′
n(x) is almost everywhere convergent;

iii) for almost every x ∈ [a, b],
∑
n f
′
n(x) = s′(x).

Proof. Possibly considering fn(x) − fn(a), it is not restrictive to suppose that
fn(x) ≥ 0, for all x ∈ [a, b]. We set

sn(x) = f1(x) + . . .+ fn(x),

rn(x) = s(x)− sn(x) =

+∞∑
j=n+1

fn(x).
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Each function sn is increasing and positive and, for all x ∈ [a, b], the sequence
sn(x) is convergent to s(x). Then the function s is increasing and positive and
consequently it is a. e. differentiable. We have

s′n(x) = f ′1(x) + . . .+ f ′n(x)

and, for all n and a. e. x ∈ [a, b], f ′n(x) ≥ 0 (remember that fn+1 is increasing),
so that, for a. e. x ∈ [a, b],

s′n(x) ≤ s′n+1(x).

Moreover, suppose h > 0 and x, x+ h ∈ [a, b], then

s(x+ h)− s(x)

h
=
sn(x+ h)− sn(x)

h
+
rn(x+ h)− rn(x)

h

with rn(x+h)−rn(x)
h ≥ 0, as rn is increasing. Consequently

s(x+ h)− s(x)

h
≥ sn(x+ h)− sn(x)

h
,

and, passing to the limit as h goes to 0, we have s′n(x) ≤ s′(x). In conclusion,
for a. e. x ∈ [a, b],

0 ≤ s′n(x) ≤ s′n+1(x) ≤ s′(x).

From the previous inequality we deduce immediately that the series
∑
n f
′
n(x)

is a. e. convergent with sum less or equal than s′(x). To conclude the proof
it will be sufficient to show that the sequence (s′n)n has a subsequence which
converges a. e. to s′. Remark that the sequence (sn(b))n is an increasing
sequence converging to s(b). As a consequence the sequence (s(b) − sn(b))n is
decreasing and converging to zero. It is then possible to choose a sequence (nk)k
such that the series

+∞∑
k=1

((s(b)− snk(b))

is convergent. Since for all x ∈ [a, b], 0 ≤ s(x) − snk(x) ≤ s(b) − snk(b), then
the series

+∞∑
k=1

((s(x)− snk(x)),

is convergent. We can then apply the already proved points i) and ii) of this
theorem to the sequence of functions (gk)k where gk(x) = s(x) − snk(x). We
have that, for almost every x ∈ [a, b],

+∞∑
k=1

g′k(x)

is convergent and then, for almost every x ∈ [a, b],

lim
k
g′k(x) = 0 i. e. s′nk(x)→ s′(x).

The proof is complete.
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3

3.1 Bounded variation functions
The content of this paragraph can be found in [7, §17].

Definition 7. Let f : [a, b]→ R (or C). Consider

∆ = {a = x0 < x1 < . . . < xn = b},

a subdivision of [a, b] (a subdivision is a finite set of points in [a, b], containing
the points a and b). We define

V (f,∆) =

n∑
j=1

|f(xj)− f(xj−1)|

and
V ab (f) = sup

∆
V (f,∆).

The quantity V ab (f) is called total variation of the function f . If

V ab (f) < +∞

the function f is a bounded variation function (in short: a BV function) on the
interval [a, b]. The set of BV functions on [a, b] is denoted by BV ([a, b]).

Remark 3. If f : R→ R or (or C), we will consider

V +∞
−∞ (f) = sup

a, b∈R, a<b
V ba (f).

We list here some properties of BV functions.

i) If f ∈ BV ([a, b]), then f is bounded.

ii) f ∈ BV ([a, b]) if and only if <f ∈ BV ([a, b]) and =f ∈ BV ([a, b]) (where
<z and =z means real and imaginary part of z respectively).

iii) If f ∈ BV ([a, b]) and α ∈ R (or C), then αf ∈ BV ([a, b]) and

V ba (αf) = |α|V ba (f).

iv) If f, g ∈ BV ([a, b]), then f + g ∈ BV ([a, b]) and

V ba (f + g) ≤ V ba (f) + V ba (g).

v) Let f ∈ BV ([a, b]); if we set

‖f‖BV = |f(a)|+ V ba (f),

then ‖ · ‖BV is a norm and BV ([a, b]) is a Banach space.

vi) Let c ∈ ]a, b[. f ∈ BV ([a, b]) if and only if f|[a,c] ∈ BV ([a, c]) and f|[c,b] ∈
BV ([c, b]); moreover

V ba (f) = V ca (f|[a,c]) + V bc (f|[c,b]) (we will write V ba (f) = V ca (f) + V bc (f)).

15



Figure 6: Camille Jordan (1838–1922)

vii) The function x 7→ V xa (f) is increasing. We denote this function by Va(f).

viii) If f is continuous in x̄, then also Va(f) is continuous in x̄.

We prove the point viii), while the other ones are let as an exercise. We
show that Va(f) is continuous from the left, the continuity form the right being
similar. We know that f is continuous from the left in x̄ ∈ ]a, b]. In particular,
for all ε > 0, there exists a δ > 0 such that, if x ∈ ] x̄−δ, x̄[, then |f(x)−f(x̄)| <
ε
2 . Let

a = x0 < x1 < . . . < xn−1 < xn = x̄

such that

V x̄a (f)−
n∑
j=1

|f(xj)− f(xj−1)| < ε

2
.

We can suppose, without loss of generality, that xn−1 ∈ ] x̄ − δ, x̄[ (if it is not
so, it is sufficient to add a point of the interval ] x̄ − δ, x̄[ in the subdivision).
Then

V xn−1
a (f) ≥

n−1∑
j=1

|f(xj)− f(xj−1)|

or, equivalently,

−V xn−1
a (f) +

n−1∑
j=1

|f(xj)− f(xj−1)| ≤ 0.

Consequently

V x̄a (f)− V xn−1
a (f) +

n−1∑
j=1

|f(xj)− f(xj−1)| ≤ V x̄a (f)

16



and then

V x̄a (f)− V xn−1
a (f)

≤ V x̄a (f)−
n−1∑
j=1

|f(xj)− f(xj−1)|

≤ V x̄a (f)−
n∑
j=1

|f(xj)− f(xj−1)|︸ ︷︷ ︸
<
ε

2

+ |f(x̄)− f(xn−1)|︸ ︷︷ ︸
<
ε

2

< ε.

Since x 7→ V xa (f) is increasing, from the last inequality we deduce the left
continuity of Va(f) at x̄.

Theorem 6. Let f ∈ BV ([a, b]).
Then f is the difference of two increasing functions.

Proof. We know that Va(f) is increasing. We show that Va(f)−f is increasing.
In fact, for all x, y ∈ [a, b], with x < y,

f(y)− f(x) ≤ |f(y)− f(x)| ≤ V yx (f) = V ya (f)− V xa (f)

and this implies
V xa (f)− f(x) ≤ V ya (f)− f(y).

Corollary 1 (differentiation of BV functions). Let f ∈ BV ([a, b]).
Then f is almost everywhere differentiable.

Proof. Since f is the difference of two increasing functions, it is sufficient to
apply Lebesgue’s theorem to these two functions.

3.2 The integral function of a L1 function is a BV function
The content of this paragraph can be find in [7, §18].

We prove that the integral function F of f ∈ L1 is a BV function and the
total variation of F is the L1 norm of f .

Theorem 7. Let f ∈ L1(a, b) (we denote by L1(a, b) the set of Lebesgue’s
integrable functions on the interval [a,b]). Let

F (t) =

∫ t

a

f(x) dx =

∫
[a,t]

f

the so called integral function of f .
Then

i) F is uniformly continuous;

17



ii) F is a BV function and

V ba (F ) =

∫
[a,b]

|f |.

Proof. Let x̄ ∈ [a, b]. Consider (xn)n a sequence in [a, b] such that limn xn = x̄.
Let

fn(x) = χ[a,xn](x)f(x),

where χ[a,xn] is the characteristic function of the interval [a, xn]. We have

fn(x)
n−→ χ[a,x̄](x)f(x) and |fn(x)| ≤ |f(x)|

for almost every x ∈ [a, b]. The dominated convergence theorem gives

lim
n
F (xn) = lim

n

∫
[a,b]

fn =

∫
[a,x̄]

f = F (x̄)

i. e. F is continuous. Since F is defined on [a, b], F is uniformly continuous.
Let

a = x0 < x1 < . . . < xn−1 < xn = b.

We have
|F (xj)− F (xj−1)| = |

∫
[xj−1, xj ]

f | ≤
∫

[xj−1, xj ]

|f |,

so that
n∑
j=1

|F (xj)− F (xj−1)| ≤
n∑
j=1

∫
[xj−1, xj ]

|f | =
∫

[a,b]

|f |

and finally, passing to the supremum in all the subdivisions,

V ba (F ) ≤
∫

[a,b]

|f |.

It remains to prove that ∫
[a,b]

|f | ≤ V ba (F ).

We know that step functions are dense in L1(a, b) (see e. g. [7, §13, (13.23)];
step functions are functions such that there exists

a = x0 < x1 < . . . < xn = b and α1, . . . , αn ∈ R (or C),

such that

σ : [a, b[→ R (or C), σ(x) =

n∑
j=1

αjχ[xj−1,xj [(x);

the density can be deduced also approximating continuous function and using
[3, Th. IV.6]). let (σn)n be a sequence of step functions in [a, b] such that
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limn σn = sgn f in L1 and almost everywhere in [a, b]. It not restrictive to
suppose that |σn(x)| ≤ 1 for almost every x ∈ [a, b]. We have

|f(x)| = f(x) sgn f(x) = lim
n
f(x)σn(x)

and
|f(x)σn(x)| ≤ |f(x)|

for almost every x ∈ [a, b]. Consequently, from the dominated convergence
theorem, ∫

[a,b]

|f | = lim
n

∫
[a,b]

fσn.

Considering now that fact that

σn(x) =

kn∑
j=1

αn,jχ[xn,j−1, xn,j [(x) with |αn,j | ≤ 1,

and

|
∫

[a,b]

fσn| ≤
kn∑
j=1

|αn,j | |
∫

[xn,j−1, xn,j ]

f | ≤
kn∑
j=1

|αn,j | |F (xn,j)− F (xn,j−1)|

≤
kn∑
j=1

|F (xn,j)− F (xn,j−1)| ≤ V ba (F ),

we finally obtain ∫
[a,b]

|f | ≤ V ba (F )

and the conclusion follows.

Corollary 2. Let f ∈ L1(a, b). Let F the integral function of f .
Then F is a. e. differentiable.

3.3 Which is the derivative of an integral function?
The content of this paragraph can be found in [7, §18].

We have seen in the previous paragraph that an integral function of an L1

function is almost everywhere differentiable. It is natural to pose the question
about its derivative. Notice that we know how to answer, at least in the special
case of the integral function of a continuous function: the fundamental theorem
of calculus says that the derivative (which in this case exists in all the points of
[a, b]) is exactly the continuous function we have considered. Here we want to
give an answer in the general case.

Lemma 4. Let f : [a, b]→ R be an increasing function (so that, from Lebesgue’s
theorem, f ′ exists a. e.).

Then f ′ ∈ L1(a, b) and ∫
[a,b]

f ′ ≤ f(b)− f(a).
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Proof. We extend the values of f with f(x) = f(b) for x > b. For all n ≥ 1, we
define gn : [a, b]→ R, setting

gn(x) = n(f(x+
1

n
)− f(x)).

Since f is increasing, gn(x) ≥ 0 for all n and all x, and, since f is a. e.
differentiable,

lim
n
gn(x) = f ′(x) for almost every x ∈ [a, b].

We apply Fatou’s lemma (see [3, Lemma IV.1]) and we have

∫
[a,b]

f ′ =

Fatou︷ ︸︸ ︷∫
[a,b]

lim inf
n

gn ≤ lim inf
n

∫
[a,b]

gn

≤ lim inf
n

∫ b

a

n(f(x+
1

n
)− f(x)) dx

≤ lim inf
n

n(

∫ b

a

f(x+
1

n
) dx−

∫ b

a

f(x) dx)

≤ lim inf
n

n(

∫ b+ 1
n

b

f(x) dx−
∫ a+ 1

n

a

f(x) dx)

≤ lim inf
n

n(
1

n
f(b)−

∫ a+ 1
n

a

f(x) dx)

≤ f(b)− lim sup
n

n

∫ a+ 1
n

a

f(x) dx

≤ f(b)− f(a).

Lemma 5. Let f ∈ L1(a, b). Suppose that for all x ∈ [a, b],
∫

[a,x]
f = 0.

Then f = 0.

Proof. Let α, β ∈ [a, b], with α < β. We have∫
[α,β]

f =

∫
[a,α]

f −
∫

[a,β]

f = 0.

Let A be an open set in ]a, b[. We know A is a finite or countable union of
pairwise disjoint intervals of ]a, b[, i. e.

A =
⋃
k

]αk, βk[ with ]αj , βj [ ∩ ]αh, βh[= ∅ if j 6= k.

Consequently, for all open set A in ]a, b[,∫
A

f =

∫
∪k ]αk,βk[

f =
∑
k

∫
[αk,βk]

f = 0.
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Let now, for all n > 0,

En = {x ∈ [a, b] | f(x) >
1

n
} and Fn = {x ∈ [a, b] | f(x) < − 1

n
}.

En and Fn are measurable set. If we prove that λ(En) = λ(Fn) = 0, the
conclusion easily follows remarking that

{x ∈ [a, b] | f(x) 6= 0} =
⋃
n

(En ∪ Fn).

We show that λ(En) = 0. By contradiction suppose that λ(En) > 0. Then
there exists a compact set C contained in En such that λ(C) > λ(En)

2 > 0. As
a consequence we would have ∫

C

f ≥ 1

n
λ(C) > 0.

But, denoting by A the open set ]a, b[ \C, we have∫
C

f =

∫
[a,b]

f −
∫
A

f = 0− 0 = 0.

Theorem 8. Let f ∈ L1(a, b). Let F (x) =
∫

[a,x]
f .

Then F is a. e. differentiable and F ′(x) = f(x) for almost every x ∈ [a, b].

Proof. We can suppose without any restrictions that f is positive (if not we
decompose f = f+ − f− where f+ and f− are positive and negative part of f
respectively).

We consider first that case of f bounded. Suppose that for all x ∈ [a, b],
|f(x)| ≤M . We set

gn(x) = n(F (x+
1

n
)− F (x)) = n

∫
[x,x+ 1

n ]

f.

Since F is a. e. differentiable, we know that limn gn = F ′ a. e. in [a, b] and,
moreover, for all n > 0 and all x ∈ [a, b], we have

|gn(x)| ≤ n|
∫

[x,x+ 1
n ]

f | ≤ n
∫

[x,x+ 1
n ]

|f | ≤ n · 1

n
M ≤M,

consequently, the dominated convergence theorem implies that, for all x ∈ [a, b],

lim
n

∫
[a,x]

gn =

∫
[a,x]

F ′. (4)

We remark that∫
[a,x]

gn = n(

∫ x

a

(F (t+
1

n
)− F (t)) dt = n

∫ x+ 1
n

x

F (t) dt− n
∫ a+ 1

n

a

F (t) dt.
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Since F is continuous we can use the integral mean theorem and we have

lim
n
n

∫ x+ 1
n

x

F (t) dt = F (x) lim
n
n

∫ a+ 1
n

a

F (t) dt = F (a),

and finally

lim
n

∫
[a,x]

gn = F (x)− F (a) =

∫
[a,x]

f. (5)

Putting together (4) and (5) we obtain, for all x ∈ [a, b],∫
[a,x]

F ′ − f = 0.

Lemma 5 gives the wanted conclusion.
Consider now the case of f not bounded. We set

fn(x) =

{
f(x) if f(x) ≤ n,

n if f(x) > n,

(recall that f ≥ 0). We have

F (x) =

∫
[a,x]

f − fn +

∫
[a,x]

fn. (6)

Notice that the function x 7→
∫

[a,x]
f − fn is increasing, almost everywhere

differentiable and its derivative is a. e. positive. Differentiating the identity (6)
and using the first part of the proof for the derivative of

∫
[a,x]

fn, we have

F ′(x) ≥ fn(x) almost everywhere,

and passing to the limit in n we have

F ′(x) ≥ f(x) almost everywhere, (7)

We obtain

F (x) =

∫
[a,x]

f ≤
∫

[a,x]︸ ︷︷ ︸
from (7)

from Lemma 4︷ ︸︸ ︷
F ′ ≤ F (x)− F (a) = F (x)

Finally, for all x ∈ [a, b],
∫

[a,x]
f − F ′ = 0. Again the conclusion follows from

Lemma 5.

Corollary 3. Let f ∈ L1(a, b).
Then, for almost every x ∈ [a, b],

f(x) = lim
h→0

1

h

∫ x+h

x

f(t) dt = lim
h→0

1

h

∫ x+h
2

x−h2
f(t) dt. (8)

Definition 8. The points for which (8) is valid are called Lebesgue’s points of
the function f .
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Remark 4. It can be shown that (see [7, §18]) if f ∈ L1(a, b), then, for almost
every x ∈ [a, b],

lim
h→0+

1

h

∫ h

0

|f(x+ t) + f(x− t)− 2f(x)| dt = 0

and

lim
h→0+

1

h

∫ h

0

|f(x+ t)− f(x)| dt = 0.

4

4.1 Absolutely continuous functions
The content of this paragraph can be found in [7, §18].

Definition 9. Let f : [a, b]→ R (or C). f is an absolutely continuous function
if, for all ε > 0, there exists δ > 0 such that, for all finite or countable family
(]αk, βk[)k of pairwise disjoint open intervals in ]a, b[,

if
∑
k

(βk − αk) < δ then
∑
k

|f(βk)− f(αk)| < ε.

The set of absolutely continuous function on [a, b]) is denoted by AC([a, b]).

We list here some properties of AC functions.

i) If f, g ∈ AC([a, b]) and α, β ∈ R (or C), then αf + βg ∈ AC([a, b]).

ii) If f ∈ AC([a, b]), then f ∈ C([a, b]).

In fact, considering, in the definition of absolute continuity, only one interval
]α, β[, we have the definition of uniform continuity.

iii) If f ∈ AC([a, b]), then f ∈ BV ([a, b]).

In fact, let, in the definition of absolute continuity, ε = 1. Consider a corre-
sponding δ > 0 and choose

∆ = {a = x0 < x1 < . . . < xn = b} such that, for all j, xj − xj−1 < δ.

Take another subdivision

∆̃ = {a = y0 < y1 < . . . < yk = b}

and consider
∆ ∪ ∆̃ = {a = z0 < z1 < . . . < zm = b}.

We have
k∑
j=1

|f(yj)− f(yj−1)| ≤
m∑
j=1

|f(zj)− f(zj−1)|

≤
n∑
h=1

(
∑

k such that
xh−1<zk≤xk

|f(zk)− f(zk−1)|)

︸ ︷︷ ︸
<1, since f ∈ AC

≤ n.

Consequently V ba (f) ≤ n.
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iv) If f ∈ AC([a, b]), then Va(f) ∈ AC([a, b]).

In fact, fix ε > 0 and take a corresponding δ > 0 from the definition of absolute
continuity. Consider a finite or countable family (]αk, βk[)k of pairwise disjoint
open intervals in ]a, b[ such that

∑
k(βk − αk) < δ. For all intervals ]αk, βk[

consider a subdivision

∆k = {αk = αk,0 < αk,1 < . . . < αk,nk = βk}

in such a way that

V βkαk (f)−
nk∑
j=1

|f(αk,j)− f(αk,j−1)| < ε

2k
.

Then ∑
k

V βkαk (f) ≤
∑
k

(

nk∑
j=1

|f(αk,j)− f(αk,j−1)|)︸ ︷︷ ︸
<ε, since f ∈ AC

+
∑
k

ε

2k︸ ︷︷ ︸
<ε

≤ 2ε.

It is sufficient to note that∑
k

|V αka (f)− V βka (f)| =
∑
k

V βkαk (f)

to have the conclusion.

v) If f ∈ AC([a, b]), then f is the difference of two AC increasing functions.

4.2 Absolute continuity of the integral
We recall a classical result from measure theory.

Theorem 9. Let (Ω,A, λ) a measure space (Ω is a set, A a σ-algebra of subsets
of Ω, λ a positive measure on A). Let f ∈ L1

λ(Ω).
Then, for all ε > 0, there exists δ > 0 such that, for all A ∈ A,

if λ(A) < δ, then
∫
A

|f | dλ < ε.

Proof. Suppose first that |f | ≤ M , for some M > 0. Then, taking A ∈ A with
λ(A) < δ, ∫

A

|f | dλ ≤ λ(A) ·M

and it sufficient to take δ < ε
M to have the wanted property.

Consider now the general case. Taking

fn(x) =

{
f(x) if |f(x)| ≤ n,

n if |f(x)| > n,

The dominated convergence theorem ensures that

lim
n

∫
Ω

|f − fn| dλ = 0.
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Let ε > 0; there exists n̄ ∈ N such that∫
Ω

|f − fn̄| dλ <
ε

2
.

Since fn̄ is bounded, there exists δ > 0 such that, for all A ∈ A,

if λ(A) < δ, then
∫
A

|fn̄| dλ <
ε

2
.

Finally, for all A ∈ A, if λ(A) < δ,∫
A

|f | dλ ≤
∫
A

|f − fn̄| dλ+

∫
A

|fn̄| dλ ≤
∫

Ω

|f − fn̄| dλ︸ ︷︷ ︸
<
ε

2

+

∫
A

|fn̄| dλ︸ ︷︷ ︸
<
ε

2

< ε.

Corollary 4. Let f ∈ L1(a, b). Let F (x) =
∫

[a,x]
f .

Then F ∈ AC([a, b]).

4.3 Characterization of AC functions
Let f ∈ L1(a, b) and let F its integral function, i.e. let F (x) =

∫
[a,x]

f . We
have seen that F is BV ([a, b]), F is differentiable almost everywhere in [a, b],
F ′(x) = f(x) for almost every x ∈ [a, b] and finally F is AC([a, b]). In particular
the integral function of an L1 function is an absolutely continuous function. Is
the converse true? Apart a constant, is an absolutely continuous function the
integral function of an L1 function?

Lemma 6. Let F be a monotone, absolutely continuous function on [a, b]. Sup-
pose that F ′(x) = 0 for almost every x ∈ [a, b].

Then F is a constant function.

Proof. Let
E = {x ∈ ]a, b[ | F ′(x) 6= 0}.

We know that λ(E) = 0. Consider the fact that F ∈ AC([a, b]). So that, for
all ε > 0, there exists δ > 0 such that the definition of absolutely continuity is
satisfied. Let now A be an open set in ]a, b[ such that

λ(A) < δ and E ⊆ A.

We have A =
⋃
k ]αk, βk[, where (]αk, βk[)k is a finite or countable set of

pairwise disjoint intervals in ]a, b[. Then, from the monotonicity of F (let’s fix,
e. g. F increasing),

F (E) ⊆
⋃
k

]F (αk), F (βk)[,

and, consequently,

λ(F (E)) ≤
∑
k

(F (βk)− F (αk)) < ε.
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Since this last inequality holds for every ε > 0, we obtain that λ(F (E)) = 0.
Let now

G = {x ∈ ]a, b[ | F ′(x) = 0}.
Let ε > 0 and consider x0 ∈ G. From the fact F is increasing and F ′(x0) = 0
we deduce that there exists r > 0 such that

for all x ∈ ]x0 − r, x0 + r[\{x0}, 0 ≤ F (x)− F (x0)

x− x0
<

ε

b− a
.

We obtain in particular that, for all x ∈ ]x0, x0 + r[,
ε

b− a
x0 − F (x0) <

ε

b− a
x− F (x),

i. e. x0 is invisible from the right for the function x 7→ ε
b−ax − F (x). We

denote by Ir this set and we have G ⊆ Ir. We know that there exists a finite or
countable set of pairwise disjoint intervals (]αk, βk[)k in ]a, b[ such that

Ir =
⋃
k

]αk, βk[ with
ε

b− a
αk − F (αk) ≤ ε

b− a
βk − F (βk),

in particular
F (βk)− F (αk) <

ε

b− a
(βk − αk).

We use the monotonicity of F and we have

F (G) ⊆ F (Ir) ⊆
⋃
k

]F (αk), F (βk)[

and then

λ(F (G)) ≤
∑
k

(F (βk)− F (αk)) ≤ ε

b− a
∑
k

(βk − αk) < ε.

The last inequality is valid for every ε > 0 and consequently λ(F (G)) = 0. We
have

λ(F (]a, b[) = λ(F (E)) + λ(F (G)) = 0.

Since F is continuous, this implies that F is constant.

Theorem 10. Let F ∈ AC([a, b]).
Then, for all x ∈ [a, b], F (x) = F (a) +

∫ x
a
F ′(t) dt.

Proof. Recalling that an absolutely continuous function is always difference of
two increasing absolutely continuous functions, it is not restrictive to suppose
that F is increasing. From Lemma 4 we have that, for all x1, x2 ∈ [a, b] with
x1 < x2, ∫ x2

x1

F ′(t) dt ≤ F (x2)− F (x1),

so that x 7→ F (x) −
∫ x
a
F ′(t) dt is an increasing AC function. Recalling also

Theorem 8, we have

(F (x)−
∫ x

a

F ′(t) dt)′ = F ′(x)− F ′(x) = 0

for almost every x ∈ [a, b] and the conclusion of the proof is reached by using
Lemma 6.
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Corollary 5. Let F , G ∈ AC([a, b]).
Then FG ∈ AC([a, b]) and, for almost every x ∈ [a, b],

(FG)′(x) = F (x)G′(x) + F ′(x)G(x).

Proof. Remark that in each point in which F and G are differentiable, also FG
is differentiable and Leibniz’s formula holds. Then it is sufficient to prove that
FG is AC. For this purpose we remark that, given a finite or countable family
(]αk, βk[)k of pairwise disjoint open intervals in ]a, b[, we have∑

k

|F (βk)G(βk)− F (αk)G(αk)|

≤ max
[a,b]
|F |
∑
k

|G(βk)−G(αk)|+ max
[a,b]
|G|
∑
k

|F (βk)− F (αk)|.

The conclusion follows.

Corollary 6. Let f , g ∈ L1(a, b). Let F (x) = α+
∫

[a,x]
f and G(x) = β+

∫
[a,x]

g.
Then ∫

[a,b]

fG = F (b)G(b)− αβ −
∫

[a,b]

Fg.

Remark 5. Consider F ∈ AC([a, b]). We know that F ′ ∈ L1. Consider
ϕ ∈ C1

0 (]a, b[) (here C1
0 (]a, b[) is the set of C1 functions with compact support

contained in ]a, b[). Then∫ b

a

F (t)ϕ′(t) dt = −
∫ b

a

F ′(t)ϕ(t) dt.

If we introduce the set

W 1,1(a, b)

= {u ∈ L1(a, b) | ∃v ∈ L1(a, b) : ∀ϕ ∈ C1
0 (]a, b[),

∫
[a,b]

uϕ′ = −
∫

[a,b]

vϕ},

then AC([a, b]) ⊆ W 1,1(a, b). We will prove (when we will speak about Sobolev
spaces) that, actually, AC([a, b]) = W 1,1(a, b).

4.4 On the fundamental theorem of calculus
We want to make here a comparison between the fundamental theorem of cal-
culus in Riemann’s (integral) theory and the fundamental theorem of calculus
in Lebesgue’s theory. In Riemann theory the result is the following.

Theorem 11 (Riemann’s fundamental theorem of calculus). Let f ∈ C([a, b]).
Then f is Riemann-integrable and, denoted by F the integral function, F is

differentiable in [a, b] and, for all x ∈ [a, b], F ′(x) = f(x).

It is possible to give also a slightly different version of this theorem.

Theorem 12. (see [13, Th. 6.21]). Let f be an integrable function in the sense
of Riemann. Suppose that there exists G : [a, b]→ R, such that G is a primitive
of f (i. e. G is differentiable on [a, b] and, for all x ∈ [a, b], G′(x) = f(x)).

Then, for all x ∈ [a, b],∫ x

a

f(t) dt = G(x)−G(a).

27



Figure 7: Stefan Banach (1892–1945)

In Lebesgue’s theory we have the following result.

Theorem 13 (Lebesgue’s fundamental theorem of calculus). Let f ∈ L1(a, b)
and denote by F its integral function.

Then F is differentiable almost everywhere in [a, b] and for almost every
x ∈ [a, b], F ′(x) = f(x).

4.5 A theorem of Banach
Definition 10. Let g : [a, b] → R. Let g([a, b]) ⊆ [α, β] ⊆ R. We say that g
satisfies the condition (N) if

E ⊆ [a, b] and λ(E) = 0 implies λ(g(E)) = 0.

Theorem 14 (S. Banach, 1925). Let ϕ : [a, b]→ R a continuous function with
bounded variation.

ϕ satisfies (N) if and only if ϕ is absolutely continuous.

4.6 The Cantor function
The Cantor function is an example of continuous increasing function (so that it
is also of bounded variation) which is not absolutely continuous. We define this
function as the uniform limit of a sequence of continuous increasing functions.
Define, on the interval [0, 1],

f(x) = x, f2(x) =


3
2x if x ∈ [0, 1

3 ],

1
2 if x ∈ [ 1

3 ,
2
3 ]

3
2x−

1
2 if x ∈ [ 2

3 , 1].
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Figure 8: Georg Cantor (1845–1918)

f3(x) =



9
4x if x ∈ [0, 1

9 ],

1
4 if x ∈ [ 1

9 ,
2
9 ]

9
4x−

1
4 if x ∈ [ 2

9 ,
1
3 ],

1
2 if x ∈ [ 1

3 ,
2
3 ]

9
4x− 1 if x ∈ [ 2

3 ,
7
9 ]

3
4 if x ∈ [ 7

9 ,
8
9 ]

9
4x−

5
4 if x ∈ [ 8

9 , 1],

and so on. To obtain fn+1 from fn we subdivide in three equal parts the intervals
in which fn is not constant etcetera. It is possible to prove that this is a Cauchy
sequence. The set in which the limit function is constant is a countable union
of intervals, pairwise disjoint, such that the measure is 1. This means that
the limit function is almost everywhere differentiable, with 0 derivative. But
f(1) = 1 so that ∫ 1

0

f ′(x) dx = 0 < f(1)− f(0) = 1.
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5

5.1 Signed and complex measures
The content of this paragraph can be found in [7, §19].

Definition 11. Let (Ω,A) a measurable space (Ω is a set, A a σ-algebra of
subset of Ω). Let ν : A → ]−∞,+∞] (or [−∞,+∞[). ν is a signed measure if

i) ν(∅) = 0;

ii) ν is countably additive.

Remark 6. In the above definition, ν is countably additive means the following.
Let (An)n be a sequence in A consisting of pairwise disjoint subsets of Ω. Let
A =

⋃
nAn.

i) If ν(A) < +∞, then
∑
n |ν(An)| < +∞ and

∑
n ν(An) = ν(A).

ii) If ν(A) = +∞, then, denoting by

Bn =

{
An if ν(An) > 0,

∅ if ν(An) ≤ 0,
Cn =

{
∅ if ν(An) > 0,

An if ν(An) ≤ 0,

we have
∑
n ν(Bn) = +∞ and

∑
n−ν(Cn) < +∞.

Definition 12. Let (Ω,A) a measurable space. Let ν : A → C. ν is a complex
measure if

i) ν(∅) = 0;

ii) ν is countably additive.

Remark 7. In the above definition, ν is countably additive means the following.
Let (An)n be a sequence in A consisting of pairwise disjoint subsets of Ω. Let
A =

⋃
nAn. Then

∑
n |ν(An)| < +∞ and

∑
n ν(An) = ν(A).

Theorem 15. Let ν be a signed measure. We have

i) if E, F ∈ A, F ⊆ E and |ν(E)| < +∞, then |ν(F )| < +∞;

ii) if (An)n is sequence in A with, for all n, An ⊆ An+1, then

ν(
⋃
n

An) = lim
n
ν(An);

iii) if (An)n is sequence in A with, for all n, An ⊇ An+1 and |ν(A1)| < +∞,
then

ν(
⋂
n

An) = lim
n
ν(An).

Remark 8. A result similar to Theorem 15 is valid also for complex measures.
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5.2 The Hahn’s decomposition theorem
The content of this paragraph can be find in [7, §19].

Let Ω be a set and A a σ-algebra on Ω. Let ν be a signed measure on the
measurable space (Ω,A).

Definition 13. Let P, N ∈ A. The couple (P,N) is called a Hahn’s decompo-
sition of the measure ν if

i) P ∩N = ∅ and P ∪N = Ω;

ii) for all A ∈ A, ν(A ∩ P ) ≥ 0, (we will say that P is non negative);

iii) for all A ∈ A, ν(A ∩N) ≤ 0, (we will say that N is non positive).

Lemma 7. Let E ∈ A, with −∞ < ν(E) < +∞.
Then, for all ε > 0, there exists Eε ∈ A such that

Eε ⊆ E, ν(Eε) ≥ ν(E) and, for all A ∈ A, if A ⊆ Eε, then ν(A) ≥ −ε.

Proof. By contradiction, suppose that there exists ε0 > 0 such that, for all
F ∈ A, the fact that F ⊆ E and ν(F ) ≥ ν(E) implies that there exists A0 ∈ A
such that A0 ⊆ F and ν(A0) < −ε0.

Let’s choose firstly F = E. We have that there exists A1 ∈ A such that
A1 ⊆ E and ν(A1) < −ε0. Choose F = E \ A1. Consequently there exists
A2 ∈ A such that A2 ⊆ E\A1 and ν(A2) < −ε0. Next choose F = E\(A1∪A2).
We obtain A3 ∈ A such that A3 ⊆ E \ (A1 ∪A2) and ν(A3) < −ε0.

A sequence of pairwise disjoint sets (An)n is constructed in such a way that,
for all n, An ⊆ E and ν(An) < −ε0. We deduce that ν(∪nAn) =

∑
n ν(An) =

−∞, obtaining a contradiction, since ∪nAn ⊆ E and ν(E) > −∞.

Lemma 8. Let E ∈ A, with −∞ < ν(E) < +∞.
Then there exists F ∈ A such that

F ⊆ E, ν(F ) ≥ ν(E) and, for all A ∈ A, ν(A ∩ F ) ≥ 0

(remark that the last point means that F is a non negative set).

Proof. We apply Lemma 7 to the set E, with ε = 1. We obtain that there exists
E1 ∈ A, such that E1 ⊆ E, ν(E1) ≥ ν(E) and, for all A ∈ A, if A ⊆ E1 then
ν(A) ≥ −1. Next we apply Lemma 7 to the set E1 with ε = − 1

2 . We obtain
that there exists E2 ∈ A, such that E2 ⊆ E1, ν(E2) ≥ ν(E1) and, for all A ∈ A,
if A ⊆ E2 then ν(A) ≥ − 1

2 .
Applying successively this procedure, we construct a sequence (En)n such

that, for all n, En ⊆ · · · ⊆ E1 ⊆ E, ν(En) ≥ · · · ≥ ν(E1) ≥ ν(E) and, for all
A ∈ A, if A ⊆ En then ν(A) ≥ − 1

n .
To conclude the proof it is sufficient to take F = ∩nEn. It is easy to verify

that F ⊆ E, ν(F ) ≥ ν(E) and, for all A ∈ A, if A ⊆ F then ν(A) ≥ 0, since,
for all n, A ⊆ En and consequently, for all n, ν(A) ≥ − 1

n .

Theorem 16 (Hahn’s decomposition theorem). Let ν be a signed measure
on the measurable space (Ω,A).

Then there exists a Hahn’s decomposition (P,N) of the measure ν. If (P ′, N ′)
is another Hahn decomposition, then the sets P \P ′, P ′ \P , N \N ′ and N ′ \N
are negligeable.
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Figure 9: Hans Hahn (1879–1934)

Proof. We suppose that, for all E ∈ A, −∞ ≤ ν(E) < +∞. We set α =
sup{ν(E) , E ∈ A}. We take (En)n a sequence in A such that limn ν(En) = α.
It is not restrictive to suppose that, for all n, −∞ < ν(En) < +∞. We apply
Lemma 8 to each set En, obtaining a sequence (Fn)n such that, for all n,

Fn ⊆ En, ν(Fn) ≥ ν(En) and, for all A ∈ A, ν(A ∩ Fn) ≥ 0.

We set now Gn = ∪nj=1Fj . We have that ν(Gn) ≥ ν(Fn) since Gn = ∪nk=1F̃k,
where F̃n = Fn and F̃k = Fk \ (∪nj=k+1Fj) for k = 1, . . . , n− 1. The sets F̃k are
pairwise disjoint and have non negative measure. Remark that, for all n, Gn is
a non negative set (in fact is the union of non negative sets) and the sequence
(Gn)n is increasing. We set P = ∪+∞

n=1Fn = ∪+∞
n=1Gn. We have that

ν(P ) = limn ν(Gn) = limn ν(Fn) = limn ν(En) = α and consequently α ∈ R.

It is immediate to see that P is non negative, as it is union of non negative sets.
It remains to prove that Ω\P is non positive. Suppose by contradiction there

exists A contained in Ω\P such that ν(A) > 0. Then ν(P ∪A) = α+ν(A) > α,
and this is impossible.

Suppose now that (P,N) and (P ′, N ′) are two Hahn’s decomposition. Con-
sidering that P \ P ′ = P ∩ N ′, using the fact that P si non negative we have
ν(P \ P ′) ≥ 0 and using the fact that N ′ is non positive we have ν(P \ P ′) ≤ 0
and the conclusion follows. The other cases are similar.

Exercise 1. Let ν be a signed measure on a measurable space (Ω,A). Suppose
that for all E ∈ A, −∞ ≤ ν(E) < +∞, i.e. ν(A) ∈ [−∞,+∞[.

Prove that if α = sup{ν(E) , E ∈ A}, then α < +∞.
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5.3 Total variation of a measure
The content of this paragraph can be find in [7, §19].

Definition 14. Let ν be a signed measure on (Ω,A). Let (P,N) a Hahn’s
decomposition. We set, for all E ∈ A,

ν+(E) = ν(E ∩ P ),

ν−(E) = −ν(E ∩N),

|ν|(E) = ν+(E) + ν−(E).

ν+, ν− and |ν| are positive measures and they are called positive variation,
negative variation and total variation of ν, respectively.

We give a characterization of the total variation of a measure.

Theorem 17. Let ν be a signed measure on (Ω,A). We set, for all E ∈ A,

µ(E) = sup{
k∑
j=1

|ν(Ej)|
∣∣ E = ∪kj=1Ej , Ej ∩ Eh = ∅ if j 6= h}. (9)

Then, for all E ∈ A,
µ(E) = |ν|(E).

Proof. Let (P,N) a Hahn’s decomposition of ν. We have that

|ν(Ej)| = |ν(Ej ∩ P ) + ν(Ej ∩N)| ≤ |ν(Ej ∩ P )|+ |ν(Ej ∩N)| = |ν|(Ej).

Consequently
k∑
j=1

|ν(Ej)| ≤
k∑
j=1

|ν|(Ej) = |ν|(E),

and we obtain that
µ(E) ≤ |ν|(E).

Converserly, if we write E = (E∩P )∪ (E∩N), since (E∩P )∩ (E∩N) = ∅,
we have

µ(E) = sup{
k∑
j=1

|ν(Ej)| . . .} ≥ |ν(E ∩ P )|+ |ν(E ∩N)| = |ν|(E).

Remark 9. Suppose not having proved Hahn’s decomposition theorem. It is
still possible to prove that µ, defined by (9), is a positive measure. To prove
that µ(∅) = 0 is immediate. To prove that µ is countably additive we proceed in
the following way. Let (An)n be a sequence in A consisting of pairwise disjoint
subsets of Ω. Let A =

⋃
nAn. Let

β < sup{
k∑
j=1

|ν(Ej)|
∣∣ A = ∪kj=1Ej , Ej ∩ Eh = ∅ if j 6= h} = µ(A).
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Then there exists E1, . . . , Ek in A such that A = ∪kj=1Ej , Ej∩Eh = ∅ if j 6= h
and

β <

k∑
j=1

|ν(Ej)| =
k∑
j=1

|
+∞∑
h=1

ν(Ej ∩Ah)|

≤
k∑
j=1

+∞∑
h=1

|ν(Ej ∩Ah)| =
+∞∑
h=1

k∑
j=1

|ν(Ej ∩Ah)|

≤
+∞∑
h=1

sup{
k∑
j=1

|ν(Fj ∩Ah)|
∣∣ Ah = ∪kj=1Fj , . . .}

≤
+∞∑
h=1

µ(Ah).

We deduce that µ(A) ≤
∑+∞
h=1 µ(Ah).

It remains to prove the converse inequality, i. e.
∑+∞
h=1 µ(Ah) ≤ µ(A). The

interesting case is when µ(A) < +∞. For all h0 ∈ N and for all partition
B1, . . . , Bm of Ah0

, we have∑
k

|ν(Bk)| ≤ |ν(
⋃
h6=h0

Ah)|+
∑
k

|ν(Bk)| ≤ µ(A),

so that µ(Ah0
) < +∞. Let now ε > 0 and, for all h ∈ N, choose Eh,1, . . . , Eh,nh

such that
µ(Ah) ≤

∑
k

|ν(Eh,k|+
ε

2h
.

Then, for all m ∈ N,
m∑
h=1

µ(Ah) ≤
m∑
h=1

(
∑
k

|ν(Eh,k|+
ε

2h
)

≤
m∑
h=1

(
∑
k

|ν(Eh,k|) + |ν(
⋃

h≥m+1

Ah)|+ ε

≤ µ(A) + ε.

Since this is true for all m ∈ N and for all ε > 0, the conclusion follows.

let’s now consider the case of complex measures.

Definition 15. Let ν be a complex measure on (Ω,A). We set, for all E ∈ A,

|ν|(E) = sup{
k∑
j=1

|ν(Ej)|
∣∣ E = ∪kj=1Ej , Ej ∩ Eh = ∅ if j 6= h}. (10)

Theorem 18. Let ν be a complex measure on (Ω,A).
Then |ν|, defined in (10), is a positive finite measure.

Proof. The fact that |ν| is a positive measure it is proved in analogy of what we
have seen in the previous Remark 9. It remains to prove that |ν| is finite (see
[14, Th 6.4]).

Theorem 19. Let ν be a complex measure on (Ω,A). Let ν1 and ν2 the real
and the imaginary part of ν.

Then
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i) ν1 and ν2 are signed measures on (Ω,A);

ii) ν+
1 , ν−1 , ν+

2 and ν−2 are positive finite measures on (Ω,A).

For all E ∈ A, we have

iii) ν(E) = ν+
1 (E)− ν−1 (E) + i(ν+

2 (E)− ν−2 (E)) (this is the so called Jordan’s
decomposition of ν);

iv) |ν|(E) ≤ ν+
1 (E) + ν−1 (E) + ν+

2 (E) + ν−2 (E);

v) ν+
1 (E), ν−1 (E), ν+

2 (E), ν−2 (E) ≤ |ν|(E).

Proof. (See [7, §19, (19.13)]). The first and the second point are immediate. In
fact, ν(∅) = 0 implies <ν(∅) = ν1(∅) = 0, =ν(∅) = ν2(∅) = 0 and the countably
additivity of ν implies the same property for ν1 and ν2. The fact that ν+

1 , ν−1 ,
ν+

2 and ν−2 are positive finite measures comes from the fact that |ν|(Ω) < +∞.
In fact, let (P1, N1) a Hahn’s decomposition for ν1, we have,

|ν|(Ω) ≥ |ν(P1)|+ |ν(N1)|

≥ |ν1(P1) + iν2(P1)|+ |ν1(N1) + iν2(N1)|

≥ ν1(P1) + ν1(N1)

≥ ν1(Ω).

The other points are let as an exercise.

6

6.1 The Radon-Nikodym theorem
The content of this paragraph can be found in [7, §19].

Definition 16. Let (Ω,A) a measurable space. Let µ and λ be a positive mea-
sure and a signed or complex measure on (Ω,A) respectively. We say that λ is
absolutely continuous with respect to µ, and we write λ� µ, if, for all E ∈ A,

µ(E) = 0 implies λ(E) = 0.

Theorem 20. Let µ and λ as in previous definition.
λ� µ if and only if |λ| � µ.

Proof. We prove first that |λ| � µ implies λ � µ. In fact, let E ∈ A with
µ(E) = 0. Then |λ|(E) = 0 and then λ(E) = 0 (remember that |λ(E)| ≤
|λ|(E)).

Conversely consider E ∈ A with µ(E) = 0. Take E = ∪kj=1Ej , where Ej ∈ A
and Ej ∩ Ek = ∅ if j 6= k. We have µ(Ej) = 0 and consequently λ(Ej) = 0 for
all j. We infer that

∑
j |λ(Ej)| = 0. Then

|λ|(E) = sup{
∑
j

|λ(Ej)|
∣∣ E = ∪kj=1Ej with . . . } = 0.
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Theorem 21. Let µ and λ be a positive and a complex measure, on the same
measurable space (Ω,A), respectively.

λ is absolutely continuous with respect to µ if and only if

(∗) for all ε > 0, there exists δ > 0 such that, for all A ∈ A, if µ(A) < δ, then
|λ(A)| < ε.

Proof. Suppose that the property (∗) holds. Take E ∈ A such that µ(E) = 0.
Then |λ(E)| < ε, for all ε > 0. This means that λ(E) = 0. Consequently λ� µ.

Conversely we prove that λ� µ implies

(∗∗) for all ε > 0, there exists δ > 0 such that, for all A ∈ A, if µ(A) < δ, then
|λ|(A) < ε.

The fact that (∗∗) implies (∗) is clear (remember that |λ(E)| ≤ |λ|(E)). Suppose
by contradiction that (∗∗) is not true. Then there exists ε0 > 0 such that, for all
δ > 0, there exists Aδ ∈ A such that µ(Aδ) < δ and |λ|(Aδ) > ε0. In particular,
If δ = 1

2n , there exists An ∈ A such that µ(An) < 1
2n and |λ|(An) > ε0. Let us

define

Bn =

+∞⋃
k=n

Ak and C =

+∞⋂
n=1

Bn.

We have, for all n ∈ N,

µ(Bn) ≤
+∞∑
k=n

µ(Ak) ≤
+∞∑
k=n

1

2k
=

1

2n−1
and Bn ⊇ Bn+1.

Consequently

µ(C) = lim
n
µ(Bn) ≤ lim

n

1

2n−1
= 0.

Since λ� µ, from Theorem 20 we have |λ| � µ and then |λ|(C) = 0, but

C =

+∞⋂
n=1

Bn, for all n ∈ N Bn ⊇ Bn+1 and |λ|(Bn) > ε0,

so that limn |λ|(Bn) = |λ|(C) cannot be equal to 0.

Remark 10. The proof of Theorem 21 is valid also in the case when λ is a
signed measure with the extra hypothesis that

for all A ∈ A, µ(A) < +∞ implies |λ(A)| < +∞.

Consider µ a positive measure on the measurable space (Ω,A). Let’s f ∈
L1
µ(Ω). If we define, for all A ∈ A,

λ(A) =

∫
Ω

χA · f dµ =

∫
A

f dµ,

we have that λ is a complex measure on (Ω,A), which is absolutely continuous
with respect to µ (the fact that if µ(A) = 0 then

∫
A
f dµ = 0 is immediate, but

we have also proved directly that for all ε > 0 there exists δ > 0 such that, if
µ(A) < δ, then |

∫
A
f dµ| ≤

∫
A
|f | dµ < ε). The Radon-Nikodym theorem says

that this is the general case, at least if µ is σ-finite.
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Figure 10: Otto Nikodym and Stefan Banach Memorial Bench, Krakóv

Theorem 22 (Radon-Nikodym). Let µ and λ be measures on the measurable
space (Ω,A). Let µ be a positive σ-finite measure. Let λ be a signed or complex
measure. Suppose that λ is absolutely continuous with respect to µ.

Then there exists a measurable function f0 such that, for all A ∈ A, if
|λ(A)| < +∞, then χA · f0 ∈ L1

µ and

λ(A) =

∫
Ω

χA · f0dµ =

∫
A

f0 dµ. (11)

In particular, if λ is a complex measure (or a signed measure with |λ(Ω)| < +∞),
f0 ∈ L1

µ and (11) is valid for all A ∈ A.

Proof. We present here the proof only in the case of µ and λ positive finite
measures. Let

C = {f ∈ L1
µ

∣∣ f ≥ 0 and, for all A ∈ A,
∫
A

f dµ ≤ λ(A)}.

Remark that C is not empty, since the function f = 0 is an element of C.
Consider

α = sup
f∈C

∫
Ω

f dµ.

We have α ≤ λ(Ω). Let (fn)n a sequence in C such that limn

∫
Ω
fn dµ = α. We

set
gn(x) = max{f1(x), f2(x), . . . , fn(x)}.

We have gn ∈ C and limn

∫
Ω
gn dµ = α. Since (gn)n is an increasing sequence,

using Beppo Levi’s theorem we have that, setting

g(x) = lim
n
gn(x),

we have that g ∈ C (in particular g ≥ 0 and g ∈ L1
µ),
∫

Ω
g dµ = α and, for all

A ∈ A, ∫
A

g dµ ≤ λ(A).

Consequently, if we set

ν(A) = λ(A)−
∫
A

g dµ,
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then ν is positive measure on A.
Our goal is to prove that ν ≡ 0. Suppose by contradiction that ν(Ω) > 0.

Then there exists k > 0 such that

µ(Ω)− kν(Ω) < 0.

We denote by ν1 the signed measure µ−kν. Let (P,N) a Hahn’s decomposition
for ν1. We remark that µ(N) > 0. In fact, if µ(N) = 0, then by the absolute
continuity of λ with respect to µ, λ(N) = 0 and consequently ν(N) = 0 and
ν1(N) = 0. Then

0 ≤ µ(P )− kν(P ) = (µ(P )− kν(P )) + (µ(N)− kν(N)) = µ(Ω)− kν(Ω) < 0,

which is a contradiction. Consider now

h(x) =


1

k
if x ∈ N,

0 otherwise.

Then, for all A ∈ A, ∫
A

h dµ =
1

k
µ(A ∩N).

Now
ν1(A ∩N) = µ(A ∩N)− kν(A ∩N) ≤ 0,

consequently

ν(A ∩N) ≥ 1

k
µ(A ∩N) =

∫
A

h dµ,

and hence
ν(A) ≥ ν(A ∩N) ≥

∫
A

h dµ.

Finally, for all A ∈ A,

λ(A) = ν(A) +

∫
A

g dµ ≥
∫
A

(g + h) dµ

i. e. (g + h) ∈ C. But ∫
Ω

(g + h) dµ = α+
1

k
µ(N) > α,

which is impossible, since α = supf∈C
∫

Ω
f dµ. The proof is complete.

Remark 11. The hypothesis that µ is a positive σ-finite measure cannot be
neglected. An example is given here below. Let µ be the measure on [0, 1] such
that µ counts the points of each set (let this measure, e. g., on the Borelian sets
B). µ is not σ-finite. Let λ be the Lebesgue’s measure. It is immediate to verify
that λ� µ. Suppose there exists f0 ∈ L1

µ such that, for all A ∈ B,

λ(A) =

∫
A

f0 dµ.
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Figure 11: Johann Radon (1887–1956)

Let x0 ∈ [0, 1] and A = {x0}. We have, on one hand, λ(A) = 0, and on the
other hand, ∫

{x0}
f0 dµ = f0(x0).

This implies that f0(x0) = 0 and this is valid for all x0 ∈ [0, 1]. Then f0 = 0,
which is a contradiction.

Corollary 7. Let µ and λ be measures on the measurable space (Ω,A). Let µ
be a positive σ-finite measure. Let λ be a signed or complex measure. Suppose
that λ is absolutely continuous with respect to µ.

Then there exists a measurable function f0 such that, for all f ∈ L1
λ, f ·f0 ∈

L1
µ and ∫

Ω

f dλ =

∫
Ω

f · f0 dµ.

Remark 12. Let F : R → R be an increasing right-continuous function. It is
possible to show that there exists one, and only one, positive measure µF on the
Borelian sets of R (denoted by B) such that, for all a, b ∈ R, with a < b,

µF ( ]a, b]) = F (b)− F (a). (12)

µF is called the Lebesgue-Stieltjes (positive) measure associated to F .
Similarly, let F ∈ BV (R) (it is sufficient that, for allM > 0, F ∈ BV ([−M,

M ]) and or the positive or the negative variation is finite) and suppose that F
is right-continuous. It is possible to show that there exists one, and only one,
signed measure µF on B, such that, for all a, b ∈ R, with a < b, (12) is verified.
Also in this case we will say that µF is the Lebesgue-Stieltjes (signed) measure
associated to F .

It is possible to show that F ∈ AC(R) (this means that, for all M > 0,
F ∈ AC([−M, M ])) if and only if µF � λ, where λ is the Lebesgue measure.

Remark 13. Let F : R → [0, 1] a right-continuous increasing function. Sup-
pose that limt→−∞ F (t) = 0 and limt→+∞ F (t) = 1. We define

jF : R→ R, jF (t) = F (t)− lim
z→t−

F (z).
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The function jX is different from 0 only on a finite or countable set of points
(xn)n. We define

χ(t) =
∑
xn≤t

jF (xn).

We define F1 = F−χ. The function F1 : R→ [0 1] is continuous and increasing.
We know that F ′1 is a L1 (Lebesgue integrable) function and, for all t1 < t2,∫ t2

t1

F ′1(s) ds ≤ F1(t2)− F1(t1).

In particular, for all t1 < t2,

F1(t1)−
∫ t1

0

F ′1(s) ds ≤ F1(t2)−
∫ t2

0

F ′1(s) ds.

We set

G(t) = F1(t)−
∫ t

0

F ′1(s) ds and F2(t) =

∫ t

0

F ′1(s) ds.

In conclusion
F (t) = F2(t) +G(t) + χ(t),

where F2 is an absolutely continuous increasing function, G is a continuous
increasing function such that G′(x) = 0 for almost every x ∈ R and χ is a
jump-function.

F can be thought as the distribution function (in Italian: funzione di ripar-
tizione) of a random variable X. We have

P (X ≤ t) = F (t),

where P is the probability measure associate to X. This random variable has
an absolutely continuous density (the function F ′2) and a discrete density (the
function jX) but has also a “singular part” (linked to the function G) which
cannot be described in term of Lebesgue measure nor in term of discrete random
variables.

7

7.1 The Hardy-Littlewood maximal function
The content of this paragraph can be (partially) found in [17, Ch. 1]
and [14, Ch. 8].

Let us denote by B the σ-algebra of Borel sets of Rd. Let λ be the Lebesgue
measure on Rd and let ν be a complex measure defined on B. For any ball
B(x, r) = {y ∈ Rd

∣∣ |y − x| < r}, we set

Qrν(x) =
ν(B(x, r))

λ(B(x, r))
.

40



Figure 12: G. H. Hardy and J. E. Littlewood in 1924

Definition 17. Let x ∈ Rd. If the limit

lim
r→0+

Qrν(x) = lim
r→0+

ν(B(x, r))

λ(B(x, r))

exists, we call this limit symmetric derivative of ν with respect to λ at the point
x and we denote it with dν

dλ (x).

Remark 14. Let f ∈ L1
λ(Rn) and νf such that νf (A) =

∫
A
f dλ, then

Qrνf (x) =

∫
B(x,r)

f dλ

λ(B(x, r))
and

dνf
dλ

(x0) = lim
r→0+

1

λ(B(x, r))

∫
B(x,r)

f dλ.

We are interested in conditions guaranteeing the existence of dνdλ and also to
the value of this quantity.

Definition 18. Let ν and |ν| be a complex measure and its total variation,
respectively. Let x ∈ Rd. We define

Mν(x) = sup
r>0

|ν|(B(x, r))

λ(B(x, r))
.

The function Mν : Rd → [0, +∞] is called Hardy-Littlewood maximal function
of ν.

Theorem 23. The function Mν is lower semicontinuous.

Proof. It is not restrictive to suppose that ν is a positive measure. Proving that
Mν is lower semicontinuous means to show that for all α ≥ 0, the set

E = {x ∈ Rn
∣∣Mν(x) > α}
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is an open set. Let x ∈ E. Then Mν(x) > α and consequently

sup
r>0

ν(B(x, r))

λ(B(x, r))
> α.

Hence there exist r > 0 and t > α′ > α such that

ν(B(x, r))

λ(B(x, r))
> t > α′ > α.

Take now δ > 0 such that
(r + δ)n < rn

t

α′
,

so that, if |x− y| < δ, then B(y, r + δ) ⊇ B(x, r) and consequently

ν(B(y, r + δ)) ≥ ν(B(x, r)) > tλ(B(x, r))

> α′
(r + δ)n

rn
λ(B(x, r)) = α′λ(B(x, r + δ)) = α′λ(B(y, r + δ)).

Finally
ν(B(y, r + δ))

λ(B(y, r + δ))
> α′ > α,

i. e. we have proved that if |x− y| < δ, then y ∈ E, and consequently E is an
open set.

Corollary 8. The function Mν is Lebesgue measurable.

Lemma 9 (Wiener). Let W be the union of a finite number of balls B(x1, r1),
B(x2, r2), . . . , B(xk, rk).

Then there exists S ⊆ {1, 2, . . . , k} such that

i) if i, j ∈ S, with i 6= j, then B(xi, ri) ∩B(xj , rj) = ∅;

ii) W ⊆
⋃
i∈S B(xi, 3ri);

iii) λ(W ) ≤ 3n
∑
i∈S λ(B(xi, ri)).

Proof. The fact that ii) implies iii) is a consequence of the homogeneity property
of Lebesgue measure. Let’s show i) and ii). It is not restrictive to suppose that

r1 ≥ r2 ≥ . . . ≥ rk.

Let n1 = 1. We define

A2 = {j ∈ {n1 + 1, . . . , k}
∣∣ B(xn1

, rn1
) ∩B(xj , rj) = ∅}.

If A2 = ∅, we take S = {n1}. If A2 6= ∅, we define n2 = minA2. We consider

A3 = {j ∈ A2

∣∣ B(xn2
, rn2

) ∩B(xj , rj) = ∅}.

If A3 = ∅, we take S = {n1, n2}. If A3 6= ∅, we define n3 = minA3 and we go
on with this procedure up to obtaining

S = {n1, n2, . . . , nh} with 1 = n1 < n2 < . . . < nh ≤ k.
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Figure 13: Norbert Wiener (1894–1964)

With such a construction, condition i) is verified. In fact, let ni < j <
ni+1. Since ni+1 is the minimum index h grater than ni such that B(xh, rh) ∩
B(xnm , rnm) = ∅ for every m = 1, . . . , i, we have B(xj , rj)∩B(xnh , rnh) 6= ∅ for
at least one h in {1, . . . , i}, so that

B(xj , rj) ⊆ B(xnh , 3rnh)

and condition ii) follows.

We are now ready to show the main property of Hardy-Littlewood maximal
function.

Theorem 24 (Hardy-Littlewood). Let ν be a complex measure. Let α > 0.
Then

λ({x ∈ Rd
∣∣Mν(x) > α}) ≤ 3d · 1

α
· |ν|(Rd).

Proof. Let K be a compact set contained in E = {x ∈ Rd
∣∣ Mν(x) > α}

(remember that the set E is measurable). Let x ∈ K ⊆ E. We know that
Mν(x) > α. Then there exists rx > 0 such that

|ν|(B(x, rx))

λ(B(x, rx))
> α.

The set {B(x, rx)
∣∣ x ∈ K} is an open covering of the compact set K. Let

B(x1, r1), B(x2, r2), . . . , B(xn, rn),

a finite subcovering and let S be the set of indexes given from Wiener’s lemma.
We have

K ⊆
n⋃
i=1

B(xi, ri) ⊆
⋃
j∈S

B(xj , 3rj).
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Consequently

λ(K) ≤
∑
j∈S

λ(B(xj , 3rj)) ≤ 3d ·
∑
j∈S

λ(B(xj , rj))

≤ 3d · 1

α
·
∑
j∈S
|ν|(B(xj , rj)) ≤ 3d · 1

α
· |ν|(Rd).

Since this last inequality holds true for all the compact sets contained in E, the
conclusion follows.

Remark 15. Usually the Hardy-Littlewood theorem is stated in a slightly dif-
ferent way. In particular let f ∈ L1(Rd). Denote by Mf the function

Mf (x) = sup
r>0

1

λ(B(x, r))

∫
B(x,r)

|f | dλ.

The result shown here above implies that, for all α > 0,

λ({x ∈ Rd
∣∣Mf (x) > α}) ≤ 3d · 1

α
· ‖f‖L1 .

It is possible to prove also that, if f ∈ Lp(Rd), with 1 < p ≤ +∞, then Mf ∈
Lp(Rd) and

‖Mf‖Lp ≤ Ap‖f‖Lp ,
where Ap depends only on p and d (see [17, Ch. 1]).

7.2 Lebesgue’s points
Definition 19. Let f ∈ L1

loc(Rd) (this means that, for all K compact sets in
Rd, χK · f ∈ L1(Rd)). Let x ∈ Rd. x is said to be a Lebesgue’s point for f if

f(x) = lim
r→0+

1

|B(x, r)|

∫
B(x,r)

f(y) dy,

(from now on, given A ∈ B, |A| will denote the Lebesgue measure of A).

Theorem 25. Let f ∈ L1(Rd).
Then, for almost all x ∈ Rd,

lim
r→0+

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)| dy = 0.

Proof. Let g ∈ C0
0 (Rd). Then

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)| dy

≤ 1

|B(x, r)|

∫
B(x,r)

|f(y)− g(y)| dy +
1

|B(x, r)|

∫
B(x,r)

|g(y)− f(x)| dy.

Denoting by Mf−g the maximal function of f − g, i. e.

Mf−g(x) = sup
r>0

1

|(B(x, r)|

∫
B(x,r)

|f(y)− g(y)| dy,
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we have

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|dy

≤Mf−g(x) +
1

|B(x, r)|

∫
B(x,r)

|g(y)− f(x)|dy.
(13)

We consider, on both sides of (13), the lim supr→0+ . We have

T (x) = lim sup
r→0+

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)| dy

≤Mf−g(x) + lim sup
r→0+

1

|B(x, r)|

∫
B(x,r)

|g(y)− f(x)| dy.

Remarking that the function y 7→ |g(y) − f(x)| is a continuous function, we
obtain that

lim sup
r→0+

1

|B(x, r)|

∫
B(x,r)

|g(y)− f(x)| dy = |g(x)− f(x)|,

and, finally,
T (x) ≤Mf−g(x) + |g(x)− f(x)|.

Take now ε > 0 and consider

{x ∈ Rd
∣∣ T (x) > 2ε} ⊆ {x ∈ Rd

∣∣Mf−g(x) > ε}∪{x ∈ Rd
∣∣ |f(x)− g(x)| > ε}.

From the Hardy-Littlewood theorem we know that

λ({x ∈ Rd
∣∣Mf−g(x) > ε}) ≤ 3d · 1

ε
· ‖f − g‖L1

and, from a direct calculation,

λ({x ∈ Rd
∣∣ |f(x)− g(x)| > ε}) ≤ 1

ε
· ‖f − g‖L1 .

Hence
λ({x ∈ Rd

∣∣ T (x) > 2ε}) ≤ (3d + 1)
1

ε
‖f − g‖L1 . (14)

It is sufficient to consider a sequence (gn)n in C0
0 such that, for all n, ‖f−gn‖L1 <

1/n (see Theorem 26), obtaining, from (14), that, for all ε > 0, we have

λ({x ∈ Rd
∣∣ T (x) > 2ε}) = 0.

In conclusion, for almost every x ∈ Rd,

lim
r→0+

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)| dy = 0.
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Corollary 9. Let f ∈ L1
loc(Rd).

Then, for almost every x ∈ Rd,

lim
r→0+

1

|B(x, r)|

∫
B(x,r)

f(y) dy = f(x).

Remark 16. Let ν be a complex measure on B(Rd). Suppose that ν � λ,
where λ is the Lebesgue measure. From the Radon-Nikodym theorem we know
that there exists f0 ∈ L1

λ(Rd) such that, for all E ∈ B,

ν(E) =

∫
E

f0 dλ.

From Corollary 9 we have also that, for almost every x ∈ Rd,

f0(x) = lim
r→0+

1

|B(x, r)|

∫
B(x,r)

f0(y) dy = lim
r→0+

ν(B(x, r))

λ(B(x, r))
=
dν

dλ
(x).

Hence, if ν � λ, then, for almost every x ∈ Rd, ν possesses a finite symmetric
derivative with respect to λ and the value of the symmetric derivative is exactly
the value of the Radon-Nikodym density function, i. e., for all E ∈ B,

ν(E) =

∫
E

dν

dλ
(x) dλ.

8

8.1 Preliminary results (to distribution theory)
8.1.1 C0(Ω) is dense in L1(Ω)

The following density result is considered (by H. Brezis) “un résultat d’intégration
qu’il faut absolument connaître”.

Theorem 26 (Th. IV.3 in [3]). Let Ω be an open set in Rn. Let f ∈ L1(Ω).
Let ε > 0.

Then there exists ϕ ∈ C0(Ω) such that

‖f − ϕ‖L1(Ω) < ε,

i. e. C0(Ω) is dense in L1(Ω), where C0(Ω) denotes the space of continuous
functions ϕ such that the closure of the set {x ∈ Ω

∣∣ϕ(x) 6= 0}, i. e. the support
of ϕ, is a compact set in Ω.

8.1.2 C0(Ω) is dense in Lp(Ω), for all 1 ≤ p < +∞

The density result of the previous paragraph can be extended to Lp, for all
1 ≤ p < +∞.

Lemma 10 (Lemma IV.2 in [3]). Let f ∈ L1
loc(Ω). Suppose that, for all ϕ ∈

C0(Ω), ∫
Ω

fϕ = 0.

Then f = 0.
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Proof. Let us suppose that f ∈ L1(Ω) and |Ω| < +∞.
Since C0(Ω) is dense in L1(Ω), then, for all ε > 0, there exists fε ∈ C0(Ω)

such that
‖f − fε‖L1(Ω) < ε.

Consequently, for all ϕ ∈ C0(Ω),

|
∫

Ω

fεϕ| = |
∫

Ω

(fε − f)ϕ| ≤ ‖f − fε‖L1(Ω)‖ϕ‖L∞(Ω) < ε‖ϕ‖L∞(Ω). (15)

Consider

K1 = {x ∈ Ω
∣∣ fε(x) ≥ ε}, K2 = {x ∈ Ω

∣∣ fε(x) ≤ −ε}

and K = K1 ∪ K2. K1, K2 and K are compact sets in Ω. We use Uryshon’s
Lemma to construct uε ∈ C0(Ω) such that

|uε(x)| ≤ 1 for all x ∈ Ω and

{
uε(x) = 1 on K1,

uε(x) = −1 on K2.

We have ∫
Ω

|f | ≤
∫

Ω

|f − fε|︸ ︷︷ ︸
≤ε

+

∫
Ω

|fε| ≤ ε+

∫
Ω\K
|fε|+

∫
K

|fε|.

Remark now that ∫
K

|fε| =
∫
K

fεuε =

∫
Ω

fεuε −
∫

Ω\K
fεuε

and

|
∫

Ω

fεuε| ≤ ε‖uε‖L∞ ≤ ε, as a consequence of (15),

|
∫

Ω\K
fεuε| ≤

∫
Ω\K
|fε| ≤ ε · |Ω \K|, since, on Ω \K, we have |fε| ≤ ε,

so that ∫
K

|fε| ≤ |
∫

Ω

fεuε|︸ ︷︷ ︸
≤ε

+ |
∫

Ω\K
fεuε|︸ ︷︷ ︸

≤ε·|Ω\K|

≤ ε(1 + |Ω \K|).

Finally∫
Ω

|f | ≤
∫

Ω

|f − fε|︸ ︷︷ ︸
≤ε

+

∫
Ω

|fε| ≤ ε+

∫
Ω\K
|fε|︸ ︷︷ ︸

ε·|Ω\K|

+

∫
K

|fε|︸ ︷︷ ︸
ε(1+|Ω\K|)

≤ 2ε(1 + |Ω|).

This last inequality implies that
∫

Ω
|f | = 0 and consequently f = 0.

Suppose now f ∈ L1
loc and Ω open in Rn. Consider

Ωn = B(0, n) ∩ {x ∈ Ω
∣∣ dist (x, CΩ) >

1

n
}.

47



From what we have already proved, we deduce that, for all n,

f · χΩn = 0,

and this conclude the proof.

Theorem 27 (Th IV.12 in [3]). C0(Ω) is dense in Lp(Ω), for all 1 ≤ p < +∞.

Proof. This result, in the case p = 1, is already known. Let 1 < p < +∞. We
know that a consequence of the Hahn-Banach theorem is the following: let W
a subspace of a normed space V and suppose that, for all Φ ∈ V ′, Φ(W ) = 0
implies Φ = 0, then W is a dense subspace of V . Consider Φ ∈ (Lp(Ω))′. From
Riesz’s theorem we have that there exists g ∈ Lp′ , with 1

p + 1
p′ = 1, such that

Φ(ϕ) =

∫
Ω

gϕ

Suppose that Φ(ϕ) = 0 for all ϕ ∈ C0(Ω), i. e.
∫

Ω
gϕ = 0 for all ϕ ∈ C0(Ω).

From the previous lemma we have that g = 0, i. e. Φ = 0. As a consequence
C0(Ω) is dense in Lp(Ω).

8.1.3 Convolution of functions

We collect here some (supposed) known results on convolution (see [3, Ch.
IV.4]).

Theorem 28 (Th. IV.15 in [3]). Let f ∈ L1(Rn), g ∈ Lp(Rn), with 1 ≤ p ≤
+∞.

Then, for almost every x ∈ Rn, the function

y 7→ f(x− y)g(y) is in L1(Rn)

and setting

f ∗ g (x) =

∫
Rn
f(x− y)g(y) dy

we have f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖Lp ≤ ‖f‖L1‖g‖Lp .

More generally, let 1 ≤ p, q, r ≤ +∞, with 1
q = 1

p + 1
r − 1. Let f ∈ Lr(Rn)

and g ∈ Lp(Rn).
Then

f ∗ g ∈ Lq(Rn) and ‖f ∗ g‖Lq ≤ ‖f‖Lr‖g‖Lp (Young inequality).

Definition 20. Let f be a continuous function defined on Ω, open set of Rn.
We call support of f the closure, in Ω, of the set {x ∈ Ω

∣∣ f(x) 6= 0}.
Let f be a L1

loc(Ω) function. Consider W , the set of points of Ω, having an
open neighborhood U in Ω, such that f is a. e. equal to 0 on U . We call support
of f the complementary set of W in Ω.

The support of f in Ω is the smallest relatively closed set in Ω outside of
which f is a. e. equal to 0.
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Theorem 29 (Prop. IV.18 in [3]). Let f ∈ L1(Rn), g ∈ Lp(Rn), with 1 ≤ p ≤
+∞. Then

Supp (f ∗ g) ⊆ Supp f + Supp g

Remark 17. Let f ∈ L1(Rn) with compact support (i. e. f is a. e. equal to 0
outside a compact). Let g ∈ Lploc(Rn). Then it is possible to define f ∗ g in the
usual way and we have that f ∗ g ∈ Lp(Rn).

Theorem 30 (Prop. IV.20 in [3]). Let f ∈ C0(Rn) and g ∈ L1
loc(Rn).

Then f ∗ g ∈ C(Rn).

Let f ∈ Cm0 (Rn), with m ≥ 1, and g ∈ L1
loc(Rn).

Then
f ∗ g ∈ Cm(Rn) and

∂

∂xj
(f ∗ g) =

∂f

∂xj
∗ g.

8.1.4 Test functions and mollifiers

We collect here some notions on test functions and mollifiers (see [8, Ch. 1.2]).

Definition 21. We set

C0(Ω) = {continuous functions with compact support contained in Ω},

for m ∈ N,
Cm0 (Ω) = C0(Ω) ∩ Cm(Ω),

and, finally,
D(Ω) = C∞0 (Ω) =

⋂
m

Cm0 (Ω).

The elements of D(Ω) = C∞0 (Ω) are called test functions.

Example 2. Let

f : R→ R, f(t) =

{
e−

1
t for t > 0,

0 for t ≤ 0.

It is possible to prove that f ∈ C∞(R) and f (j)(t) = 0 for all j and for all t ≤ 0.
The function

u : Rn → R, u(x) = f(1− |x|2),

is a test function, with Suppu = B(0, 1).

Definition 22. Let ρ ∈ D(Rd), ρ ≥ 0, Supp ρ ⊆ B(0, 1) and
∫
Rd ρ(x) dx = 1.

The set
{ρε,

∣∣ ε ∈ ]0, 1], ρε(x) =
1

εd
ρ(
x

ε
)} = (ρε)ε∈ ]0,1],

is called mollifier (or also family of mollifiers). Similarly we will call mollifier
(or family of mollifiers) the sequence

(ρn)n with ρn(x) = ndρ(nx).

Theorem 31 (Th. 1.2.1 in [8]). Let (ρε)ε be a mollifier.
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i) Let u ∈ L1(Ω), with u = 0 outside a compact set of Ω.
Then there exists ε0 > 0 such that, for all 0 < ε < ε0, ρε ∗ u ∈ C∞0 (Ω).

ii) Let u ∈ C0(Ω).
Then, for ε going to 0+, ρε ∗ u converges uniformly to u.

iii) Let u ∈ Lp(Ω), with 1 ≤ p < +∞. Let

ū(x) =

{
u(x) for x ∈ Ω,

0 for x 6∈ Ω.

Then, for ε going to 0+, ρε ∗ ū converges to u in Lp(Ω).

Proof. i) Denote by K the compact set of Ω outside of which the function u is
identically 0. Take ε0 > 0 less than half the distance between K and the border
of Ω. Theorem 29 and Theorem 30 give the conclusion.

ii) Let ε0 > 0 as in the previous point, and let 0 < ε < ε0. Then

ρε ∗ u (x)− u(x) =

∫
|y|≤ε

ρε(y)(u(x− y)− u(x)) dy.

Consider now that u is uniformly continuous, so that for all r > 0 there exists
δ > 0 such that, if |x1 − x2| < δ then |u(x1) − u(x2)| < r. Consequently, if
ε < δ, for all x ∈ Ω,

|ρε ∗ u (x)− u(x)| ≤
∫
|y|≤ε

ρε(y)|u(x− y)− u(x)| dy ≤
∫
|y|≤ε

ρε(y)r dy = r

and the conclusion follows.

iii) We know that C0(Ω) is dense in Lp(Ω) (recall that 1 ≤ p < +∞). Fix
δ > 0 and consider w ∈ C0(Ω) such that ‖u− w‖Lp(Ω) < δ. We have

‖(ρε ∗ ū)− u‖Lp(Ω)

≤ ‖(ρε ∗ ū)− ū‖Lp(Rn)

≤ ‖(ρε ∗ ū)− (ρε ∗ w)‖Lp(Rn) + ‖(ρε ∗ w)− w‖Lp(Rn) + ‖w − u‖Lp(Ω).

We consider now the fact that

‖(ρε ∗ ū)− (ρε ∗ w)‖Lp(Rn) = ‖ρε ∗ (ū− w)‖Lp(Rn) ≤ ‖ρε‖L1‖u− w‖Lp(Ω) ≤ δ,

and
‖w − u‖Lp(Ω) ≤ δ.

Consequently

‖(ρε ∗ ū)− u‖Lp(Ω) ≤ ‖(ρε ∗ w)− w‖Lp(Rn) + 2δ.

From the point ii) we know that ρε ∗ w is converging uniformly on Ω to w and
both ρε ∗w and w are C0(Ω) functions, so that ρε ∗w is converging to w also in
Lp(Rn). This means that, if ε is sufficiently small,

‖(ρε ∗ ū)− u‖Lp(Ω) ≤ 3δ,

and the proof is complete.
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Remark 18. Convolution with a mollifier is a good way to construct a C∞0
function which value is 1 in a neighborhood of a certain compact K. Let’s show
how to do it.

Let K be a compact set in Rn. Consider the covering {B(x, ε0)
∣∣ x ∈ K}

and extract a finite subcovering

B(x1, ε0), B(x2, ε0), . . . , B(xN , ε0).

Define

K1 =

N⋃
j=1

B(xj , 2ε0)

and finally consider ρε ∗ χK1 , with ε < ε0. We let as an exercise to verify that
ρε ∗ χK1 is a C∞0 and that its value is 1 inside each ball B(xj , ε0).

We end this paragraph with a refinement of the previous density results.

Lemma 11. Let f ∈ L1
loc(Ω). Suppose that for all ϕ ∈ C∞0 (Ω),

∫
Ω
fϕ = 0.

Then f = 0.

Proof. Suppose first that f ∈ L1(Ω). Let ψ ∈ C0(Ω). Let (ρn)n be a mollifier.
Consider ϕn = ρn ∗ ψ. We have that, for all n, ϕn ∈ C∞0 and ϕn converges
uniformly to ψ. Remark that

|ϕn(x)| = |
∫
Rn
ρn(y)ψ(x− y) dy| ≤ max |ψ|

∫
Rn
|ρn(y)| dy ≤ max |ψ|.

Then
f(x)ϕn(x)

n−→ f(x)ψ(x) almost everywhere,

and
|f(x)ϕn(x)| ≤ max |ψ||f(x)|.

We can apply the dominated convergence theorem and we have∫
Ω

f(x)ϕn(x) dx
n−→
∫

Ω

f(x)ψ(x) dx,

but we know that, for all n,
∫

Ω
f(x)ϕn(x) dx = 0, so that

∫
Ω
f(x)ψ(x) dx. The

conclusion is a consequence of Lemma 1.
Let now f be in L1

loc(Ω). The above part of the proof guarantees that, for
all compact set K, the function f · χK is identically equal to 0 and this implies
that f = 0.

Corollary 10 (Cor. IV.23 in [3]). C∞0 (Ω) is dense in Lp(Ω), for all 1 ≤ p <
+∞.

8.1.5 Partition of unity

We conclude the list of preliminary results with a partition of unity theorem.
We need, before, a property that we let as an exercise.
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Exercise 2. Let K be a compact set in Rn. Let Ω1 and Ω2 be two open sets in
Rn, with K ⊆ Ω1 ∪ Ω2 and Kj ∩ Ωj 6= ∅, for j = 1, 2. Show that there exists
two compact sets K1 ⊆ Ω1 and K2 ⊆ Ω2 such that K = K1 ∪K2.

Hint. First of all, if Ω1 ∩ Ω2 = ∅ then it is sufficient to take Kj = K ∩ Ωj , for
j = 1, 2. If Ω1 ∩ Ω2 6= ∅, for every x ∈ K, consider an open ball B(x, rx) such
that,

if x ∈ K \ Ω1, then B(x, 2rx) ⊆ Ω2,

if x ∈ K \ Ω2, then B(x, 2rx) ⊆ Ω1,

if x ∈ K ∩ Ω1 ∩ Ω2, then B(x, 2rx) ⊆ Ω1 ∩ Ω2.

{B(x, rx)
∣∣ x ∈ K} is an open covering of K. Take a finite subcovering

B1(x1, r1), . . . , B1(xN , rN )

Define

K1 = K ∩ (
⋃

xi∈Ω1

B1(xi, ri)) and K2 = K ∩ (
⋃

xi∈Ω2

B1(xi, ri)).

Theorem 32 (Th. 1.2.3 in [8]). Let K be a compact set in Rn. Let Ω1, . . . ,ΩN
be open sets in Rn, with K ⊆

⋃N
j=1 Ωj.

Then there exist ϕ1, . . . , ϕN with, for all j, ϕj ∈ C∞0 (Ωj) such that,

N∑
j=1

ϕj(x) = 1, for all x ∈ K.

Proof. Using the exercise we can find K1, . . . ,KN compact sets, with, for all j,
Kj ⊆ Ωj and ∪jKj = K. We consider, for all j, ψj ∈ C∞0 (Ωj), such that ψj = 1
in a neighborhood of Kj . We set

ϕ1 = ψ1,

ϕ2 = ψ2(1− ψ1),

ϕ3 = ψ3(1− ψ2)(1− ψ1),

...
ϕN = ψN (1− ψN−1)(1− ψN−2) · . . . · (1− ψ1).

By induction, it is possible to prove that

ϕ1 + ϕ2 + . . .+ ϕN = 1− (1− ψ1) · . . . · (1− ψN ),

and the conclusion follows.
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9

9.1 Distributions
The content of this paragraph can be found in [8, Ch. 1.3] (see also
[15]).

9.1.1 Notations

Let α be a multi-index of lenght n, i. e.

α = (α1, α2, . . . , αn) with αj ∈ N;

we set
|α| = α1 + . . .+ αn, α! = α1! · . . . · αn!.

If α, β are two multi-indexes of lenght n, α ≤ β means

α1 ≤ β1, . . . , αn ≤ βn,

and, in this case, (
β

α

)
=

β1!

α1!(β1 − α1)!
· . . . · βn!

αn!(βn − αn)!
.

Let x ∈ Rn and α ∈ Nn, we set

xα = xα1
1 · . . . · xαnn ,

and finally

∂αx =
∂|α|

∂α1
x1 . . . ∂

αn
xn

and Dα
x = (−i)|α| ∂|α|

∂α1
x1 . . . ∂

αn
xn

(Hörmander’s notation).

9.1.2 Definition of distribution

Definition 23. Let Ω be an open set in Rn. Let T : D(Ω)→ R (or C). Suppose
that

i) T is linear, i. e. T (λϕ+ µψ) = λT (ϕ) + µT (ψ), for all ϕ, ψ ∈ D(Ω) and
λ, µ ∈ R (or C);

ii) for all K, compact set in Ω, there exist CK > 0, mK ∈ N such that

|T (ϕ)| ≤ CK
∑
|α|≤mK

sup
x∈Ω
|Dαϕ(x)|

for all ϕ ∈ D(Ω) such that Suppϕ ⊆ K.

We call T distribution on the open set Ω. The set of distributions on Ω is
denoted by D′(Ω).

Definition 24. Let T ∈ D′(Ω). If the constant mK ∈ N in condition ii) can be
chosen independently of K, we say that T is a distribution of finite order, and
the minimal m for which this is valid is the order of T . The set of finite order
distributions is denoted by D′F (Ω)
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Figure 14: Laurent Schwartz (1915–2002)

Example 3. Let f ∈ L1
loc(Ω). We define

Tf : D(Ω)→ R (or C), ϕ 7→ Tf (ϕ) =

∫
Ω

fϕ.

We have, for all compact set K,

|Tf (ϕ)| ≤ (

∫
K

|f |) sup
Ω
|ϕ| for all ϕ ∈ D(Ω) with Suppϕ ⊆ K.

Setting
∫
K
|f | = CK , we have that Tf is a distribution of order 0. Remark that

if f1, f2 ∈ L1
loc(Ω) and

Tf1(ϕ) = Tf2(ϕ) for all ϕ ∈ D(Ω),

then f1 = f2 (as functions of L1
loc(Ω), remember Lemma 11 in Lesson 9). Con-

sequently
L1
loc(Ω)→ D′(Ω), f 7→ Tf

is an injective functional. We can think that L1
loc(Ω) is a subset of D′(Ω) or,

conversely, D′(Ω) is an extension of L1
loc(Ω) (in early Soviet Union mathemat-

ical tradition, distributions are called “generalized functions”).

Example 4. Let x0 ∈ Ω. Consider

δx0
: D(Ω)→ R (or C), ϕ 7→ δx0

(ϕ) = ϕ(x0).

Since
|δx0

(ϕ)| = |ϕ(x0)| ≤ 1 · sup
Ω
|ϕ| for all ϕ ∈ D(Ω),
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Figure 15: From page 64 of Dirac’s book [5]

δx0
is a distribution of order 0. We call it Dirac’s delta at the point x0. We

show now that δx0
is not a distribution obtained from a function in L1

loc(Ω).
Suppose, by contradiction, that there exists f ∈ L1

loc(Ω) such that

δx0
(ϕ) = ϕ(x0) =

∫
Ω

fϕ = Tf (ϕ) for all ϕ ∈ D(Ω).

Consider ψ ∈ D(Ω \ {x0}), then

0 = ψ(x0) =

∫
Ω\{x0}

fψ = Tf (ψ)

and consequently f = 0 almost everywhere in Ω \ {x0}. This means that f = 0
almost everywhere in Ω i. e. Tf = 0 and this a contradiction.

Example 5. Consider Ω = ]0, 1[ ⊆ R and x0 ∈ Ω. We set, for ϕ ∈ D(Ω),

dipx0
(ϕ) = ϕ′(x0).

We have that dipx0
∈ D′(Ω) with order equal to 1.

Example 6. Consider Ω = ]0, 2[ ⊆ R. We set, for ϕ ∈ D(Ω),

T (ϕ) =

+∞∑
j=0

ϕ(j)(
1

j + 1
) = ϕ(1) + ϕ′(1/2) + ϕ′′(1/3) + . . .+ ϕ(n−1)(1/n) + . . .

T is a distribution of infinite order. In fact let K be a compact set in ]0, 2[.
There exists n̄ ∈ N such that K ⊆ [ 1

n̄ , 2 − 1
n̄ ]. If ϕ ∈ D(Ω) with Suppϕ ⊆ K,

then

T (ϕ) =

n̄−1∑
j=0

ϕ(j)(
1

j + 1
)

and consequently

|T (ϕ)| ≤
n̄−1∑
j=0

sup
Ω
|ϕ(j)| for all ϕ ∈ D(Ω) with Suppϕ ⊆ K.

Obviously the index n̄ depends on K and cannot be chosen independently of it.

Remark 19. The set D′(Ω) is a vector space with the addition and multiplica-
tion by scalars given by

(λT + µS)(ϕ) = λ · T (ϕ) + µ · S(ϕ).
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On the space D′(Ω) we shall always use the weak topology, i. e., given a sequence
(Tj)j in D′(Ω),

Tj
j−→ T will means Tj(ϕ)

j−→ T (ϕ) for all ϕ ∈ D(Ω).

A consequence of the Banach-Steinhaus theorem is the following: given a se-
quence (Tj)j in D′(Ω) such that, for all ϕ ∈ D(Ω), there exists, in R or C,
limj Tj(ϕ), then the functional

ϕ 7→ lim
j
Tj(ϕ)

is a distribution T and limj Tj = T in the weak topology.

Example 7. Let (ρn)n be a family of mollifiers on R (remember: ρ ∈ D(R),
ρ ≥ 0, Supp ρ ⊆ [−1, 1] ,

∫
R ρ(x) dx = 1 and ρn(x) = nρ(nx)). Consider the

sequence of the distributions associated to the functions ρn, i. e. (Tρn)n. We
have

Tρn
n−→ δ0.

In fact, for ϕ ∈ D(R),

Tρn(ϕ) =

∫ +∞

−∞
ρn(t)ϕ(t) dt =

∫ +∞

−∞
nρ(nt)ϕ(t) dt =

∫ +∞

−∞
ρ(s)ϕ(

s

n
) ds.

We have
ρ(s)ϕ(

s

n
)

n−→ ρ(s)ϕ(0) for all s ∈ R,

and
|ρ(s)ϕ(

s

n
)| ≤ |ρ(s)|‖ϕ‖L∞ .

The dominated convergence theorem gives

lim
n
Tρn(ϕ) = lim

n

∫ +∞

−∞
ρ(s)ϕ(

s

n
) ds =

∫ +∞

−∞
ρ(s)ϕ(0) ds = ϕ(0) = δ0(ϕ).

Looking at the behavior of the sequence (ρn)n, i. e. functions with support in
[− 1

n ,
1
n ], with value in 0 equal to nρ(0) which goes to +∞ and with integral

equal to 1, this convergence is the reason why, very naively, some one says that
Dirac’s delta is a function with value 0 outside of 0, with value +∞ in 0 and
with integral equal to 1.

We state now a theorem with a characterization of the distributions.

Theorem 33. Let T : D(Ω) → R (or C). Let T be a linear functional. The
following two conditions are equivalent

i) T is a distribution.

ii) For every sequence (ϕn)n in D(Ω) such that

a) there exits a compact set K ⊆ Ω such that, for all n, Suppϕn ⊆ K,

b) for all α ∈ Nn, Dαϕn
n−→ 0 uniformly,

we have that T (ϕn)
n−→ 0.
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Proof. i) ⇒ ii). Let T be a distribution. Consider a sequence with the prop-
erties a) and b). Since T is a distribution, there exist CK > 0, mK ∈ N such
that

|T (ϕn)| ≤ CK
∑
|α|≤mK

sup
x∈Ω
|Dαϕn(x)|.

Then b) implies that
∑
|α|≤mK supΩ |Dαϕn|

n−→ 0 and consequently
T (ϕn)

n−→ 0.
ii)⇒ i). Suppose by contradiction that T is not a distribution. Then there

exists a compact set K such that, for every C > 0 and m ∈ N there exists a test
function ϕ ∈ D(Ω) such that

Suppϕ ⊆ K and |T (ϕ)| > C
∑
|α|≤m

sup
Ω
|Dαϕ|.

Choose C = m = j. There exists ϕj ∈ D(Ω) such that

Suppϕj ⊆ K and |T (ϕj)| > j
∑
|α|≤j

sup
Ω
|Dαϕj |.

Consider
ψj(x) =

ϕj(x)

j
∑
|α|≤j supΩ |Dαϕj |

.

We have, for all j, Suppψj ⊆ K and, if |β| ≤ j,

sup
x∈Ω
|Dβψj(x)| =

supx∈Ω |Dβϕj(x)|
j
∑
|α|≤j supΩ |Dαϕj |

≤ 1

j
.

Hence, for all β,
sup

Ω
|Dβψj |

j−→ 0.

We have proved the sequence (ψj)j satisfies a) and b) but, since, for all j,
|T (ψj)| > 1, the condition ii) is not verified, and this is impossible.

Definition 25. Given a sequence (ϕn)n in D(Ω) such that

a) there exits a compact set K ⊆ Ω such that, for all n, Suppϕn ⊆ K,

b) for all α ∈ Nn, Dαϕn
n−→ 0 uniformly,

we will say that (ϕn)n is converging to 0 in the sense of D.

9.1.3 Topology of D(Ω) (see [19])

The idea is the following: we would like to put a topology on D(Ω) in such a
way that D′(Ω) is the dual space, i. e. the space of linear functionals defined
on D(Ω) which are continuous with respect to this topology. This is possible
but not easy, and, for our purposes, not so useful. Actually in applications, it
will be much more useful the definition we have given at the beginning or the
characterisation given in Theorem 33.

Let Ω be an open set in Rn. Letm ∈ N. Consider the space Cm(Ω) consisting
of all the continuous differentiable functions on Ω, with continuous derivatives
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up to the order m. On Cm(Ω) we put the topology of uniform convergence on
compact subsets of Ω, for the functions and for all the derivatives up to the
order m. Consider a sequence of open relatively compact sets (Ωj)j contained
in Ω, such that

Ωj ⊆ Ωj+1 and
⋃
j

Ωj = Ω.

The cited topology is generated by the countable set of seminorms

pj(f) =
∑
|α|≤m

sup
Ωj

|Dαf |

and Cm(Ω) is a Fréchet space (complete and with a topology that can be ob-
tained from a metric). U is a neighborhood of 0 in Cm(Ω) if there exists j0 ∈ N
and there exists r > 0 such that

{f ∈ Cm(Ω)
∣∣ pj0(f) < r} ⊆ U.

Similarly, considering C∞(Ω) = ∩mCm(Ω), we take the topology of uniform
convergence on compact subsets of Ω, for the functions and for all the derivatives.
This topology is generated by the countable set of seminorms

p̃j(f) =
∑
|α|≤j

sup
Ωj

|Dαf |.

and C∞(Ω) is a Fréchet space. It will be denoted by E(Ω). U is a neighborhood
of 0 in E(Ω) if there exists j0 ∈ N and there exists r > 0 such that

{f ∈ C∞(Ω)
∣∣ p̃j0(f) < r} ⊆ U.

Consider now a compact set in Ω. We denote by C∞0 (K) the set of C∞(Ω)
functions having support contained in K. The topology of C∞(Ω) induces on
C∞0 (K) the topology of uniform convergence of all derivatives, i. e. the topology
generated by the family of norms

qj(f) =
∑
|α|≤j

sup
K
|Dαf |.

Remark that, on C∞0 (K), qj is a norm and no more a seminorm, as p̃j on
C∞(Ω). C∞0 (K) is a Fréchet space. Consider finally

C∞0 (Ω) =

+∞⋃
j=1

C∞0 (Ωj).

The correct topology to consider on C∞0 (Ω) is the so called inductive limit
topology from the topologies of the spaces C∞0 (Ωj), i. e. the maximal locally
convex topology such that, for all j, the immersion

C∞0 (Ωj)→ C∞0 (Ω), ϕ 7→ ϕ

is continuous. This topology makes C∞0 (Ω) complete but not metrizable (this
last thing can be seen using Baire’s theorem). It can be proved that a linear
functional T on C∞0 (Ω) is continuous with respect to this topology if and only
if T is a distribution according to Definition 1.
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9.1.4 Radon measures (see [2, Ch. 4])

Let Ω be an open set in Rn. Consider C0(Ω) the set of continuous functions
having compact support on Ω. We call Radon measure a linear functional

µ : C0(Ω)→ R (or C)

such that, for all K compact set in Ω, there exists CK > 0 such that

|µ(f)| ≤ CK sup
Ω
|f | for all f ∈ C0(Ω) with Supp f ⊆ K.

It can be proved that µ is a Radon measure if an only if µ is linear and continuous
with respect to the inductive limit topology from the topologies of the spaces
C0(Ωj), i. e. the maximal locally convex topology such that, for all j, the
immersion

C0(Ωj)→ C0(Ω), f 7→ f

is continuous. It can also be proved that if µ is a Radon measure then µ
∣∣
D is

a distribution of order 0 and, conversely, T is a distribution of order 0 if there
exists a Radon measure µ such that µ

∣∣
D = T .

Definition 26. Let ν be a complex measure on B(Ω), the Borelian sets of Ω. ν
is said to be a regular Borelian measure if, denoting by |ν| its total variation,

i) |ν| is finite on compact sets;

ii) for all B ∈ B(Ω),

sup{|ν|(C)
∣∣ C compact, C ⊆ B} = |ν|(B) = inf{|ν|(A)

∣∣ A open, A ⊇ B}.

Theorem 34 (Riesz’s representation theorem, see Th. 6.19 in [14]). µ is a
Radon measure if and only if there exists ν regular Borelian measure such that,
for all f ∈ C0(Ω),

µ(f) =

∫
Ω

f dν.

Exercise 3. Let T be a linear functional from D(Ω) to R. Suppose that, for all
ϕ ∈ D(Ω), if ϕ ≥ 0 (this means that, for all x ∈ Ω, ϕ(x) ≥ 0), then T (ϕ) ≥ 0.

Show that T is a distribution of order 0.

Hint. From the positivity of T we deduce the monotonicity, i. e. if ϕ, ψ ∈ D(Ω)
and for all x ∈ Ω, ϕ(x) ≥ ψ(x), then T (ϕ) ≥ T (ψ). Let now φ ∈ D(Ω) and
denote by K its support. Take χ ∈ D(Ω) such that, for all x, 0 ≤ χ(x) ≤ 1
and such that χ is identically equal to 1 in a neighborhood of K. Then, for all
x ∈ Ω,

−max |φ| · χ(x) ≤ φ(x) ≤ max |φ| · χ(x),

so that
T (−max |φ| · χ) ≤ T (φ) ≤ T (max |φ| · χ),

and then
|T (φ)| ≤ T (χ) max |φ|.

Setting CK = T (χ), the conclusion follows.
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9.1.5 Local character and support of a distribution

The following results says that it is sufficient to know the behavior of a distri-
bution in a neighborhood of each point, to know its behavior in general.

Theorem 35. Let T1 and T2 be two distributions in D′(Ω). Suppose that, for
all x0 ∈ Ω, there exists a neighborhood U0 of x0 such that, for all ϕ ∈ D(Ω), if
Suppϕ ⊆ U0, then T1(ϕ) = T2(ϕ).

Then T1 = T2.

Proof. Let ψ ∈ D(Ω). Denote by K the support of ψ. We know that, for all
x ∈ K, there exists an open neighborhood Ux of x such that, for all ϕ ∈ D(Ω),
if Suppϕ ⊆ Ux, then T1(ϕ) = T2(ϕ). Form the open covering {Ux

∣∣ x ∈ K} we
extract a finite subcovering of K,

U1, U2, . . . , UN .

We use now the theorem on partition of unity (Theorem 32). There exist
ϕ1, . . . , ϕN in D(Ω), with, for all j, Suppϕj ⊆ Uj , such that, for all x ∈ K,∑
j ϕj(x) = 1. Then

T1(ψ) = T1(ψ
∑
j ϕj)

= T1(
∑
j ψϕj)

=
∑
j T1(ψϕj) with Suppψϕj ⊆ Uj

=
∑
j T2(ψϕj)

= T2(
∑
j ψϕj)

= T2(ψ
∑
j ϕj) = T2(ψ).

Now we define the support of a distribution.

Definition 27. Let T ∈ D′(Ω). Let x ∈ Ω. We say that x 6∈ SuppT if there
exists a neighborhood U of x such that, for all ϕ ∈ D(Ω), if Suppϕ ⊆ U , then
T (ϕ) = 0. SuppT is the smallest relatively closed set in Ω outside of which T
is identically equal to 0.

Remark 20. Let f ∈ C(Ω). Then f ∈ L1
loc(Ω) and consequently we can con-

sider the distribution Tf associated to f . The support of f as continuous func-
tion coincides with the support of f as L1

loc function and with the support of Tf
as distribution.

10

10.1 Derivative of a distribution, multiplication of a dis-
tribution with smooth function

The content of this paragraph can be found in [8, Ch. 1.4] (see also
[15]).
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Figure 16: Page 243 of Laurent Schwartz’s autobiography [16]

10.1.1 Derivative of a distribution

Let f ∈ C1(Ω). We notice that both f and ∂xjf are in L1
loc(Ω), so we can

consider the associated distributions, i. e., for ϕ ∈ D(Ω),

Tf (ϕ) =

∫
Ω

fϕ and T∂xj f (ϕ) =

∫
Ω

(∂xjf)ϕ.

But
T∂xj f (ϕ) =

∫
Ω

(∂xjf)ϕ = −
∫

Ω

f(∂xjϕ)︸ ︷︷ ︸
integration by parts

= −Tf (∂xjϕ).

Consequently, if you want that a (to be defined) derivative, with respect to
xj , of the distribution Tf , associated to f , behaves like the distribution T∂xj f ,
associated to the classical derivative of f , you have to set

(∂xjTf )(ϕ) = −Tf (∂xjϕ).

Definition 28. Let T ∈ D′(Ω). For all ϕ ∈ D(Ω), we define

(∂xjT )(ϕ) = −T (∂xjϕ).
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We have that ∂xjT ∈ D′(Ω), in fact ∂xjT is linear and

|(∂xjT )(ϕ)| = |T (∂xjϕ)| ≤ CK
∑
|α|≤mK

sup
Ω
|Dα(∂xjϕ)| ≤ CK

∑
|β|≤mK+1

sup
Ω
|Dβϕ|

for all ϕ ∈ D(Ω) such that Suppϕ ⊆ K. Remark that, if T is a distribution of
order m, then ∂xjT is a distribution of order less or equal to m+ 1.

Example 8. Let H be the Heavisde function, i. e.

H : R→ R, H(x) =

{
1 for x ≥ 0,

0 for x < 0.

0

1

1 2-1-2

H(x)

H is a L1
loc function. We denote by H also the associated distribution, i. e.

H : D(R)→ R, H(ϕ) =

∫
R
Hϕ =

∫ +∞

0

ϕ(t) dt.

Let’s compute the derivative of H as a distribution.

H ′(ϕ) = −H(ϕ′) = −
∫ +∞

0

ϕ′(t) dt = −ϕ(t)
∣∣+∞
0

= ϕ(0) = δ0(ϕ),

i. e. H ′ = δ0, the derivative of the Heaviside distribution is Dirac’s delta at 0.
Remark that the Heaviside function possess finite classical derivative equal to 0
for all x ∈ R \ {0}. The derivative in the sense of distribution is more precise:
Dirac’s delta at 0 coincide, as distribution, to 0 in a neighborhood of each point
of R \ {0}, but gives a precise information also at 0.

Exercise 4. Consider, for all ϕ ∈ D(R),

PV 1
x

(ϕ) = lim
ε→0+

∫
|x|≥ε

ϕ(x)

x
dx.

Prove that PV 1
x
is a distribution of order ≤ 1 (we call it principal value of 1

x).
Denote by Tlog the distribution associated to the L1

loc(R) function x 7→ log |x|.
Prove that T ′log = PV 1

x
.

Hint. Let ϕ ∈ D(R) with Suppϕ ⊆ [−M, M ]. Remark that in this case

PV 1
x

(ϕ) = lim
ε→0+

∫
ε≤|x|≤M

ϕ(x)

x
dx.

Remarking that ∫
ε≤|x|≤M

ϕ(0)

x
dx = ϕ(0)

∫
ε≤|x|≤M

1

x
dx = 0,
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Figure 17: Olivier Heaviside (1850-1925)

we have that ∫
ε≤|x|≤M

ϕ(x)

x
dx =

∫
ε≤|x|≤M

ϕ(x)− ϕ(0)

x
dx.

Consider now the function

ψ(x) =


ϕ(x)− ϕ(0)

x
if x 6= 0,

ϕ′(0) if x = 0.

We have that ψ ∈ C([−M, M ]). Consequently

lim
ε→0+

∫
|x|≥ε

ϕ(x)

x
dx = lim

ε→0+

∫
ε≤|x|≤M

ψ(x) dx =

∫ M

−M
ψ(x) dx,

so that the limit exists and it is finite. Moreover

|
∫ M

−M
ψ(x) dx| ≤ 2M sup

[−M,M ]

|ψ| and sup
[−M,M ]

|ψ| ≤ sup
R
|ϕ′|.

We obtain finally

|PV 1
x

(ϕ)| ≤ 2M sup
R
|ϕ′| for all ϕ ∈ D(R) with Suppϕ ⊆ [−M, M ],

i. e. PV 1
x
is a distribution of order ≤ 1.
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Consider, for ϕ ∈ D(R) with Suppϕ ⊆ [−M, M ],

Tlog(ϕ) =

∫ M

−M
(log |x|)ϕ(x) dx.

We have

T ′log(ϕ) = −Tlog(ϕ′) = −
∫ M

−M
(log |x|)ϕ′(x) dx.

Since the function x 7→ (log |x|)ϕ′(x) is a L1 function, we have that∫ M

−M
(log |x|)ϕ′(x) dx = lim

ε→0+
(

∫ −ε
−M

(log |x|)ϕ′(x) dx+

∫ M

ε

(log |x|)ϕ′(x) dx).

Now ∫ −ε
−M

(log |x|)ϕ′(x) dx = (log |ε|)ϕ(−ε)−
∫ −ε
−M

ϕ(x)

x
dx

and ∫ M

ε

(log |x|)ϕ′(x) dx = −(log |ε|)ϕ(ε)−
∫ M

ε

ϕ(x)

x
dx.

We finally obtain∫ M

−M
(log |x|)ϕ′(x) dx = lim

ε→0+
[(log |ε|)(ϕ(−ε)− ϕ(ε))−

∫
ε≤|x|≤M

ϕ(x)

x
dx]

and the conclusion follows. Remark that the second part of the exercise already
contains the first part, i. e. if one proves that PV 1

x
is the derivative of a

distribution of order 0, then PV 1
x
is immediately a distribution of order ≤ 1.

Remark 21. The function x 7→ 1
x is not a L1

loc(R) function, so that it is not
possible to define a distribution associated to this function. The distribution
PV 1

x
is the correct substitute.

Exercise 5. Consider, for all ϕ ∈ D(R),

FP 1
x2

(ϕ) = lim
ε→0+

(

∫
|x|≥ε

ϕ(x)

x2
dx− 2

ϕ(0)

ε
).

Prove that FP 1
x2

is a distribution of order ≤ 2 (we call it finite part of 1
x2 ).

Prove that PV ′1
x

= −FP 1
x2
.

The following result shows that, at least locally, a distribution is always a
derivative (of order mn, in the sense of distributions) of a distribution associate
to a bounded function.

Theorem 36 (“Structure locale d’une distribution” Th. XXI of [15]). Let T ∈
D′(Ω). Let ω be an open set in Ω such that ω is a compact in Ω (i. e. ω is a
relatively compact open subset of Ω).

Then there exist m ∈ N and f ∈ L∞(ω) such that

T = Dm
1 D

m
2 . . . Dm

n Tf in ω,

i. e., for all ϕ ∈ D(ω),

T (ϕ) = (−1)mnTf (Dm
1 D

m
2 . . . Dm

n ϕ) = (−1)mn
∫
ω

f(x)Dm
1 D

m
2 . . . Dm

n ϕ(x) dx.
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Proof. Suppose that

T (ϕ) = (−1)mn
∫
ω

f(x)Dm
1 D

m
2 . . . Dm

n ϕ(x) dx for all ϕ ∈ D(ω). (16)

Consequently

|T (ϕ)| ≤ ‖f‖L∞(ω)

∫
ω

|Dm
1 D

m
2 . . . Dm

n ϕ(x)| dx

i. e. there exists C > 0 such that

|T (ϕ)| ≤ C
∫
ω

|Dm
1 D

m
2 . . . Dm

n ϕ(x)| dx for all ϕ ∈ D(ω). (17)

We prove now that (17) implies (16). In fact, suppose (17) holds. Let’s define

V = {Dm
1 . . . Dm

n ϕ
∣∣ϕ ∈ D(ω)}

and consider the functional

V → C, Dm
1 . . . Dm

n ϕ 7→ T (ϕ).

Thinking at V as a subspace of L1(ω), we have that the above functional is linear
and moreover condition (17) implies that it is continuous with respect to the
norm of L1(ω). We use now Hahn-Banach theorem. There exists Φ ∈ (L1(ω))′

such that
Φ(Dm

1 . . . Dm
n ϕ) = T (ϕ) for all ϕ ∈ D(ω).

From Riesz’s theorem we have that there exists g ∈ L∞(ω) such that

Φ(v) =

∫
ω

gv for all v ∈ L1(ω).

Consequently

T (ϕ) = Φ(Dm
1 . . . Dm

n ϕ) =

∫
ω

g(x)Dm
1 . . . Dm

n ϕ(x) dx for all v ∈ L1(ω).

Taking f = (−1)mng, we have (16).
To conclude the proof it is sufficient to show (17). T is s distribution, then,

in particular, there exist Cω > 0 and mω ∈ N such that

|T (ϕ)| ≤ Cω
∑
|α|≤mω

sup
Ω
|Dαϕ| for all ϕ ∈ D(Ω) with Suppϕ ⊆ ω.

and consequently there exist C > 0 and m ∈ N, such that

|T (ϕ)| ≤ C
∑
|α|≤m

sup
ω
|Dαϕ| for all ϕ ∈ D(ω).

Since ω is relatively compact, there exists a > 0 such that the diameter of ω is
less or equal than a. Consequently, if ψ ∈ D(ω), then

Dαψ(x) =

∫ x1

−∞
∂x1

(Dαψ(t, x′) dt
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and hence
sup
ω
|Dαψ| ≤ a sup

ω
|Dα1+1

1 . . . Dαn
n ψ|.

Using several times this argument we obtain that, for some C̃ > 0 and k,∑
|α|≤m

sup
ω
|Dαϕ| ≤ C̃ sup

ω
|Dk

1 . . . D
k
nψ|.

Consequently

|T (ϕ)| ≤ C sup
ω
|Dk

1 . . . D
k
nϕ| for all ϕ ∈ D(ω). (18)

Finally, remarking that, for ψ ∈ D(Rn),

ψ(x) =

∫ x1

−∞
· · ·
∫ xn

−∞
∂x1

. . . ∂xnψ(y1, . . . , yn) dy1 . . . dyn,

we have that, for ϕ ∈ D(ω),

sup
ω
|Dk

1 . . . D
k
nϕ| ≤

∫
ω

|Dk+1
1 . . . Dk+1

n ϕ|. (19)

Putting together (18) and (19) we deduce (17) with m = k + 1.

10.1.2 Multiplication of a distribution with a smooth function

Definition 29. Let T ∈ D′(Ω) and a ∈ C∞(Ω). We define, for all ϕ ∈ D(Ω),

aT (ϕ) = T (aϕ).

We have that aT ∈ D′(Ω), in fact aT is linear and

|aT (ϕ)| = |T (aϕ)| ≤ CK
∑
|α|≤mK

sup
Ω
|Dα(aϕ)|

for all ϕ ∈ D(Ω) such that Suppϕ ⊆ K. Remarking now that

Dα(aϕ) =
∑
β≤α

(
α

β

)
Dα−βaDβϕ (Leibniz formula),

then
sup

Ω
|Dα(aϕ)| ≤

∑
β≤α

(
α

β

)
sup
K
|Dα−βa| sup

Ω
|Dβϕ|,

and consequently
|aT (ϕ)| ≤ C̃K

∑
|α|≤mK

sup
Ω
|Dαϕ|,

where C̃K depends also on supK |Dαa| for all α such that |α| ≤ mK .
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Example 9. Let T ∈ D′(Ω) and a ∈ C∞(Ω), with Ω ⊆ R. We want to compute
(aT )′. Only for this time we will denote by T ′(d) the derivative of T in the sense
of distribution.

(aT )′(d)(ϕ) = −(aT )(ϕ′)

= −T (aϕ′)

= −T ((aϕ)′ − a′ϕ)

= −T ((aϕ)′) + T (a′ϕ)

= T ′(d)(aϕ) + T (a′ϕ)

= (aT ′(d))(ϕ) + (a′T )(ϕ)

= (aT ′(d) + a′T )(ϕ)

so that (aT )′(d) = aT ′(d) + a′T , i. e. Leibniz formula remains valid also in the
case of the multiplication of a distribution with a smooth function.

The following result shows that if a continuous function has a derivative in
the sense of distributions which is another continuous function, then the function
is classically differentiable and the classical derivative coincides with that one
in distributional sense.

Theorem 37 (du Bois-Reymond). Let f, g ∈ C(Ω). Suppose that ∂xjTf = Tg.
Then f is differentiable, in the direction of xj, and ∂xjf = g.

Proof. Suppose first that f, g ∈ C0(Ω). Let (ρn)n be a mollifier. We have

f ∗ ρn
n−→ f and g ∗ ρn

n−→ g uniformly

and
f ∗ ρn(x) =

∫
Rn
f(y)ρn(x− y) dy = Tf (ϕn,x),

g ∗ ρn(x) =

∫
Rn
g(y)ρn(x− y) dy = Tg(ϕn,x),

where ϕn,x(y) = ρn(x − y) (here we have to think at x as a parameter). By
hypothesis,

(∂xjTf )(ϕn,x) = Tg(ϕn,x). (20)

Remarking now that

∂yjϕn,x(y) = −(∂xjρn)(x− y),

we have
(∂xjTf )(ϕn,x) = Tf (−∂yjϕn,x)

= Tf (∂xjρn(x− ·))

=

∫
Rn
f(y)∂xjρn(x− y) dy

= ∂xj (

∫
Rn
f(y)ρn(x− y) dy)

= ∂xj (f ∗ ρn)(x).
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Condition (20) implies that

∂xj (f ∗ ρn)(x) = g ∗ ρn(x).

Consequently

f ∗ ρn
n−→ f and ∂xj (f ∗ ρn)

n−→ g uniformly,

the conclusion follows from a classical result (see e. g. [6, Teor. 13.3]).
Suppose now that f, g ∈ C(Ω). Let x0 ∈ Ω and let χ ∈ D(Ω) such that

χ(x) = 1 in a neighborhood of x0. We know that

∂xjTf = Tg.

We have
∂xj (Tχf ) = ∂xj (χTf )

= χ(∂xjTf ) + (∂xjχ)Tf

= χTg + (∂xjχ)Tf

= Tχg+(∂xjχ)f

Remark now that the functions χf and χg + (∂xjχ)f are continuous functions
with compact support in Ω, so that from the first part of the proof, the function
χf is differentiable with respect to the direction of xj and its partial derivative
is the function χg + (∂xjχ)f . Finally in the neighborhood of x0 in which the
function χ is identically equal to 1 we have

χf = f and χg + (∂xjχ)f = g.

The theorem is proved.

11

11.1 Distributions with compact support
The content of this paragraph can be found in [8, Ch. 1.5] (see also
[15]).

Remark 22. Consider Ω, open set in Rn. Suppose

Ω =
⋃
j

Ωj with Ωj open, Ωj compact and Ωj ⊆ Ωj+1 for all j.

Consider f ∈ C∞(Ω) and, for j ∈ N,

p̃j(f) =
∑
|α|≤j

sup
x∈Ωj

|Dαf(x)|. (21)

p̃j is a seminorm, i. e.

p̃j(λf) = |λ|p̃j(f) and p̃j(f + g) ≤ p̃j(f) + p̃j(g).
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We denote by E(Ω) the Frechét space C∞(Ω) with the topology generated by the
countable family of seminorms (p̃j)j.

Let S : E(Ω) → R (or C) be a linear functional. S is continuous if there
exists j0 ∈ N and C0 > 0 such that

|S(f)| ≤ C0 p̃j0(f) for all f ∈ C∞(Ω). (22)

We denote by E ′(Ω) the dual space of E(Ω).
We remark that S ∈ E ′(Ω) if and only if there exists K compact set in Ω and

there exist CK > 0 and mK ∈ N such that

|S(f)| ≤ CK
∑
|α|≤mK

sup
x∈K
|Dαf(x)| for all f ∈ E(Ω). (23)

In fact (21) and (22) imply (23) with K = Ωj0 , CK = C0 and mK = j0.
Conversely, if (23) holds, there exists j0 such that mK ≤ j0 and K ⊆ Ωj0 .
Consequently

|S(f)| ≤ CK p̃j0(f) for all f ∈ C∞(Ω).

The next result shows that the subspace of distributions with compact sup-
port in Ω can be identified with E ′(Ω).

Theorem 38. Let T ∈ D′(Ω) and let SuppT be a compact set in Ω.
Then there exists a unique S ∈ E ′(Ω) such that S

∣∣
D(Ω)

= T .
Conversely let S ∈ E ′(Ω).

Then S
∣∣
D(Ω)

is in D′(Ω) and it has compact support.

Proof. Let T ∈ D′(Ω) and let SuppT be a compact set in Ω. Let χ ∈ D(Ω)
with χ = 1 in a neighborhood of SuppT . We define, for all f ∈ E(Ω),

S(f) = T (χf).

We show that S is in E ′(Ω). In fact S is linear and, considering K ′ a compact
set in Ω containing the support of χ, we have

|S(f)| = |T (χf)| ≤ CK′
∑

|α|≤mK′

sup
x∈Ω
|Dα(χ(x)f(x))|

and
sup
x∈Ω
|Dα(χ(x)f(x))| ≤ C̃

∑
β≤α

sup
x∈K′

|Dβf(x)|,

where C̃ depends on χ but not on f . Consequently

|S(f)| ≤ C̃K′
∑

|α|≤mK′

sup
x∈K′

|Dαf(x)| for all f ∈ E(Ω).

We show now that S(ϕ) = T (ϕ) for all ϕ ∈ D(Ω). In fact

S(ϕ) = T (χϕ) = T (ϕ) + T ((χ− 1)ϕ)

but, remarking that the function x 7→ χ(x) − 1 is identically equal to 0 in a
neighborhood of SuppT , we have T ((χ − 1)ϕ) = 0, for all ϕ ∈ D(Ω) (for this
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last fact, see Exercise 5 below). Finally we prove that S is unique. Suppose
that S1, S2 ∈ E ′(Ω) such that

S1(ϕ) = S2(ϕ) = T (ϕ) for all ϕ ∈ D(Ω).

We know that, for j = 1, 2, there exists Kj compact set in Ω and there exist
Cj > 0 and mj ∈ N such that

|Sj(f)| ≤ Cj
∑
|α|≤mj

sup
x∈Kj

|Dαf(x)| for all f ∈ E(Ω).

Let now χ̃ ∈ D(Ω) with χ̃ = 1 in a neighborhood of K1 ∪K2. We have

S1(f) = S1(χ̃f + (1− χ̃)f)

= S1(χ̃f) + S1((1− χ̃)f) with S1((1− χ̃)f) = 0

= S1(χ̃f)

= S2(χ̃f)

= S2(χ̃f) + S2((1− χ̃)f) with S2((1− χ̃)f) = 0

= S2(χ̃f + (1− χ̃)f)

= S2(f).

Conversely, let ∈ E ′(Ω). Then S is linear and there exists K compact set in
Ω and there exist CK > 0 and mK ∈ N such that

|S(f)| ≤ CK
∑
|α|≤mK

sup
x∈K
|Dαf(x)| for all f ∈ E(Ω).

Consequently, for all K̃ compact set in Ω,

|S(ϕ)| ≤ CK
∑
|α|≤mK

sup
x∈Ω
|Dαϕ(x)| for all ϕ ∈ D(Ω) with Suppϕ ⊆ K̃,

i. e. S
∣∣
D(Ω)

∈ D′(Ω) and if K ∩ Suppϕ = ∅, then S(ϕ) = 0. i. e. the support
of S

∣∣
D(Ω)

is contained in K.

Remark 23. Let Ω be an open set in Rn. D(Ω) is dense in E(Ω). Remember
that U is a neighborhood of 0 in E(Ω) if there exists j0 ∈ N and there exists
r > 0 such that

{f ∈ C∞(Ω)
∣∣ p̃j0(f) < r} ⊆ U.

Consider a sequence of functions (χn)n in D(Ω), such that for every n, χn ∈
D(Ωj+1) and χn is identically equal to 1 in a neighborhood of Ωn. Given f ∈
E(Ω) and given W , a neighborhood of f in the topology of E(Ω), we see that
there exists n̄ such that, for all n ≥ n̄, χn · f ∈W .

Remark 24. Let (fn)n be a sequence in E(Ω). The sequence will converge to 0
in the sense of E(Ω) if, for all k ∈ N,

lim
n
p̃k(fn) = 0,
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i. e., for all k ∈ N, ∑
|α|≤k

sup
x∈Ωk

|Dαfn(x)| n−→ 0.

If a sequence (ϕn)n in D(Ω) converges to 0 in the sense of D(Ω), then it con-
verges to 0 also in the sense of E(Ω).

11.2 Solutions of some exercises
1) Let h be a function in C1([0, 1]× R). Let g : R→ R such that

g(x) =

∫ 1

0

h(s, x) ds.

Prove that g is in C1(R) and

g′(x) =

∫ 1

0

∂h

∂x
(s, x) ds.

Hint. Let (tn)n be a sequence in [−1, 1], such that tn
n−→ 0. Denote by

fn(s) =
h(s, x+ tn)− h(s, x)

tn
.

We have 

fn(s)
n−→ ∂h

∂x (s, x) pointwise,

|fn(s)| ≤ max
σ∈[0,1]

y∈[x−1,x+1]

|∂h
∂x

(σ, y)|︸ ︷︷ ︸
≤C

.

Using the dominated convergence theorem we have

lim
n

g(x+ tn)− g(x)

tn
= lim

n

∫ 1

0

h(s, x+ tn)− h(s, x)

tn
ds

= lim
n

∫ 1

0

fn(s) ds

=

∫ 1

0

∂h

∂x
(s, x) ds.

Since this is valid for all the sequence (tn)n, the conclusion follows.

2) Let ψ be a function in C∞(R). Let g : R→ R such that

g(x) =


ψ(x)− ψ(0)

x
if x 6= 0,

ψ′(0) if x = 0.

Prove that g is in C∞(R).
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Hint. We have

ψ(x)− ψ(0) =

∫ x

0

ψ′(t) dt =

∫ 1

0

xψ′(sx) ds,

so that

g(x) =

∫ 1

0

ψ′(sx) ds.

Define now h(s, x) = ψ′(sx). Using recursively Exercise 1, we obtain that g is
C∞ with

g(n)(x) =

∫ 1

0

snψ(n+1)(sx) ds.

3) Find all the distributions in T ∈ D′(R) such that x · T = 0.

Hint. Remark that if ϕ ∈ D(R) and Suppϕ ⊆ R \ {0}, then

x · T = 0 implies T (ϕ) = 0.

In fact, if Suppϕ ⊆ R \ {0}, then the function x 7→ ϕ(x)
x is in D(R) so that

T (ϕ) = x · T (
ϕ(x)

x
) = 0.

Consequently, if x · T = 0, then SuppT ⊆ {0}.
Consider now χ ∈ D(R), with χ equal to 1 in a neighborhood of 0. Let

ϕ ∈ D(R). We have ϕ = χϕ+ (1− χ)ϕ. Then

T (ϕ) = T (χϕ) + T ((1− χ)ϕ) (but T ((1− χ)ϕ) = 0)

= T (χ · (ϕ(x)− ϕ(0)) + T (χ · (ϕ(0)))

= T (χ · ϕ(x)− ϕ(0)

x︸ ︷︷ ︸
∈C∞(R) (Ex. 2)

·x) + ϕ(0)T (χ)

= x · T (χ · ϕ(x)− ϕ(0)

x
) + ϕ(0)T (χ)

= ϕ(0)T (χ)

= T (χ)δ0(ϕ).

It is easy to see that T (χ) does not depend on χ, in the sense that taking
χ1 and χ2 in D(R), with χ1 and χ2 equal to 1 in a neighborhood of 0, then
T (χ1) = T (χ2). We can conclude that

if x · T = 0 then T = cδ0, for some c ∈ R.

4) Find all the distributions in T ∈ D′(R) such that x · T = T1.
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Hint. The problem, at level of functions, should be “find all the functions f(x)
such that xf(x) = 1”. The solution would be, roughly speaking, f(x) = 1

x . This
suggests to try with PV 1

x
. We have

x · PV 1
x

(ϕ) = PV 1
x

(xϕ(x)) = lim
ε→0+

∫
|x|≥ε

xϕ(x)

x
dx

= lim
ε→0+

∫
|x|≥ε

ϕ(x) dx =

∫
R

1 · ϕ(x) dx = T1(ϕ),

i. e.
x · PV 1

x
= T1.

The problem is now to find all the the possible distributions with such a property.
Suppose that there exists another S such that

x · S = T1.

We have

x · PV 1
x
− x · S = T1 − T1 = 0, i. e. x · (PV 1

x
− S) = 0.

Using Exercise 4 we can conclude that

if x · T = T1 then T = PV 1
x

+ cδ0, for some c ∈ R.

5) Let T ∈ D′(Ω) and let ϕ ∈ D(Ω) such that

SuppT ∩ Suppϕ = ∅.

Prove that T (ϕ) = 0.

Hint. Let x ∈ Suppϕ. Then x 6∈ SuppT . Then there exists rx > 0 such
that, for all ψ ∈ D(Ω), if Suppψ ⊆ B(x, rx), then T (ψ) = 0. Remark that
{B(x, rx)

∣∣ x ∈ Suppϕ} is an open covering of the compact set Suppϕ. Let

B(x1, r1), . . . , B(xN , rN )

be a finite subcovering and let

ψ1, . . . , ψN

a partition of unity of Suppϕ, i. e. for all j = 1, . . . , N , Suppψj ⊆ B(xj , rj)
and, for all x ∈ Suppϕ,

∑
j ψj(x) = 1. Then

T (ϕ) = T (ϕ
∑
j

ψj) = T (
∑
j

ϕψj) =
∑
j

T (ϕψj) = 0.
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12

12.1 Convolution of distributions
The content of this paragraph can be found in [8, Ch. 1.6] (see also
[15]). We begin defining the convolution of a distribution with a test function.
Also in this case we will use the analogy with the behavior of the convolution
of functions. If we take f ∈ L1

loc(Rn) and ϕ ∈ D(Rn), then

(f ∗ ϕ)(x) =

∫
Rn
f(y)ϕ(x− y) dy = Tf (ψx), where ψx : y 7→ ϕ(x− y).

This suggests the following definition.

Definition 30. Let T ∈ D′(Rn) and ϕ ∈ D(Rn). For all x ∈ Rn, we define

(T ∗ ϕ)(x) = T (ψx), where ψx : y 7→ ϕ(x− y).

We have seen in the preliminary results that, if f ∈ L1
loc(Rn) and ϕ ∈ D(Rn),

then f ∗ ϕ ∈ C∞(Rn) and

Dxj (f ∗ ϕ) = f ∗ (Dxjϕ).

A similar result holds for the distributions.

Theorem 39. Let T ∈ D′(Rn) and ϕ ∈ D(Rn).
Then T ∗ ϕ ∈ C∞(Rn) and

Dxj (T ∗ ϕ) = (DxjT ) ∗ ϕ = T ∗ (Dxjϕ).

Proof. Let’s show only that T ∗ϕ is a continuous function, letting the other part
of the proof as an exercise. Fix x̄ and consider (xn)n, a sequence in Rn, such
that limn xn = x̄. Consider, for all n ∈ N,

ψn(y) = ϕ(xn − y) and ψ̄(y) = ϕ(x̄− y).

Since the functions ψn are translations of the compactly supported function
y 7→ ϕ(−y) and the sequence (xn)n is bounded, then there exists a compact set
K such that, for all n, Suppψn ⊆ K. On the other hand, using the uniform
continuity of ϕ and its derivatives, we have that ψn

n−→ ψ̄ uniformly with all
its derivatives. This means that (ψn)n converges to ψ̄ in the sense of D(Rn).
Consequently

T ∗ ϕ(xn) = T (ψn)
n−→ T (ψ̄) = T ∗ ϕ(x̄).

Now we give a results on the convergence of convolution of distributions.

Theorem 40. Let T be a distribution in D′(Rn) and (ϕn)n be a sequence in
D(Rn) converging to ϕ̄ in the sense of D(Rn) (this means that (ϕn − ϕ̄)n is
converging to 0 in the sense of D(Rn)).

Then (T ∗ ϕn)n converges to T ∗ ϕ̄ in the sense on E(Rn) (this means that,
for all seminorms p̃j, we have limn p̃j(ϕn − ϕ̄) = 0).

74



Proof. Remarking that T ∗ ϕ is linear in ϕ, i. e. T ∗ (α1ϕ1 + α2ϕ2) = α1(T ∗
ϕ1) + α2(T ∗ ϕ2), it is not restrictive to suppose that ϕn

n−→ 0 in the sense of
D(Rn). Let K be a compact set such that, for all n, Suppϕn ⊆ K. Recalling
that, for f ∈ E(Rn),

p̃j(f) =
∑
|α|≤j

sup
x∈Ωj

|Dαf(x)|,

we have to show that, for every fixed j,

lim
n

(
∑
|α|≤j

sup
x∈Ωj

|Dα(T ∗ ϕn)(x)|) = 0.

Now

Dα(T∗ϕn)(x) = (T∗Dαϕn)(x) = T (ψn,x), where ψn,x : y 7→ (Dαϕn)(x−y).

If x ∈ Ωj , then the support of y 7→ ψn,x(y) is contained in the compact set
K̃ = Ωj −K. Consequently, for all x ∈ Ωj ,

|T (ψn,x)| ≤ CK̃
∑
β≤mK̃

sup
y∈Rn

|Dβψn,x(y)|

and then ∑
|α|≤j

sup
x∈Ωj

|Dα(T ∗ ϕn)(x)| ≤ CK̃
∑

β≤mK̃+j

sup
x∈Rn

|Dβϕn(x)|

and the conclusion follows.

The following result says that the convolution of a distribution with two test
functions is, in some sense, associative.

Theorem 41. Let T ∈ D′(Rn) and ϕ, ψ ∈ D(Rn).
Then

(T ∗ ϕ) ∗ ψ = T ∗ (ϕ ∗ ψ).

Proof. Remark that, if f ∈ C0(Rn), then∫
Rn
f(x) dx = lim

ε→0+
εn
∑
ν∈Zn

f(εν).

Consequently, denoting by τaf the function x 7→ f(x− a) for a ∈ Rn,

ϕ ∗ ψ(x) =

∫
Rn
ϕ(x− y)ψ(y) dy = lim

ε→0+
εn
∑
ν∈Zn

ϕ(x− εν)ψ(εν)

= lim
ε→0+

εn
∑
ν∈Zn

ψ(εν)τενϕ(x).

Moreover, defining

fε(x) = εn
∑
ν∈Zn

ϕ(x− εν)ψ(εν) = εn
∑
ν∈Zn

ψ(εν)τενϕ(x),
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fε is in D(Rn) and it is possible to see that

fε
ε−→ ϕ ∗ ψ in the sense of D(Rn),

and, using Theorem 40,

T ∗ fε
ε−→ T ∗ (ϕ ∗ ψ) in the sense of E(Rn). (24)

Now

(T ∗ fε)(x) = T ∗ (εn
∑
ν∈Zn

ψ(εν)τενϕ)(x)

= εn
∑
ν∈Zn

ψ(εν)((T ∗ τενϕ)(x))

= εn
∑
ν∈Zn

ψ(εν)T (θν,x) where θν,x : y 7→ ϕ(x− εν − y),

= εn
∑
ν∈Zn

ψ(εν)((T ∗ ϕ)(x− εν))

= εn
∑
ν∈Zn

(T ∗ ϕ)(x− εν)ψ(εν).

Hence

lim
ε→0+

(T ∗ fε)(x) = lim
ε→0+

εn
∑
ν∈Zn

(T ∗ ϕ)(x− εν)ψ(εν) = (T ∗ ϕ) ∗ ψ(x). (25)

Putting together (24) and (25) we have the conclusion.

Remark 25. Let T ∈ D′(Rn). There exists (fn)n, sequence in E(Rn), such that

Tfn
n−→ T in the sense of D′(Rn),

i. e. for all ϕ ∈ D(Rn), T (ϕ) = limn Tfn(ϕ).
In fact let (ρn)n be a mollifier. We have

ρn ∗ ϕ
n−→ ϕ in the sense of D(Rn)

and consequently

T ∗ (ρn ∗ ϕ)
n−→ T ∗ ϕ in the sense of E(Rn).

But, form the Theorem 41, T ∗ (ρn ∗ ϕ) = (T ∗ ρn) ∗ ϕ, so that

(T ∗ ρn) ∗ ϕ n−→ T ∗ ϕ in the sense of E(Rn),

and consequently
((T ∗ ρn) ∗ ϕ)(0)

n−→ (T ∗ ϕ)(0). (26)

Remark that T ∗ ρn is in E(Rn).
Denote now by ϕ̌ the function x 7→ ϕ(−x). We have, for T ∈ D′(Rn) and

ϕ ∈ D(Rn),
(T ∗ ϕ̌)(0) = T (ϕ).

Considering (26) with ϕ̌ at the place of ϕ, we deduce that

TT∗ρn(ϕ) = ((T ∗ ρn) ∗ ϕ̌)(0)
n−→ (T ∗ ϕ̌)(0) = T (ϕ).
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The following result gives another property of the convolution of a distribu-
tion with a test function, in particular the convolution of a distribution with a
test function commutes with the translation operator τh.

Theorem 42. Let T ∈ D′(Rn), ϕ ∈ D(Rn) and h ∈ Rn.
Then

τh(T ∗ ϕ) = T ∗ τhϕ.

Proof. We have

τh(T ∗ ϕ)(x) = (T ∗ ϕ)(x− h) = T (ψx−h), where ψx−h : y 7→ ϕ(x− h− y).

But
ϕ(x− h− y) = τhϕ(x− y),

so that
T (ψx−h) = T (ψ̃x), where ψ̃x : y 7→ τhϕ(x− y).

Finally
T (ψ̃x) = (T ∗ τhϕ)(x).

The final results gives a characterization of the convolution of a distribution
with a test function.

Theorem 43. Let Φ : D(Rn)→ E(Rn) be a functional such that

i) Φ is linear.

ii) Φ is continuous (i. e. if (ϕn)n is converging to 0 in the sense of D(Rn),
then (Φ(ϕn))n is converging to 0 in the sense of E(Rn)).

iii) Φ commutes with τh (i. e., for all ϕ ∈ D(Rn) and h ∈ Rn, τhΦ(ϕ) =
Φ(τhϕ)).

Then there exists a unique T ∈ D′(Rn) such that, for all ϕ ∈ D(Rn),

Φ(ϕ) = T ∗ ϕ. (27)

Proof. Define
T (ϕ) = Φ(ϕ̌)(0), where ϕ̌(x) = ϕ(−x).

We verify now that T is a distribution. From i) and ii) we deduce that T is
linear and if (ϕn)n is a sequence in D(Rn) which goes to 0 in the sense of D(Rn),
then (Φ(ϕ̌n))n goes to 0 in the sense of E(Rn) and consequently (Φ(ϕ̌n)(0))n
goes to 0 in R (or C), so that T is a distribution.

We verify that T satisfies (27). We have

T ∗ ϕ(x) = T (ψx) = Φ(ψ̌x)(0),

where ψx : y 7→ ϕ(x− y) and ψ̌x : y 7→ ϕ(x+ y) = τ−xϕ(y). Consequently,

T ∗ ϕ(x) = Φ(ψ̌x)(0) = Φ(τ−xϕ)(0) = τ−xΦ(ϕ)(0)︸ ︷︷ ︸
from iii)

= Φ(ϕ)(x).
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After all this work, we are now ready to define the convolution of two dis-
tributions.

Definition 31. Let T ∈ D′(Rn) and S ∈ E ′(Rn) (i. e. S is a distribution with
compact support). Consider

Φ : D(Rn)→ E(Rn), Φ(ϕ) = T ∗ (S ∗ ϕ).

i) Φ is linear. In fact, e. g.,

T ∗ (S ∗ (ϕ1 +ϕ2)) = T ∗ ((S ∗ϕ1) + (S ∗ϕ2)) = T ∗ (S ∗ϕ1) +T ∗ (S ∗ϕ2).

ii) Φ is continuous. In fact if (ϕn)n is converging to 0 in the sense of D(Rn),
then (S ∗ ϕn)n is converging to 0 in the sense of E(Rn), but, since S has
compact support, (S ∗ ϕn)n is converging to 0 in the sense of D(Rn), so
that (T ∗ (S ∗ ϕn))n is converging to 0 in the sense of E(Rn).

iii) Φ commutes with τh. In fact, from Theorem 42,

T ∗ (S ∗ τhϕ) = T ∗ (τh(S ∗ ϕ)) = τh(T ∗ (S ∗ ϕ)).

From Theorem 43 we deduce that there exists U ∈ D′(Rn) such that

T ∗ (S ∗ ϕ) = U ∗ ϕ.

We define
U = T ∗ S.

Remark 26. It is possible to define, in a similar way, S ∗ ψ, for S ∈ E ′(Rn)
and ψ ∈ E(Rn) and so on. It is also possible to show that convolution of two
distributions, one of them with compact support, is commutative. Similarly the
convolution of three distributions one of them with compact support, is associa-
tive. All the details can be found in [8, Ch. 1.6].

13

13.1 Fourier transform of functions
The content of this paragraph can be found in [8, Ch. 1.7] (see also
[15]).

13.1.1 Fourier transform of L1 functions

We introduce here the Fourier transform of a L1 function.

Definition 32. Let f ∈ L1(Rn). Let ξ ∈ Rn. We define

f̂(ξ) =

∫
Rn
e−ix·ξf(x) dx,

where x · ξ = x1ξ1 + . . .+xnξn. f̂ is called Fourier transform of f . The Fourier
transform of f will be denoted also with F(f).
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Theorem 44. Let f ∈ L1(Rn).
Then

i) f̂ ∈ L∞(Rn) ∩ C(Rn).

ii) ‖f̂‖L∞ ≤ ‖f‖L1 .

iii) lim|ξ|→+∞ f̂(ξ) = 0 (Riemann-Lebesgue lemma).

Proof. The boundedness of f̂ and the point ii) are consequence of

|f̂(ξ)| ≤ |
∫
Rn
e−ix·ξf(x) dx| ≤

∫
Rn
|f(x)| dx = ‖f‖L1 ,

while the continuity of f̂ can be obtained, e. g., using the dominated convergence
theorem. In fact, if (ξn)n is a sequence in Rn converging to ξ̄, then,{

e−ix·ξnf(x)
n−→ e−ix·ξ̄f(x) almost everywhere,

|e−ixn·ξf(x)| ≤ |f(x)|.

Consequently, for all the sequences (ξn)n converging to ξ̄,

lim
n
f̂(ξn) = lim

n

∫
Rn
e−ix·ξnf(x) dx =

∫
Rn
e−ix·ξ̄f(x) dx = f̂(ξ̄)

and the continuity of f̂ follows.
Let’s prove the Riemann-Lebesgue lemma. Consider ϕ ∈ C∞0 (Rn). Let

j = 1, . . . , n. We have

ξjϕ̂(ξ) =

∫
Rn
ξje
−ix·ξϕ(x) dx

=

∫
Rn
−Dxj (e

−ix·ξ)ϕ(x) dx

=

∫
Rn
−Dxj (e

−ix·ξϕ(x)) dx︸ ︷︷ ︸
=0

+

∫
Rn
e−ix·ξDxjϕ(x) dx

= D̂xjϕ(ξ).

Consequently
(1 + |ξ|2)ϕ̂(ξ) = ( ̂(1−∆)ϕ)(ξ),

where ∆ is the Laplacian operator ∂2
1 + . . .+∂2

n = −(D2
j + . . .+D2

n). Remarking

that (1−∆)ϕ is in L1, we have, from the point i), that ̂(1−∆)ϕ is in L∞ and
then

|ϕ̂(ξ)| ≤ ‖
̂(1−∆)ϕ‖L∞
1 + |ξ|2

, for all ξ ∈ Rn.

Hence
lim

|ξ|→+∞
ϕ̂(ξ) = 0. (28)
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Suppose now that f ∈ L1(Rn) and fix ε > 0. We know that there exists
ϕ ∈ C∞0 (Rn) such that

‖f − ϕ‖L1 ≤ ε

2
.

From (28) we have that there exists R > 0 such that, for all ξ ∈ Rn, if |ξ| > R,
then |ϕ̂(ξ)| < ε

2 . As a consequence, if |ξ| > R, then

|f̂(ξ)| ≤ |ϕ̂(ξ)|+ |f̂(ξ)− ϕ̂(ξ)| ≤ |ϕ̂(ξ)|+ ‖f̂ − ϕ̂‖L∞ <
ε

2
+ ‖f − ϕ‖L1 < ε.

Exercise 6. Show that, for f in L1(Rn), f̂ is uniformly continuous.

Hint 1. Let ε > 0. We know that there exists Rε > 0 such that∫
|x|>Rε

|f(x)| dx < ε

4

(try to convince yourself about). Then

|f̂(ξ2)− f̂(ξ1)| = |
∫
Rn

(e−ix·ξ1 − e−ix·ξ2)f(x) dx|

≤
∫
|x|<Rε

|e−ix·ξ1 − e−ix·ξ2 | |f(x)| dx+
ε

2
.

From prostaphæresis formulas we have

|e−ix·ξ1 − e−ix·ξ2 | ≤ |ξ2 − ξ1| |x|,

and then
|f̂(ξ2)− f̂(ξ1)| ≤ |ξ2 − ξ1|Rε‖f‖L1 +

ε

2
.

Choosing δε = ε
2Rε‖f‖L1

, we deduce that

|ξ2 − ξ1| < δε implies |f̂(ξ2)− f̂(ξ1)| < ε.

Hint 2. We know that f̂ is continuous and that lim|ξ|→∞ f̂(ξ) = 0. Conse-
quently, for all ε > 0, there exists Rε > 0 such that, for all ξ ∈ Rn,

|ξ| > Rε implies |f̂(ξ)| < ε

2
.

On the other side f̂ is uniformly continuous on the set of ξ such that |ξ| ≤ R.
So that, for all ε > 0, there exists δ = δ(ε,R) > 0 such that, for all ξ1, ξ2 ∈ Rn,

|ξ1| ≤ R, |ξ2| ≤ R, |ξ2 − ξ1| < δ implies |f̂(ξ2)− f̂(ξ1)| < ε

2
.

Fix now ε > 0 and obtain Rε and δ = δ(ε,Rε) as above. Taking ξ1, ξ2 ∈ Rn
such that |ξ2 − ξ1| < δ, distinguishing the three cases:

• |ξ1| ≤ Rε, |ξ2| ≤ Rε,

• |ξ1| ≤ Rε, |ξ2| > Rε,

80



• |ξ1| > Rε, |ξ2| > Rε,

we can conclude.

Exercise 7 (from [18]). Show that, denoting by Cc(Rn) the space of continuous
functions such that lim|x|→+∞ f(x) = 0, the functional F : L1(Rn) → Cc(Rn),
F(f) = f̂ is not surjective.

Hint. Let’s consider the problem in R. The first remark is the following: if
f̂ is odd then

f̂(ξ) =
f̂(ξ)− f̂(−ξ)

2
=

1

2

∫
R
(e−ixξ − eixξ)f(x) dx = −i

∫
R

sin(xξ)f(x) dx.

The second remark is the following, which can be easily obtained by integration
by parts: there exist C > 0 such that, for all b > 1,

|
∫ b

1

sinx

x
dx| ≤ C.

Consequently, if f̂ is odd then there exist C̃ > 0 such that, for all b > 1,

|
∫ b

1

f̂(ξ)

ξ
dξ| ≤ C̃.

In fact

|
∫ b

1

f̂(ξ)

ξ
dξ| = |

∫ b

1

∫
R

sin(xξ)

ξ
f(x) dx dξ|

≤
∫
R
|
∫ b

1

sin(xξ)

ξ
dξ||f(x)| dx.

As a consequence we have that if an odd function g is in Cc(R), to be a Fourier
transform of an L1 function, it is necessary that

|
∫ +∞

1

g(x)

x
dx| < +∞.

Obviously this not the case for all the odd functions in Cc(R). Let’s remark
that the book of Stein and Wiess [18, p.2] says “there seems to be no simple
satisfactory condition characterizing Fourier transform of functions in L1(Rn)”.

Theorem 45. Let f in C1(Rn) ∩ L1(Rn). Suppose that Dxjf in L1(Rn).
Then

D̂xjf(ξ) = ξj f̂(ξ).

Proof. We have

D̂xjf(ξ) =

∫
Rn
e−ix·ξDxjf(x) dx

=

∫
Rn
Dxj (e

−ix·ξf(x)) dx+

∫
Rn
ξje
−ix·ξf(x) dx

The conclusion follows from observing that∫
Rn
Dxj (e

−ix·ξf(x)) dx = 0.
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In fact, we know that if g is in L1(R) and limx→+∞ g(x) exists, then

lim
x→+∞

g(x) = 0.

Suppose now g is in C1(R) and both g and g′ are in L1(R), then limx→+∞ g(x)
exists, since

lim
x→+∞

g(x) = g(0) + lim
x→+∞

∫ x

0

g′(t) dt.

Theorem 46. Let f and x 7→ xjf(x) be L1(Rn) functions.
Then f̂ is differentiable with respect to ξj and

Dξj f̂(ξ) = −x̂jf(x)(ξ).

Proof. Let’s prove the result in the case of n = 1. Consider a sequence (ξk)k in
R \ {ξ̄}, converging to ξ̄. We have

f̂(ξk)− f̂(ξ̄)

ξk − ξ̄
=

∫
R

e−ixξk − e−ixξ̄

ξk − ξ̄
f(x) dx

=

∫
R
−i (

e−ix(ξk−ξ̄) − 1

−ix(ξk − ξ̄)
)e−ix·ξ̄xf(x)︸ ︷︷ ︸

=ψk(x)

dx

Now
ψk(x)

k−→ −ie−ix·ξ̄xf(x) for almost every x,

and
|ψk(x)| ≤ C|xf(x)|, where C does not depend on k.

The dominated convergence theorem gives

f̂ ′(ξ̄) = lim
k

f̂(ξk)− f̂(ξ̄)

ξk − ξ̄
= −ix̂f(x)(ξ̄).

13.1.2 Explicit computation of some Fourier transforms

Example 10. Let a, b > 0. Consider

f(x) =

{
a if − b < x < b,

0 if |x| ≥ 0.

If ξ = 0,

f̂(0) =

∫ b

−b
a dx = 2ab.

If ξ 6= 0,

f̂(ξ) =

∫ b

−b
e−ixξa dx = a

1

−iξ
e−ixξ

∣∣b
−b = ab

e−ibξ − eibξ

−ibξ
= 2ab

sin(bξ)

bξ
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Finally

f̂(ξ) =

 2ab
sin(bξ)

bξ
if ξ 6= 0,

2ab if ξ = 0.

Example 11. Let a, b > 0. Consider

f(x) =

{
ae−bx if x ≥ 0,

aebx if x < 0.

Let’s make the computation in the case a = b = 1.

f̂(ξ) =

∫ 0

−∞
e−ixξ+x dx+

∫ +∞

0

e−ixξ−x dx

=
1

−iξ + 1
e−ixξ+x

∣∣0
−∞ +

1

−iξ − 1
e−ixξ−x

∣∣+∞
0

=
1

1− iξ
+

1

1 + iξ

Finally

f̂(ξ) =
2

1 + ξ2
.

Example 12. Let a > 0. Consider

f(x) = e−ax
2

.

We have to compute

f̂(ξ) =

∫
R
e−ixξ−ax

2

dx.

Since the function x 7→ xe−ax
2

is in L1, from Theorem 46 we have that

f̂ ′(ξ) =

∫
R
−ixe−ixξ−ax

2

dx.

On the other hand, from Theorem 45,

iξf̂(ξ) = f̂ ′ (ξ) =

∫
R
e−ixξ(−2axe−ax

2

) dx = −2a

∫
R
xe−ixξ−ax

2

dx.

Consequently
ξf̂(ξ) = −2af̂ ′(ξ)

and, from a standard computation,

f̂(0) =

∫
R
e−ax

2

dx =

√
π

a

i. e. the function f̂ is a solution of the Cauchy problem{
2au′(ξ) + ξu(ξ) = 0 in R,

u(0) =
√

π
a .

Finally

f̂(ξ) =

√
π

a
e−

ξ2

4a .

In the case of x ∈ Rn, we have

f(x) = e−a|x|
2

and f̂(ξ) = (

√
π

a
)n e−

|ξ|2
4a .
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Example 13 (from [18]). Let a > 0. Consider

f(x) = e−a|x|, for x ∈ Rn.

We start with establishing the following identity

e−β =
1√
π

∫ +∞

0

e−u√
u
e−β

2/4u du, for β > 0.

This can be obtained considering the two following ones

1

1 + y2
=

∫ +∞

0

e−(1+y2)u du, for y ∈ R,

e−β =
2

π

∫ +∞

0

cosβy

1 + y2
dy, for β > 0.

The first one is immediate, while the second one is a consequence of the theory
of residues applied to the function eiβz

1+z2 . We have

e−β =
2

π

∫ +∞

0

cosβy

1 + y2
dy

=
2

π

∫ +∞

0

cosβy(

∫ +∞

0

e−(1+y2)u du) dy

=
2

π

∫ +∞

0

e−u(

∫ +∞

0

cosβy e−y
2u dy) du

=
2

π

∫ +∞

0

e−u(
1

2

∫ +∞

−∞
e−iβye−y

2u dy) du

=
2

π

∫ +∞

0

e−u
1

2

√
π

u
e−

β2

4u du

=
1√
π

∫ +∞

0

e−u√
u
e−β

2/4u du.

Let’s now compute the Fourier transform of f(x) = e−|x|, for x ∈ Rn.∫
Rn
e−ix·ξ e−|x| dx =

∫
Rn
e−ix·ξ(

1√
π

∫ +∞

0

e−u√
u
e−|x|

2/4u du)dx

=
1√
π

∫ +∞

0

e−u√
u

(

∫
Rn
e−ix·ξ e−|x|

2/4u dx)du

=
1√
π

∫ +∞

0

e−u√
u

(2
√
πu)ne−u|ξ|

2

du

= 2n π
n−1
2

∫ +∞

0

u
n−1
2 e−u(1+|ξ|2) du

= 2n π
n−1
2

1

(1 + |ξ|2)
n+1
2

∫ +∞

0

s
n−1
2 e−s ds

= 2n π
n−1
2

1

(1 + |ξ|2)
n+1
2

Γ(
n+ 1

2
).
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As a conclusion, if f(x) = e−α|x|, with α > 0 and x ∈ Rn,

f̂(ξ) = cn
α

(α2 + |ξ|2)
n+1
2

, where cn = (2π)n
Γ(n+1

2 )

π
n+1
2

.

Exercise 8. Prove that, for all n ≥ 1,∫
Rn

2α

(α2 + |ξ|2)
n+1
2

dξ =
2π

n+1
2

Γ(n+1
2 )

= surface area of the unit sphere in Rn+1.

13.1.3 Rapidly decreasing functions and tempered distributions

We introduce the Schwartz space S(Rn) and its dual S ′(Rn).

Definition 33. Let

S(Rn) = {f ∈ C∞(Rn)
∣∣ for all α, β ∈ Nn, sup

x∈Rn
|xαDβf(x)| <∞}.

S(Rn) is a vector space which is called Schwartz space or space of rapidly de-
creasing (at infinity) functions.

Remark 27. For α, β ∈ Nn,

rα,β(f) = sup
x∈Rn

|xαDβf(x)|

is a seminorm on S(Rn). We put on S(Rn) the Fréchet topology generated by
this countable family of seminorms. Remark that

S(Rn) = {f ∈ C∞(Rn)
∣∣ for all k ∈ N, sup

x∈Rn
((1 + |x|)k

∑
|β|≤k

|Dβf(x)|) <∞}.

and the topology of S(Rn) can be obtained using the sequence of norms (r̃k)k
with

r̃k(f) = sup
x∈Rn

((1 + |x|)k
∑
|β|≤k

|Dβf(x)|).

Definition 34. The dual space of S(Rn), S ′(Rn) is called space of tempered
(or temperate) distributions, i. e. the functional S : S(Rn) → R (or C) is a
tempered distribution if

i) S is linear;

ii) there exist C > 0 and α1, β1, . . . αk, βk ∈ Nn such that, for all f ∈ S(Rn),

|S(f)| ≤ C
k∑
j=1

pαj ,βj (f).

Given a sequence (fn)n in S(Rn), we will say that (fn)n converges to 0 in the
sense of S(Rn), if, for all α, β ∈ Nn,

pα,β(fn) = sup
x∈Rn

|xαDβfn(x)| n−→ 0.
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Remark 28. We have

D(Rn) ⊆ S(Rn) ⊆ E(Rn).

It is possible to show that

i) given (ϕn)n in D(Rn) such that ϕn
n−→ 0 in the sense of D(Rn), then

ϕn
n−→ 0 in the sense of S(Rn), i. e. the immersion D(Rn) → S(Rn) is

continuous;

ii) given (fn)n in S(Rn) such that fn
n−→ 0 in the sense of S(Rn), then

fn
n−→ 0 in the sense of E(Rn), i. e. the immersion S(Rn) → E(Rn) is

continuous;

iii) given f ∈ S(Rn), there exists (ϕn)n in D(Rn) such that (ϕn− f)
n−→ 0 in

the sense of S(Rn), i. e. D(Rn) is dense in S(Rn);

iv) given ψ ∈ E(Rn), there exists (fn)n in S(Rn) such that (fn − ψ)
n−→ 0 in

the sense of E(Rn), i. e. S(Rn) is dense in E(Rn).

As a consequence
E ′(Rn) ⊆ S ′(Rn) ⊆ D′(Rn).

Exercise 9. Let f ∈ S(Rn). Prove that, for all p ∈ [1,+∞], f ∈ Lp(Rn).

Exercise 10. Let f ∈ Lp(Rn), for some p ∈ [1,+∞]. Prove that Tf ∈ S ′(Rn).

13.1.4 Fourier inversion formula

We study the behavior of Fourier transform on the Schwartz space.

Theorem 47. Let f ∈ S(Rnx).
Then

f̂ ∈ S(Rnξ )

and, for all α ∈ Nn and ξ ∈ Rn,

D̂αf(ξ) = ξαf̂(ξ), x̂αf(x)(ξ) = (−1)|α|Dαf̂(ξ). (29)

Moreover the functional F : S(Rnx) → S(Rnξ ), F(f) = f̂ is linear and continu-
ous.

Proof. We give only a sketch of the proof. We remark that if f ∈ S(Rn),
then, for all α, β ∈ Nn, xαDβf ∈ L1(Rn), so that the inequalities in (29) are
consequences of Theorem 45 and Theorem 46, applied recursively. We remark
also that the function ξ 7→ ξαDβ f̂(ξ) is the Fourier transform of the function
x 7→ (−1)|β|Dα(xβf(x)) which is a function of S(Rnx). Consequently

sup
ξ∈Rn

|ξαDβ f̂(ξ)| = ‖ξαDβ f̂(ξ)‖L∞ ≤ ‖Dα(xβf(x))‖L1 < +∞.

Finally the continuity of F can be deduced from the fact that, for all f ∈ S(Rn),

‖f(x)‖L1 ≤ C‖(1 + |x|)n+1f(x)‖L∞ .

where C depends only on the dimension n.
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Theorem 48. Let f ∈ S(Rnx).
Then, for all x ∈ Rn,

f(x) =
1

(2π)n

∫
Rnξ
eix·ξ f̂(ξ) dξ.

Proof. Let f ∈ S(Rnx). We have∫
Rnξ
eix·ξ f̂(ξ) dξ =

∫
Rnξ
eix·ξ(

∫
Rny
e−iy·ξf(y) dy) dξ. (30)

We notice that the function

(ξ, y) 7→ ei(x−y)·ξf(y)

is not in L1(Rnξ × Rny ), so that it is not possible to exchange the order of inte-
gration in (30). Consider now g ∈ S(Rnξ ). We have that, for all x ∈ Rn, the
function

(ξ, y) 7→ ei(x−y)·ξg(ξ)f(y)

is in L1(Rnξ × Rny ), hence∫
Rnξ
eix·ξg(ξ)f̂(ξ) dξ =

∫
Rnξ
eix·ξg(ξ)(

∫
Rny
e−iy·ξf(y) dy) dξ.

=

∫
Rnξ

∫
Rny
ei(x−y)·ξg(ξ)f(y) dy dξ.

=

∫
Rnξ

∫
Rnξ
ei(x−y)·ξg(ξ)f(y) dξ dy.

=

∫
Rnξ
f(y)(

∫
Rnξ
ei(x−y)·ξg(ξ) dξ) dy.

=

∫
Rnξ
f(y)ĝ(y − x) dy.

i. e. ∫
Rnξ
eix·ξg(ξ)f̂(ξ) dξ =

∫
Rnz
f(z + x)ĝ(z) dz. (31)

Let, for k ∈ N \ {0},

gk(ξ) = e−
|ξ|2
2k and consequently ĝk(z) = (2πk)

n
2 e−

k|z|2
2 .

Substitute g with gk in (31). We have∫
Rnξ
eix·ξe−

|ξ|2
2k f̂(ξ) dξ = (2πk)

n
2

∫
Rnz
f(z + x)e−

k|z|2
2 dz. (32)

Using the dominated convergence theorem we have∫
Rnξ
eix·ξe−

|ξ|2
2k f̂(ξ) dξ

k−→
∫
Rnξ
eix·ξ f̂(ξ) dξ
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and

(2πk)
n
2

∫
Rnz
f(z + x)e−

k|z|2
2 dz

= (2π)
n
2

∫
Rny
f(x+

y√
k

)e−
|y|2
2 dy

k−→ (2π)
n
2 f(x)

∫
Rny
e−
|y|2
2 dy.

Recalling that ∫
Rny
e−
|y|2
2 dy = (2π)

n
2 ,

we obtain the conclusion.

Corollary 11. F : S(Rnx)→ S(Rnξ ), F(f) = f̂ is an isomorphism.

14

14.1 Fourier transform of tempered distributions
The content of this paragraph can be found in [8, Ch. 1.7] (see also
[15]).

14.1.1 Fourier transform of tempered distributions

We introduce the Fourier transform of tempered distributions.

Definition 35. Let S ∈ S ′(Rn). We define, for all f ∈ S(Rn),

Ŝ(f) = S(f̂).

Ŝ is called Fourier transform of the tempered distribution S.

Remark 29. Ŝ is a tempered distribution. In fact

Ŝ = S ◦ F .

Let f ∈ L1(Rn) such that the distribution associated to f , Tf , is a tempered
distribution. Then

T̂f = Tf̂ .

In fact, for all g ∈ S(Rn), the function (x, ξ) 7→ e−ix·ξg(x)f(ξ) is in L1(Rnx ×
Rnξ ), so that

T̂f (g) = Tf (ĝ) =

∫
Rnξ
f(ξ)ĝ(ξ) dξ

=

∫
Rnξ
f(ξ)

∫
Rnx
e−ix·ξg(x) dx dξ

=

∫
Rnξ

∫
Rnx
e−ix·ξf(ξ)g(x) dx dξ

=

∫
Rnx
g(x)

∫
Rnξ
e−ix·ξf(ξ) dξ dx

=

∫
Rnx
g(x)f̂(x) dx = Tf̂ (g).
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Example 14. We denote by T1 the distribution associated to the constant func-
tion equal to 1. T1 is a tempered distribution. Let’s compute T̂1. We have

T̂1(f) = T1(f̂) =

∫
Rnξ
f̂(ξ) dξ = (2π)n

1

(2π)n

∫
Rnξ
ei0·ξ f̂(ξ) dξ︸ ︷︷ ︸

=f(0) (inv. Fourier trans.)

= (2π)nf(0)

i. e.
T̂1 = (2π)nδ0.

Similarly, let’s compute δ̂0. We have

δ̂0(f) = δ0(f̂) = f̂(0) =

∫
Rnx
eix·0f(x) dx =

∫
Rnx
f(x) dx

i. e.
δ̂0 = T1.

Example 15. We denote by H the distribution associated to the Heaviside
function. Let’s compute Ĥ. We have

xĤ(f) = Ĥ(xf(x)) = H(x̂f(x)).

Recalling that
x̂f(x)(ξ) = if̂ ′(ξ)

we obtain

xĤ(f) = H(if̂ ′) = i

∫ +∞

0

f̂ ′(ξ) dξ = −if̂(0) = −i
∫
R
f(x) dx.

This, in particular, implies that ixĤ = T1, i. e. iĤ is a solution of the equation

xT = T1.

Consequently (see Exercise 4) of Lesson 11) there exists c ∈ C such that

Ĥ = −iPV 1
x

+ c δ0.

It remains to compute c. Consider f(x) = e−x
2/2. We know that f̂(ξ) =√

2πe−ξ
2/2. Then

π =

∫ +∞

0

√
2πe−ξ

2/2 dξ︸ ︷︷ ︸
direct computation

= H(f̂) = Ĥ(f) = −iPV 1
x

(f)︸ ︷︷ ︸
= 0 (f even)

+c δ0(f) = cf(0) = c.

Finally
Ĥ = −iPV 1

x
+ πδ0.
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14.1.2 Fourier transform of L2 functions

In this subparagraph we show what happens to the Fourier transform of a
distribution associated to a L2 function.

Theorem 49. Let f, g ∈ S(Rn).
Then

i)
∫
Rnx
f(x)ĝ(x) dx =

∫
Rnξ
f̂(ξ)g(ξ) dξ;

ii)
∫
Rnx
f(x)g(x) dx = (2π)−n

∫
Rnξ
f̂(ξ)ĝ(ξ) dξ (Parseval’s identity);

iii) f̂g(ξ) = (2π)−nf̂ ∗ ĝ(ξ);

iv) f̂ ∗ g(x) = f̂(x)ĝ(x).

Proof. Identity i) is a consequence of the fact that in the integral∫
Rnx
f(x)

∫
Rnξ
e−ix·ξg(ξ) dξ dx

we can exchange the order of integration.
The Fourier inversion formula gives

g(x) =
1

(2π)n

∫
Rnξ
e−ix·ξ ĝ(ξ) dξ,

and ii) follows in a similar way.
For proving iii), we have

f̂g(ξ) =

∫
Rnx
e−ix·ξf(x)g(x) dx

=

∫
Rnx
e−ix·ξf(x)

1

(2π)n

∫
Rnη
eix·η ĝ(η) dη dx

=
1

(2π)n

∫
Rnη
ĝ(η)

∫
Rnx
e−ix·(ξ−η)f(x) dx dη

=
1

(2π)n

∫
Rnη
ĝ(η)f̂(ξ − η) dη = (2π)−nf̂ ∗ ĝ(ξ).

We let the proof of iv) as an exercise.

Theorem 50 (Plancherel theorem). Let f ∈ L2(Rn).
Then there exists a unique g ∈ L2(Rn) such that

T̂f = Tg.

We write g = f̂ and we call it Fourier transform of f . We have, moreover,

‖f̂‖L2 = (2π)
n
2 ‖f‖L2 .
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Proof. We know that S(Rn) is dense in L2(Rn). Consequently, there exists a
sequence (ϕn)n in S(Rn) such that

ϕn
n−→ f in L2(Rn).

Using Parseval’s identity, we have

‖ϕn − ϕm‖L2 = (2π)−
n
2 ‖ϕ̂n − ϕ̂m‖L2 .

Since (ϕn)n is a Cauchy sequence in L2(Rn), the same is valid for (ϕ̂n)n and
this implies that there exists g ∈ L2(Rn) such that

ϕ̂n
n−→ g in L2(Rn).

Since the strong convergence of (ϕn)n and (ϕ̂n)n, to f and g respectively, implies
the weak convergence, we deduce that, for all h ∈ S(Rn),

Tg(h) =

∫
gh = lim

n

∫
ϕ̂nh = lim

n

∫
ϕnĥ =

∫
fĥ = Tf (ĥ)

i. e. Tg = T̂f . Similarly, the strong convergence of (ϕn)n and (ϕ̂n)n, to f and
g respectively, implies that

‖g‖L2 = lim
n
‖ϕ̂n‖L2 = lim

n
(2π)

n
2 ‖ϕn‖L2 = (2π)

n
2 ‖f‖L2 .

Remark that g does not depend on the sequence (ϕn)n but only on f . In fact
if one choose another sequence (ψn)n in S(Rn) such that

ψn
n−→ f in L2(Rn),

then ψn−ϕn
n−→ 0 in L2(Rn) and consequently, again from Parseval’s identity,

ψ̂n − ϕ̂n
n−→ 0 in L2(Rn), i. e.

lim
n
ψ̂n = lim

n
ϕ̂n = g.

To end, let’s prove that g is unique. Suppose that there exist g1 and g2 ∈ L2(Rn)
such that, for all ψ ∈ S(Rn),

Tg1(ψ̂) = T̂f (ψ) = Tg2(ψ̂).

It is sufficient to remark that each function in S(Rn) can be represented as
Fourier transform of a function in S(Rn). Consequently, for all φ ∈ S(Rn),

Tg1(φ) = Tg2(φ),

so that g1 = g2 a. e. and consequently as L2 functions.

14.1.3 Fourier-Laplace Transform of a distribution with compact
support

Definition 36. Let T ∈ E ′(Rn) be a distribution with compact support. For
ζ ∈ Cn, consider the C∞(Rnx) function

x 7→ ψζ(x) = e−ix·ζ = ex·=ζ(cos(x · <ζ)− i sin(x · <ζ)).
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The function
Cn → C, ζ 7→ T (ψζ)

is called the Fourier-Laplace transform of the distribution T and we denote it
with T̂FL.

Lemma 12. Let T ∈ E ′(Rn) be a distribution with compact support.
Then T̂FL is a C∞ function.

Proof. We prove that T̂FL is a continuous function on Cn, letting the rest of
the proof as an exercise. Let ζ̄ ∈ Cn and suppose that the sequence (ζk)k is
converging to ζ̄. Then the sequence of C∞ functions (ψζk)k, where ψζk(x) =

e−ix·ζk , is converging, in the sense of E(Rn), to the function ψζ̄(x) = e−ix·ζ̄ .
Consequently

lim
k
T̂FL(ζk) = lim

k
T (ψζk) = T (ψζ̄) = T̂FL(ζ̄),

i. e. TFL is a continuous function.

Remark 30. Let f be a continuous function, with compact support, defined
on Rn. Let Tf be the distribution with compact support associated to f . The
Fourier-Laplace transform of Tf , evaluated on ξ ∈ Rn, coincides with the Fourier
transform of f as L1 function, in fact

T̂f
FL

(ξ) = Tf (ψξ) = Tf (e−ix·ξ) =

∫
Rn
e−ix·ξf(x) dx = f̂(ξ).

On the other hand, the tempered distribution associated to the Fourier trans-
form of f as L1 function, coincides with the Fourier transform of the tempered
distribution associated to f , in fact, for all ψ ∈ E(Rn),

Tf̂ (ψ) =

∫
Rnξ
f̂(ξ)ψ(ξ) dξ =

∫
Rnx
f(x)ψ̂(x) dx︸ ︷︷ ︸

exchange the order of integration

= Tf (ψ̂) = T̂f (ψ).

As a conclusion, if f is a continuous function with compact support,

f̂ = T̂f
FL

on Rn and Tf̂ = T̂f .

Definition 37. (see [4, Ch. IV.2]). Let f ∈ C∞(Ω), where Ω is an open set in
Rn. f is said to be analytic in Ω, if f is locally the sum of its Taylor series, i.
e., for all x0 ∈ Ω, there exists r > 0 such that, for all x ∈ B(x0, r),

f(x) =
∑
ν∈Nn

1

ν!
∂νf(x0) (x− x0)ν .

f is said to be entire analytic if, for all x ∈ Rn,

f(x) =
∑
ν∈Nn

1

ν!
∂νf(0) xν .

Remark that an entire analytic function can be extended to a function, defined
in Cn (we continue to denote it with f), setting

f(z) =
∑
ν∈Nn

1

ν!
∂νf(0) zν .
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Lemma 13. Let f ∈ C∞(Rn). Suppose that, for all R > 0 there existMR, CR >
0 such that, for all α ∈ Nn,

sup
|x|<R

|Dαf(x)| ≤ CRM |α|R .

Then f is entire analytic.

Proof. See [4, Ch. I.4.2].

Lemma 14 (Convergence of entire analytic functions). Let (fn)n a sequence of
entire analytic functions defined in Cn. Suppose that there exists a function f
on Cn such that

fn
n−→ f uniformly on compact set of Cn.

Then f is entire analytic.

Proof. See [4, Ch. V.1.1].

Lemma 15. Let T ∈ E ′(Rn) be a distribution with compact support and let
(ρn)n be a family of mollifiers.

Then
TT∗ρn

n−→ T in the sense of E ′(Rn).

Proof. We recall that

(T ∗ ρn)(x) = T (ψn,x), where ψn,x : y 7→ ρn(x− y).

Consequently, for ϕ ∈ E(Rn),

TT∗ρn(ϕ) =

∫
Rn
T (ψn,x)ϕ(x) dx

= lim
ε→0

εn
∑
ν∈Nn

T (ψn,εν)ϕ(εν)

= lim
ε→0

T (εn
∑
ν∈Nn

ψn,εν ϕ(εν))

= T (lim
ε→0

εn
∑
ν∈Nn

ψn,εν ϕ(εν))

= T (ρ̌n ∗ ϕ).

The conclusion follows remarking that ρ̌n ∗ ϕ
n−→ ϕ in the sense of E(Rn)

(actually ρ̌n ∗ ϕ
n−→ ϕ in the sense of D(Rn), if ϕ ∈ D(Rn)).

Remark 31. In the previous situation

TT∗ρn(ϕ) = ((T ∗ ρn) ∗ ϕ̌)(0) = (T ∗ (ρn ∗ ϕ̌))(0) = T ((ρn ∗ ϕ̌)ˇ)

and
(ρn ∗ ϕ̌)ˇ −→ ϕ in the sense of E(Rn).

Theorem 51. Let T ∈ E ′(Rn) be a distribution with compact support.
Then the the Fourier-Laplace transform of T is an entire analytic function.

Moreover the distribution associated to the Fourier-Laplace transform of T co-
incides with the Fourier transform of T in the sense of tempered distributions.
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Proof. Recall that we denote by T̂ and T̂FL the Fourier transform and the
Fourier-Laplace transform of T respectively.

Let f be a continuous function with compact support. We have already
remarked that

f̂ = T̂f
FL

and Tf̂ = T̂f .

We show that f̂ is an entire analytic function. In fact, since, for all α ∈ Nn,

x 7→ xαf(x)

is a L1(Rn) function, we have, from Theorem 46, that f̂ ia a C∞(Rn) function
and

|Dαf̂(ξ)| ≤
∫
|x|<R

|xαf(x)| dx ≤ CR|α|,

where we have supposed that Supp f ⊆ B(0, R) and C = ‖f‖L1 . Consequently,
from Lemma 13, f̂ is an entire analytic function.

Let T ∈ E ′(Rn) and let (ρk)k be a family of mollifiers. From Lemma 15 we
have that TT∗ρk

k−→ T in the sense of E ′(Rn), consequently

T̂T∗ρk = T
T̂∗ρk

k−→ T̂ in the sense of D′(Rn). (33)

We have

T̂ ∗ ρk
FL

(ζ) = T ∗ ρk(ψζ) (where ψζ(x) = e−ix·ζ)

= ((T ∗ ρk) ∗ ψ̌ζ)(0)

= (T ∗ (ρk ∗ ψ̌ζ))(0)

= T ((ρk ∗ ψ̌ζ)ˇ)

= T (ρ̌k ∗ ψζ).

Considering that

ρ̌k ∗ ψζ(x) =

∫
Rn
ρ̌k(y)e−i(x−y)·ζ dy

= e−ix·ζ
∫
Rn
ρ̌k(y)eiy·ζ dy = e−ix·ζ ρ̂FLk (ζ) = ρ̂FLk (ζ)ψζ(x),

we deduce

T̂ ∗ ρk
FL

(ζ) = T (ρ̌k ∗ ψζ) = T (ρ̂FLk (ζ)ψζ) = ρ̂FLk (ζ)T (ψζ) = ρ̂FLk (ζ)T̂FL(ζ).

Remark now that

ρ̂FLk (ζ) = ρ̂FL(
ζ

k
)

k−→ ρ̂FL(0) = 1 uniformly on compact sets of Cn.

Hence
T̂ ∗ ρk

FL
(ζ) = ρ̂FLk (ζ)T̂FL(ζ)

k−→ T̂FL(ζ) (34)
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uniformly on compact sets of Cn, but the functions T̂ ∗ ρk
FL

are entire analytic
functions (recall that the T ∗ ρk’s are continuous functions with compact sup-
port), and (34) implies, from Lemma 14, that T̂FL is an entire analytic function.
To conclude the proof we have to show that

TT̂FL = T̂ .

We notice that (34) implies that

T
T̂∗ρk

k−→ TT̂FL in the sense of D′(Rn),

and the conclusion follows from (33).

14.1.4 The Paley-Wiener theorem

Theorem 52. Let U be an entire analytic function defined on Cn.
U is the Fourier-Laplace transform of a distribution with compact support

contained in B(0, A) if and only if there exist C > 0 and N ∈ N such that

|U(ζ)| ≤ C(1 + |ζ|)NeA|=ζ| for all ζ ∈ Cn. (35)

U is the Fourier-Laplace transform of a C∞ function with compact support
contained in B(0, A) if and only if, for all N ∈ N, there exist CN > 0 such that

|U(ζ)| ≤ CN (1 + |ζ|)−NeA|=ζ| for all ζ ∈ Cn. (36)

15

15.1 Sobolev spaces in one space dimension - 1
The content of this paragraph can be found in [3, Ch. VIII].

15.1.1 First definitions

Definition 38. Let I be an open interval in R. Let p ∈ [1,+∞]. We define

W 1,p(I) = {u ∈ Lp(I)
∣∣ ∃g ∈ Lp(I) : ∀φ ∈ C1

0 (I),

∫
I

uφ′ = −
∫
I

g φ}.

W 1,p(I) is called Sobolev space (of indexes 1 and p).

Remark 32.

i) In the definition ofW 1,p(I) it is sufficient to ask
∫
I
uϕ′ = −

∫
I
g ϕ only for

all ϕ ∈ D(I). In fact let φ ∈ C1
0 (I) and let (ρn)n be a family of mollifiers.

We have ρn ∗ φ, ρn ∗ φ′ ∈ D(I) and

ρn ∗ φ
n−→ φ, (ρn ∗ φ)′ = ρn ∗ φ′

n−→ φ′ uniformly

(actually in Lq(R) for all q ∈ [1, +∞]). We can pass to the limit in∫
I

u (ρn ∗ φ)′ = −
∫
I

g (ρn ∗ φ).

95



Figure 18: Sergej L’vovič Sobolev (1908-1989)

ii) The function g in the definition of W 1,p(I) is unique and we denote it
with u′. In fact, if there exist g1, g2 ∈ Lp(I) such that, for all φ ∈ C1

0 (I),∫
I

uφ′ = −
∫
I

g1φ = −
∫
I

g2φ

then
∫
I
(g1 − g2)φ = 0 for all φ ∈ C1

0 (I) and this implies that g1 − g2 = 0.
u′ is called weak derivative of u.

iii) The definition of W 1,p(I) can be given in the framework of distribution
theory.

W 1,p(I) = {u ∈ Lp(I)
∣∣ ∃g ∈ Lp(I) : T ′u = Tg},

i. e. W 1,p(I) is the subset of Lp(I) functions the derivative of which is a
distribution associated to another Lp(I) function. In this sense we can say
that the weak derivative of u is the derivative in the sense of distributions.

Definition 39. We set

‖u‖W 1,p = ‖u‖Lp +‖u′‖Lp (or, equivalently, (‖u‖pLp +‖u′‖pLp)
1
p for p 6= +∞).

Theorem 53. W 1,p(I) is a Banach space. If p ∈ [1,+∞[, then W 1,p(I) is
a separable Banach space. If p ∈ ]1,+∞[, then W 1,p(I) is a reflexive Banach
space. If p = 2 and ‖u‖W 1,2 = (‖u‖2L2 + ‖u′‖2L2)

1
2 , W 1,2(I) = H1(I) is an

Hilbert space.

Proof. The proof is based on the following remark. Consider

Φ : W 1,p(I)→ Lp(I)× Lp(I), Φ : u 7→ (u, u′).

Φ is an isometry between W 1,p(I) and a subspace of Lp(I) × Lp(I). If this
subspace is closed, then we obtain all the wanted properties, since Lp(I)×Lp(I)
is a Banach space, a separable Banach space and a reflexive Banach space for
p ∈ [1,+∞], p ∈ [1,+∞[ and p ∈ ]1,+∞[ respectively.

Let (un)n be a sequence in W 1,p(I) such that (Φ(un))n converges to (u, v)
in Lp(I)× Lp(I). This implies that

un
n−→ u, u′n

n−→ v in Lp(I).
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We know that, for all ϕ ∈ D(I),∫
I

unϕ
′ = −

∫
I

u′nϕ

and, for 1
p + 1

p′ = 1,

|
∫
I

(un − u)ϕ′| ≤ ‖un − u‖Lp︸ ︷︷ ︸
n−→0

‖ϕ′‖Lp′ , |
∫
I

(u′n − v)ϕ| ≤ ‖u′n − v‖Lp︸ ︷︷ ︸
n−→0

‖ϕ‖Lp′ .

Consequently ∫
I

unϕ
′ n−→

∫
I

uϕ′

‖

−
∫
I

u′nϕ
n−→ −

∫
I

vϕ,

i. e. u ∈ W 1,p(I) and v = u′. As a consequence Φ(W 1,p(I)) is closed in
Lp(I)× Lp(I).

Remark 33. It is interesting to remark that in the proof of the previous theorem
we have seen also that if un

n−→ u and u′n
n−→ v in Lp(I) then u ∈W 1,p(I) and

v = u′.

Exercise 11. Let p ∈ ]1, +∞]. Let (un)n in W 1,p(I). Suppose that un
n−→ u

in Lp(I) and there exists C > 0 such that, for all n, ‖u′n‖Lp ≤ C.
Prove that u ∈W 1,p(I).

Hint. Let p′ ∈ [1,+∞[ such that 1
p + 1

p′ = 1. From Banach-Alaoglu-Boubaki
theorem there exist a subsequence (u′nk)k and a function v in Lp(I) such that
u′nk

∗
⇀ v, i. e. for all w ∈ Lp′(I),∫

I

u′nkw
n−→
∫
I

vw.

Consequently, for all ϕ ∈ D(I),∫
I

unkϕ
′ k−→

∫
I

uϕ′

‖

−
∫
I

u′nkϕ
k−→ −

∫
I

vϕ,

i. e. u ∈W 1,p(I) with u′ = v.

15.1.2 Continuous representative

Lemma 16. Let T be a distribution on the open interval I ⊆ R. Suppose that
T ′ = 0

Then there exists c ∈ R such that T = Tc.
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Proof. Consider χ ∈ D(I) such that
∫
I
χ = 1 (obviously such a χ exists!). For

all ϕ ∈ D(I), if one consider

ψ(x) =

∫ x

−∞
ϕ(y) dy − (

∫ +∞

−∞
ϕ(y) dy)

∫ x

−∞
χ(y) dy,

then ψ ∈ D(I) and ψ′ = ϕ− cχ, where c =
∫ +∞
−∞ ϕ(y) dy. We have

0 = T ′(ψ) = −T (ψ′) = T (ϕ− cχ) = T (ϕ)− cT (χ),

i. e., for all ϕ ∈ D(I),

T (ϕ) = T (χ)

∫ +∞

−∞
ϕ(y) dy = T (χ)T1(ϕ) = TT (χ)︸ ︷︷ ︸

const.

(ϕ).

Theorem 54. Let u ∈W 1,p(I).
Then there exists ũ ∈ C(Ī) such that u = ũ a. e. in I and, for all x, y ∈ Ī,

ũ(y)− ũ(x) =

∫ y

x

u′(t) dt.

Proof. We have u′ ∈ Lp(I) ⊆ L1
loc(I). Fix x0 ∈ I and denote by

w(x) =

∫ x

x0

u′(t) dt.

We deduce that w ∈ AC(Ĩ) for all bounded interval Ĩ which contains x0 and
which is contained in I. We use the theorem on integration by parts in AC
(Corollary 5 and subsequent topics, p. 27). We have, for all ϕ ∈ D(I),∫

I

wϕ′ = −
∫
I

u′ϕ.

But, since u ∈W 1,p(I), we have, by definition,∫
I

uϕ′ = −
∫
I

u′ϕ.

Consequently, for all ϕ ∈ D(I),∫
I

(u− w)ϕ′ = 0,

i. e. T ′u−w = 0 and, from Lemma 16, there exists c ∈ R such that Tu−w = Tc.
We define

ũ(x) = w(x) + c.

ũ is continuous on Ī and, since Tũ = Tw+c = Tu, for all ϕ ∈ D(I),∫
I

(u− ũ)ϕ = 0,

i. e. u(x) = ũ(x), for almost all x ∈ I.

Corollary 12. W 1,1(I) = AC(I).
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15.1.3 Characterization of W 1,p(I), for p ∈ ]1, +∞]

Theorem 55. Let p ∈ ]1, +∞]. Suppose u ∈ Lp(I).
Then the following conditions are equivalent.

i) u ∈W 1,p(I).

ii) There exists C > 0 such that, for all ϕ ∈ D(I),

|
∫
I

uϕ′| ≤ C‖ϕ‖Lp′ , where
1

p
+

1

p′
= 1.

iii) There exists C > 0 such that, for all ω relatively compact open set in I
and for all h ∈ R such that |h| ≤ dist(ω, ∂I),

‖τhu− u‖Lp(ω) ≤ C|h|, where τhu(x) = u(x− τ).

Proof. Let u ∈ W 1,p(I). The definition of W 1,p(I) and Hölder inequality give
that, for all ϕ ∈ D(I),

|
∫
I

uϕ′| = |
∫
I

u′ϕ| ≤ ‖u′‖Lp‖ϕ‖Lp′ ,

and ii) follows with C = ‖u′‖Lp .
Suppose ii). Thinking at D(I) as a subspace of Lp

′
(I) and considering the

linear functional

Φ : D(I)→ R (or C), Φ(ϕ) =

∫
I

uϕ′.

condition ii) gives the continuity of Φ. Using Hahn-Banach theorem it is possible
to extend Φ to a (unique) element Φ̃ of the dual space of Lp

′
(I). Recalling that

p′ ∈ [1, +∞[, from Riezs’s theorem we obtain that there exists g ∈ Lp(I) such
that, for all v ∈ Lp′(I),

Φ̃(v) =

∫
I

gv.

Consequently u ∈W 1,p(I) with u′ = −g. We notice that this implication is not
valid if p = 1.

Suppose that the condition i) is valid, i. e. u ∈W 1,p(I). Let ω be a relatively
compact open set in I and suppose h ∈ R, such that |h| ≤ dist(ω, ∂I). Let x ∈ ω.
We have, using the same symbol u to denote the continuous representative of
the function u,

u(x− h)− u(x) =

∫ x

x−h
u′(t) dt = h

∫ 1

0

u′(x− sh) ds.

Consequently

|u(x− h)− u(x)| ≤ |h||
∫ 1

0

u′(x− sh) ds|

and, from Hölder inequality,

|u(x− h)− u(x)|p ≤ |h|p
∫ 1

0

|u′(x− sh)|p ds.
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Hence ∫
ω

|u(x− h)− u(x)|p dx ≤ |h|p
∫
ω

∫ 1

0

|u′(x− sh)|p ds dx

≤ |h|p
∫ 1

0

∫
ω

|u′(x− sh)|p dx︸ ︷︷ ︸
≤‖u′‖p

Lp(I)

ds,

so that ∫
ω

|u(x− h)− u(x)|p dx ≤ |h|p‖u′‖pLp(I),

and iii) follows with C = ‖u′‖Lp(I).
Suppose now that the condition iii) holds. We will deduce ii). Let ϕ ∈ D(I)

and take ω relatively compact open set in I such that Suppϕ ⊆ ω. Let h > 0
such that |h| ≤ dist(ω, ∂I). Then∫

ω

(u(x− h)− u(x))ϕ(x) dx =

∫
I

u(x− h)ϕ(x) dx−
∫
I

u(x)ϕ(x) dx

=

∫
I

u(x)ϕ(x+ h) dx−
∫
I

u(x)ϕ(x) dx

=

∫
I

u(x)(ϕ(x+ h)− ϕ(x)) dx.

The previous identity and condition iii) imply

|
∫
I

u(x)(ϕ(x+ h)− ϕ(x)) dx| ≤
∫
ω

|u(x− h)− u(x)| |ϕ(x)| dx

≤ ‖τhu− u‖Lp(ω)‖ϕ‖Lp′ (I)
≤ C|h|‖ϕ‖Lp′ (I),

hence
|
∫
I

u(x)(
ϕ(x+ h)− ϕ(x)

h
) dx| ≤ C‖ϕ‖Lp′ (I). (37)

Passing to the limit, for h→ 0, in (37) we obtain that

|
∫
I

uϕ′| ≤ C‖ϕ‖Lp′ (I).

We remark that only in the proof of the fact that ii) implies i), we have used the
hypothesis that p 6= 1. All the other implications are valid also in this case.

Remark 34. It is possible to prove that, in the case p = 1, we have

i) =⇒ ii) ⇐⇒ iii).

(what it would remain to prove, considering what it has been done in the proof
of the previous theorem, is ii) =⇒ iii)). Moreover, it is possible to prove that

‖τhu− u‖L1(ω) ≤ C|h| ⇐⇒ u ∈ BV (I).
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15.1.4 Characterization of W 1,2(R)

We want to characterize W 1,2(R) = H1(R). We need the following lemma, the
proof of which we let as an exercise.

Lemma 17. Let f, g ∈ L2(R).
Then ∫

R
f ĝ =

∫
R
f̂ g and

∫
R
f g =

1

2π

∫
R
f̂ ĝ.

Remark 35. In the proof of the previous lemma it is not possible to write

f̂(ξ) =

∫
R
e−ixξf(x) dx,

since f 6∈ L1(R).

Theorem 56. Let u ∈ L2(R).

u ∈ H1(R) if and only if (1 + |ξ|2)
1
2 û(ξ) ∈ L2(R).

Moreover
‖u‖H1 = (

∫
R

(1 + |ξ|2)|û(ξ)|2 dξ) 1
2 . (38)

Proof. Let u ∈ H1(R). We have u, u′, û, û′ ∈ L2(R). Consider ψ ∈ S(R). We
have ∫

R
û′(ξ)ψ(ξ) dξ =

∫
R
u′(x)ψ̂(x) dx = −

∫
R
u(x)ψ̂′(x) dx

= −i
∫
R
u(x)ξ̂ψ(ξ)(x) dx = −i

∫
R
û(ξ) ξ ψ(ξ) dξ.

Consequently iû′(ξ) = ξ û(ξ) a. e. in R and then |ξ|û(ξ) ∈ L2(R).
Conversely suppose û(ξ), ξû(ξ) ∈ L2(R). Let ϕ ∈ D(R). We have

|
∫
R
u(x)ϕ′(x) dx| =

1

2π
|
∫
R
û(ξ)ϕ̂′(ξ) dξ|

=
1

2π
|
∫
R
û(ξ) iξ ϕ̂(ξ) dξ|

≤ 1

2π
‖ξû(ξ)‖L2‖ϕ̂‖L2 ≤ C‖ϕ‖L2

and the fact that u ∈ H1(R) follows from condition ii) of Theorem 55. The
identity (38) is a consequence of Plancherel’s theorem.

Remark 36. Let s ∈ R. We will define

Hs(R) = {u ∈ S ′(R)
∣∣ (1 + |ξ|2)

s
2 û(ξ) ∈ L2(R)},

with
‖u‖Hs = (

∫
R

(1 + |ξ|2)s|û(ξ)|2 dξ) 1
2 .
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16

16.1 Sobolev spaces in one space dimension - 2
The content of this paragraph can be found in [3, Ch. VIII].

16.1.1 Extension operator

Consider u ∈ W 1,p(I). The problem is now to find a function in w ∈ W 1,p(R)
such that w|I = u with a fixed relation between the norms of u and w. We need
the following lemma.

Lemma 18. Let θ ∈ C∞([0, +∞[) such that, for all x ∈ [0, +∞[, 0 ≤ θ(x) ≤ 1
and

θ(x) =

{
1 if 0 ≤ x ≤ 1

4 ,

0 if x ≥ 3
4 .

Let u ∈W 1,p( ]0, 1[ ). Denote by

ũ(x) =

{
u(x) if 0 < x ≤ 1,

0 if x > 1,
ũ′(x) =

{
u′(x) if 0 < x ≤ 1,

0 if x > 1,

and set v = θũ.
Then v ∈W 1,p( ]0, +∞[ ) and v′ = θ′ũ+ θũ′.

Proof. Since θ ∈ L∞(]0, +∞[) and ũ ∈ Lp(]0, +∞[), we have θũ ∈ Lp(]0, +∞[).
Let ϕ ∈ D(]0, +∞[). Remark that θϕ is a test function on ]0, +∞[ that can be
considered also as a test function on ]0, 1[. Hence∫

]0,+∞[

θũ ϕ′ =

∫
]0,+∞[

ũ (θϕ′)

=

∫
]0, 1[

u (θϕ′)

=

∫
]0, 1[

u ((θϕ)′ − θ′ϕ)

=

∫
]0, 1[

−u′ (θϕ)− u (θ′ϕ)

= −
∫

]0, 1[

(u′ θ + u θ′)ϕ

= −
∫

]0,+∞[

(ũ′ θ + ũ θ′)ϕ.

The lemma is proved.

We state the extension theorem.

Theorem 57. Let I be an open interval in R. Let p ∈ [1, +∞].
Then there exists an operator P : W 1,p(I)→W 1,p(R) such that:

i) for all u ∈W 1,p(I),
Pu|I = u;
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ii) there exists C0 > 0 such that, for all u ∈W 1,p(I),

‖Pu‖Lp(R) ≤ C0‖u‖LP (I);

iii) there exists C1 > 0 such that, for all u ∈W 1,p(I),

‖Pu‖W 1,p(R) ≤ C1‖u‖W 1,p(I).

Moreover C0 and C1 depend only on |I|.

Proof. Let I = ]0, +∞[ and u ∈ W 1,p(I). Remark that we think at u as its
continuous representative, so that u ∈ C[0, +∞[. Consider now

v(x) =

{
u(x) if x ≥ 0,

u(−x) if x < 0,

i. e. v is the extension of u to the whole R, made by reflection with respect to
the y axis.

1 20

1

x

y

u

−2 −1 1 20

1

x

y

v

We have that v ∈ Lp(R) and

v(x) =


u(0) +

∫ x

0

u′(t) dt if x ≥ 0,

u(0) +

∫ x

0

−u′(−t) dt if x < 0.

so that v ∈ AC(R) and

v′(x) =

{
u′(x) for a. e. x ≥ 0,

−u′(−x) for a. e. x < 0.

Consequently v′ is an Lp function and moreover, from the result on integration
by parts on AC functions, we have that v′ is the weak derivative of v. As a
conclusion we set

Pu = v.

We have

‖Pu‖Lp(R) ≤ 2‖u‖Lp(I) and ‖Pu‖W 1,p(R) ≤ 2‖u‖W 1,p(I).

Suppose now I = ]0, 1[. Using Lemma 18 we construct θũ and we extend it
by reflection to the whole R. Similarly, if we consider

˜̃u(x) =

{
u(x) if 0 < x ≤ 1,

0 if x < 0,

˜̃
u′(x) =

{
u′(x) if 0 < x ≤ 1,

0 if x < 0,
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we have that (1− θ)˜̃u ∈W 1,p(]−∞, 1[) and ((1− θ)˜̃u)′ = −θ′˜̃u+ (1− θ) ˜̃u′. We
extend (1− θ)˜̃u to R with a reflection in 1. We set

Pu = θũ+ (1− θ)˜̃u.
We let as an exercise to check the correctness of the points i), ii) and iii).

16.1.2 An approximation result

We want to prove an approximation result. We need two lemmas.

Lemma 19. Let f ∈ L1(R) and u ∈W 1,p(R), where p ∈ [1, +∞].
Then f ∗ u ∈W 1,p(R) and (f ∗ u)′ = f ∗ u′.

Proof. We know that if f ∈ L1(R) and u ∈ Lp(R), then f ∗u ∈ Lp(R). Similarly
f ∗ u′ ∈ Lp(R).

Suppose first that f has compact support. For all ϕ ∈ D(R), we have∫
R

(f ∗ u)ϕ′ =

∫
R
(

∫
R
f(x− y)u(y) dy)ϕ′(x) dx

=

∫
R
u(y)(

∫
R
f(x− y)ϕ′(x) dx) dy

=

∫
R
u (f̌ ∗ ϕ′)

=

∫
R
u (f̌ ∗ ϕ)′

= −
∫
R
u′ (f̌ ∗ ϕ) = −

∫
R

(u′ ∗ f)ϕ.

Consequently f ∗ u ∈W 1,p(R) and (f ∗ u)′ = f ∗ u′.
Suppose now that f has not compact support. Let (fn)n be a sequence in

L1(R) such that, for all n, fn has compact support and fn
n−→ f in L1(R) (it

is sufficient to take fn = χB(0,n) · f , see the next lemma). Then

fn ∗ u
n−→ f ∗ u and (fn ∗ u)′ = fn ∗ u′

n−→ f ∗ u′ in Lp(R).

The conclusion follows from Remark 33.

Lemma 20. Let χ ∈ D(R) such that

χ(x) =

{
1 if |x| ≤ 1,

0 if |x| ≥ 2.

Consider, for all n ≥ 1, χn(x) = χ( xn ). Let f ∈ Lp(R), with p ∈ [1, +∞[.
Then

χn · f
n−→ f in Lp(R).

Proof. It is an application of the dominated convergence theorem.
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Theorem 58. Let u ∈W 1,p(I), with p ∈ [1, +∞[.
Then there exists a sequence (un)n in D(R) such that

un|I
n−→ u in W 1,p(I).

Proof. Suppose first that I = R. Let u ∈W 1,p(R) with p ∈ [1, +∞[. Let (ρn)n
be a family of mollifier and let (χn)n the sequence of truncation (or cut off)
functions defined in Lemma 20. We set, for all n,

un = χn · (ρn ∗ u).

We have un ∈ D(R) and, using also Lemma 20,

‖un − u‖Lp = ‖χn · (ρn ∗ u)− u‖

≤ ‖χn · (ρn ∗ u)− χn · u‖Lp + ‖χn · u− u‖Lp

≤ ‖χn‖L∞︸ ︷︷ ︸
≤1

‖(ρn ∗ u)− u‖Lp︸ ︷︷ ︸
n−→0

+ ‖χn · u− u‖Lp︸ ︷︷ ︸
n−→0

.

Finally, also from Lemma 19,

‖u′n − u′‖Lp

= ‖χ′n · (ρn ∗ u) + χn · (ρn ∗ u)′ − u′‖Lp

≤ ‖χ′n‖L∞︸ ︷︷ ︸
≤Cn

‖ρn ∗ u‖Lp︸ ︷︷ ︸
≤‖u‖Lp

+ ‖χn · ((ρn ∗ u′)− u′)‖Lp︸ ︷︷ ︸
≤‖(ρn∗u′)−u′‖Lp

n−→0

+ ‖χn · u′ − u′‖Lp︸ ︷︷ ︸
n−→0

.

Consequently

un
n−→ u and u′n

n−→ u′ in Lp(R).

Suppose now u ∈ W 1,p(I), with I ⊆ R. Consider, from Theorem 57, Pu
extension of u to R. From the first part of the proof, we have that there exists
a sequence (wn)n in C∞0 (R) such that

wn
n−→ Pu in W 1,p(R).

Hence
wn|I

n−→ Pu|I = u in W 1,p(I).

Corollary 13. Let p ∈ [1, +∞[.
Then D(R) is dense in W 1,p(R).

Remark 37. As we will see, if I 6= R, then D(I) is not dense in W 1,p(I).

17

17.1 Sobolev spaces in one space dimension - 3
The content of this paragraph can be found in [3, Ch. VIII].
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17.1.1 Sobolev embeddings

Theorem 59 (Sobolev). Let I be an open interval in R. Let p ∈ [1, +∞]. Let
u ∈W 1,p(I).

Then u ∈ L∞(I) and there exists C > 0, depending only on p and |I|, such
that

‖u‖L∞(I) ≤ C‖u‖W 1,p(I),

i. e. W 1,p(I) is contained in L∞(I) with continuous immersion (embedding).

Proof. Suppose first that I = R. If p = +∞ there is nothing to prove. Let
p ∈ [1, +∞[. Consider the function

G : R→ R, G(t) = t |t|p−1.

G is a C1(R) function and G′(t) = p|t|p−1.
Let u be a C∞0 (R) function and define

ψ(t) = G(u(t)).

We have

ψ ∈ C1
0 (R), |ψ(t)| = |u(t)|p and ψ′(t) = p|u(t)|p−1u′(t).

Consequently

‖u‖pL∞ = sup
t∈R
|ψ(t)| ≤

∫
R
|ψ′(s)| ds = p

∫
R
|u(s)|p−1|u′(s)| ds, (39)

but, thinking at |u|p−1 as a function in Lp
′
, with 1

p + 1
p′ = 1, we have

‖|u|p−1‖Lp′ = (

∫
R
|u(s)|(p−1)p′ ds)

1
p′ = (

∫
R
|u(s)|p ds)

p−1
p = ‖u‖p−1

Lp ,

so that from (39) and Hölder inequality, we finally get

‖u‖pL∞ ≤ p‖u‖
p−1
Lp ‖u

′‖Lp .

Hence
‖u‖L∞ ≤ p

1
p ‖u‖1−

1
p

Lp ‖u
′‖

1
p

Lp .

We apply the Young’s inequality (see the Appendix) and we finally obtain

‖u‖L∞ ≤ p
1
p (‖u‖Lp + ‖u′‖Lp) = p

1
p ‖u‖W 1,p . (40)

Let now u ∈W 1,p(R). From Corollary 13, possibly passing to a subsequence,
exists a sequence (un)n in C∞0 (R) such that

un
n−→ u in W 1,p(R) and almost everywhere.

Condition (40) implies that (un)n is a Cauchy sequence in L∞(R) which con-
verges almost everywhere to u. Consequently the convergence is in L∞(R) and
moreover u ∈ L∞(R). Passing to the limit in

‖un‖L∞ ≤ p
1
p ‖un‖W 1,p ,
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we obtain (40) for u ∈W 1,p(R).
Suppose finally that u ∈ W 1,p(I) with I ⊆ R. Consider the extension

operator P : W 1,p(I) → W 1,p(R). We apply to Pu the first part of the proof.
Then

Pu ∈ L∞(R) and ‖Pu‖L∞(R) ≤ p
1
p ‖Pu‖W 1,p(R).

Consequently u = Pu|I ∈ L∞(I) and

‖u‖L∞(I) ≤ ‖Pu‖L∞(R) ≤ p
1
p ‖Pu‖W 1,p(R) ≤ C‖u‖W 1,p(I),

where C depends only on p and |I|.

Theorem 60 (Rellich). Let I be an open interval in R, with |I| < +∞.

i) If p ∈ ]1, +∞], then

W 1,p(I) ⊆ C(Ī) with compact embedding.

ii) If p = 1 and q ∈ [1, +∞[, then

W 1,1(I) ⊆ Lq(I) with compact embedding.

Proof. Let’s prove i). We already know that W 1,p(I) ⊆ C(Ī) (from the theo-
rem on continuous representative) and that the immersion is continuous (from
Sobolev theorem, when on C(Ī) we put the sup-norm). It remains to prove
that the embedding is a compact embedding, i. e. a bounded set in W 1,p(I) is
a relatively compact set in C(Ī). To see this we use Ascoli-Arzelà’s theorem,
showing that the functions in a bounded set of W 1,p(I) are equicontinuous. In
fact, for all u ∈W 1,p(I) with ‖u‖W 1,p(I) ≤ C, we have

|u(x)− u(y)| ≤ |
∫ y

x

|u′(t)| dt ≤ |x− y|
1
p′ ‖u′‖Lp(I)︸ ︷︷ ︸

Hölder

≤ C|x− y|
1
p′ .

Let’s prove ii). Also in this case the only thing to prove is that the embedding
is a compact embedding, i. e. a bounded set in W 1,1(I) is a relatively compact
set in Lq(I). We use, in this case, the Riesz-Fréchet-Kolmogorov theorem (see
[3, Cor. IV.26]). We recall that a set B is relatively compact in Lq(I) if the
following two conditions hold.

a) For all ε > 0 and for all relatively compact set ω in I, there exists 0 < δ <
dist (ω, ∂I) such that,

‖τhf − f‖Lq(ω) ≤ ε, for all h ∈ R with |h| < δ, and for all f ∈ B.

b) For all ε > 0 there exists a relatively compact set ω in I such that

‖f‖Lq(I\ω) < ε, and for all f ∈ B,

We set
B = {u ∈W 1,1(I)

∣∣ ‖u‖W 1,1 ≤ C0}.
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Let u ∈ B and let ω be a relatively compact set in I and let h ∈ R with
|h| < dist (ω, ∂I). We know, from the Theorem 55 and Remark 34, that there
exists C > 0 such that

‖τhu− u‖L1(ω) ≤ C |h|.
Consequently∫
ω

|u(x−h)−u(x)|q dx ≤
∫
ω

|u(x−h)−u(x)|(2‖u‖L∞)q−1 dx ≤ C |h|(2‖u‖L∞)q−1,

hence
(

∫
ω

|u(x− h)− u(x)|q dx)
1
q ≤ C ′|h|

1
q ‖u‖1−

1
q

L∞ ,

where C ′ = 21− 1
qC

1
q . From Sobolev theorem we have that there exists C1 > 0

(depending only on q and |I|) such that

‖u‖L∞ ≤ C1‖u‖W 1,1 ,

then
‖τhu− u‖Lq(ω) ≤ C ′ (C0C1)1− 1

q |h|
1
q

and a) follows taking δ = εq/((C ′)q(C0C1)q−1). Concerning the condition b), it
is sufficient to remark that, for u ∈ B,

‖u‖Lq(I\ω) ≤ ‖u‖L∞ |I \ ω|
1
q ≤ C0 C1 |I \ ω|

1
q

and, since |I| < +∞, it will be possible to find a relatively compact set ω such
that |I \ ω| < εq/(C0C1)q−1. The proof is complete.

Remark 38. Let u ∈ D(R), with u 6= 0. Consider the sequence (un)n, where
un(x) = u(x − n). The sequence (un)n is bounded in W 1,p(R), for all p ∈
[1, +∞], but a subsequence which is converging in C(R) or in Lq(R) does not
exists: the boundedness of I is a necessary condition in Rellich theorem.

Remark 39. For n ≥ 1, consider the function

un(x) =


1 if x ∈ [1/n, 1],

nx if x ∈ [−1/n, 1/n],

−1 if x ∈ [−1, −1/n].

−1 −1/n

11/n

1

−1

un(x)

x

For all n, un ∈W 1,1(]− 1, 1[) and

‖un‖W 1,1 =

∫
]−1, 1[

|u|+
∫

]−1, 1[

|u′| ≤ 2 + 2 ≤ 4.

The sequence (un)n does not have a subsequence which converges in C([−1, 1]).
In fact the sequence (un)n converges pointwise to a non continuous function.
The immersion of W 1,1(]− 1, 1[) in C([−1, 1]) is not a compact immersion.
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17.1.2 Corollaries to Sobolev embedding theorem

Corollary 14. Let p ∈ [1, +∞[. Let u ∈W 1,p(R).
Then

lim
x→−∞

u(x) = lim
x→+∞

u(x) = 0.

Proof. Let ε > 0 and consider (un)n in D(R) such that un
n−→ u in W 1,p(R).

Then, by Theorem 59, un
n−→ u in L∞. As a consequence, there exists n̄ such

that, for all n ≥ n̄,
‖un − u‖L∞ < ε.

In particular ‖un̄ − u‖L∞ ≤ ε and, since un̄ has compact support, there exists
R > 0 such that, for all x ∈ R, if |x| > R then un̄(x) = 0. In conclusion,
for all ε > 0, there exists R > 0 such that, for all x ∈ R, if |x| > R then
|u(x)| ≤ |un̄(x)− u(x)| < ε.

Corollary 15. Let p ∈ [1, +∞]. Let u, v ∈W 1,p(I).
Then

uv ∈W 1,p(I) and (uv)′ = u′v + uv′.

Proof. We show first that uv and u′v + uv′ are in Lp(I). If p = ∞, there is
nothing to prove. If, on the contrary, p <∞, we use Sobolev theorem, deducing
that u and v are in Lp(I) ∩ L∞(I) and the conclusion follows.

It remains to prove that

(uv)′ = u′v + uv′.

Let p ∈ [1, +∞[. Consider (un)n and (vn)n in D(R) such that

un|I
n−→ u and vn|I

n−→ v in W 1,p(I).

Hence
un|I

n−→ u and vn|I
n−→ v in L∞(I).

We have

‖un|Ivn|I − uv‖Lp(I)

≤ ‖un|Ivn|I − u vn|I‖Lp(I) + ‖u vn|I − uv‖Lp(I)

≤ ‖vn|I‖L∞(I)︸ ︷︷ ︸
bounded

‖un|I − u‖Lp(I)︸ ︷︷ ︸
n−→0

+‖u‖Lp(I) ‖vn|I − v‖L∞(I)︸ ︷︷ ︸
n−→0

and

‖u′n|Ivn|I − u
′v‖Lp(I)

≤ ‖u′n|Ivn|I − u
′ vn|I‖Lp(I) + ‖u′ vn|I − u′v‖Lp(I)

≤ ‖vn|I‖L∞(I)︸ ︷︷ ︸
bounded

‖u′n|I − u
′‖Lp(I)︸ ︷︷ ︸

n−→0

+‖u′‖Lp(I) ‖vn|I − v‖L∞(I)︸ ︷︷ ︸
n−→0

Consequently

un|Ivn|I
n−→ u v and u′n|Ivn|I + un|Iv

′
n|I

n−→ u′v + uv′ in Lp(I)
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and the conclusion follows from Remark 33.
Let p =∞. We have to prove that, for all ϕ ∈ D(I),∫

I

uv ϕ′ = −
∫
I

(u′v + uv′)ϕ. (41)

Fix ϕ ∈ D(I) and consider an open relatively compact interval J such that
Suppϕ ⊆ J ⊆ I. We have that u|J , v|J ∈ W 1,p(J) for all p ∈ [1,+∞[. Then
(41) is valid for the first part of the proof.

Corollary 16. Let p ∈ [1, +∞] and u ∈ W 1,p(I). Let G be a C1(R) function,
with G(0) = 0.

Then
G ◦ u ∈W 1,p(I) and (G ◦ u)′ = (G′ ◦ u)u′.

Proof. u ∈ W 1,p(I), so that, from Sobolev theorem, u ∈ L∞(I) and conse-
quently there exists M > 0 such that ‖u‖L∞(I) ≤ M . Then, considering the
continuous representative,

for all x ∈ I, u(x) ∈ [−M, M ].

On the other hand, since G ∈ C1(R) and G(0) = 0, we have that there exists
C > 0 such that,

for all s ∈ [−M, M ], |G(s)| ≤ C|s|.

Hence
for all x ∈ I, |G(u(x))| ≤ C|u(x)|.

Consequently G ◦ u ∈ Lp(I) ∩ L∞(I). Similarly there exists C ′ > 0 such that

for all x ∈ I, |G′(u(x))| ≤ C ′

and then (G′ ◦ u)u′ ∈ Lp(I).
Suppose that p ∈ [1, +∞[. We have to prove that, for all ϕ ∈ D(I),∫

I

(G ◦ u)ϕ′ = −
∫
I

((G′ ◦ u)u′)ϕ. (42)

There exists (un)n in D(R) such that

un|I
n−→ u in W 1,p(I), in L∞(I) and a. e. in I.

We remark that, since for all n, G ◦ un is in C1
0 (R), then, for all ϕ ∈ D(I),∫

I

(G ◦ un)ϕ′ = −
∫
I

((G′ ◦ un)u′n)ϕ.

We know that ‖u‖L∞(I) ≤M , so that we can suppose, without any restriction,
that, for all n, ‖un‖L∞(I) ≤M + 1. Consequently

‖G ◦ un −G ◦ u‖L∞(I) ≤ ( sup
|t|≤M+1

|G′(t)|) ‖un − u‖L∞(I),

and we deduce ∫
I

(G ◦ un)ϕ′
n−→
∫
I

(G ◦ u)ϕ′. (43)
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On the other hand

‖(G′ ◦ un)u′n − (G′ ◦ u)u′‖Lp(I)

≤ ‖(G′ ◦ un)u′n − (G′ ◦ u)u′n‖Lp(I) + ‖(G′ ◦ u)u′n − (G′ ◦ u)u′‖Lp(I)

≤ ‖(G′ ◦ un)− (G′ ◦ u)‖L∞(I)‖u′n‖Lp(I) + ‖G′ ◦ u‖L∞(I)‖u′n − u′‖Lp(I).
(44)

Remark now that, since G′ on the interval [−M − 1,M + 1] is uniformly con-
tinuous, we have that for all ε > 0 there exists δ > 0 such that, for all
t1, t2 ∈ [−M − 1,M + 1] , if |t2 − t1| ≤ δ then |G′(t2) − G′(t1)| < ε, con-
sequently

if ‖un − u‖L∞(I) < δ then ‖(G′ ◦ un)− (G′ ◦ u)‖L∞(I) < ε.

We deduce that
lim
n
‖(G′ ◦ un)− (G′ ◦ u)‖L∞(I) = 0

and finally, from (44),

lim
n
‖(G′ ◦ un)u′n − (G′ ◦ u)u′‖Lp(I) = 0

and hence ∫
I

((G′ ◦ un)u′n)ϕ
n−→
∫
I

((G′ ◦ u)u′)ϕ′. (45)

The conclusion is reached from (43) and (45) in the usual way.
Let p = ∞. Also in this case we have to prove (42). Fix ϕ ∈ D(I) and

consider an open relatively compact interval J such that Suppϕ ⊆ J ⊆ I. We
have that u|J , v|J ∈W 1,p(J) for all p ∈ [1,+∞[. Then (42) is valid for the first
part of the proof.

17.1.3 The space Wm,p(I)

Definition 40. Let I be an open interval in R. Let p ∈ [1,+∞] and m ∈
N \ {0, 1}. We define

Wm,p(I) = {u ∈Wm−1,p(I)
∣∣ u′ ∈Wm−1,p(I)}

i. e.
Wm,p(I) = {u ∈ Lp(I)

∣∣ u′, u′′, . . . , u(m) ∈ Lp(I)},

where derivatives are to be considered in distributional sense. We set

‖u‖Wm,p = ‖u‖Lp + ‖u′‖Lp + . . .+ ‖u(m)‖Lp

or, equivalently, in the case of p ∈ [1, +∞[,

‖u‖Wm,p = (‖u‖pLp + ‖u′‖pLp + . . .+ ‖u(m)‖pLp)
1
p .

Remark 40. We set Wm,2(I) = Hm(I). For m ≥ 2, it is possible to show that

Hm(R) = {u ∈ L2(R)
∣∣ (1 + |ξ|2)

m
2 û(ξ) ∈ L2(R)}.
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17.1.4 The space W 1,p
0 (I)

Definition 41. Let p ∈ [1, +∞[. Let I be a bounded open interval in R, i.
e. an open interval such that |I| < +∞. We denote by W 1,p

0 (I) the closure of
C1

0 (I) in W 1,p(I).

Remark 41. W 1,p
0 (I) is the closure of C∞0 (I) in W 1,p(I). In fact, for every

function f of C1
0 (I) there exists a sequence (un)n in C∞0 (I) such that un

n−→ f

and u′n
n−→ f ′ uniformly. This implies that un

n−→ f in W 1,p(I).

Theorem 61. Let p ∈ [1, +∞[. Let I be a bounded open interval in R. Let
u ∈W 1,p(I) and consider the continuous representative of u (we indicate it with
the same letter u).

Then
u ∈W 1,p

0 (I) if and only if u|∂I = 0.

Proof. Let u ∈ W 1,p
0 (I). There exists a sequence (un)n in C∞0 (I) such that

un
n−→ u in W 1,p(I). From Sobolev theorem, un

n−→ u uniformly in C(Ī). In
particular 0 = un(x)

n−→ u(x) for x ∈ ∂I. As a consequence u|∂I = 0.
Conversely suppose u ∈ W 1,p(I) with u|∂I = 0. Consider a function G ∈

C1(R) such that,

G(s) =

{
s if |s| ≥ 2,

0 if |s| ≤ 1,

and, for all s ∈ R, |G(s)| ≤ |s|. Consider

un(x) =
1

n
G(nu(x)).

From Corollary 16 we deduce that un ∈ W 1,p(I). Moreover un ∈ C(Ī) and
un(x) = 0 if |u(x)| < 1

n , hence Suppun is a compact set contained in I, i. e
un ∈ W 1,p

0 (I). It remains to prove that un
n−→ u in W 1,p(I). We let it as an

exercise.

Corollary 17 (Poincaré inequality). Let p ∈ [1, +∞[. Let I be a bounded open
interval in R.

Then there exists C > 0 such that, for all u ∈W 1,p
0 (I),

‖u‖W 1,p(I) ≤ C‖u′‖Lp(I),

i. e. ‖u′‖Lp(I) is an equivalent norm in W 1,p
0 (I).

Proof. Let I = ]a, b[. We have, for u ∈W 1,p
0 (]a, b[),

|u(x)| = |
∫ x

a

u′(t) dt| ≤
∫ b

a

|u′(x)| dx ≤ (b− a)
1
p′ ‖u′‖Lp(I).

Consequently∫ b

a

|u(x)|p dx ≤
∫ b

a

(b− a)
p
p′ ‖u′‖pLp(I) dx = (b− a)

1+ p
p′ ‖u′‖pLp(I),

and hence
‖u‖Lp(I) ≤ (b− a)‖u′‖Lp(I).
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We conclude
‖u‖W 1,p(I) ≤ ((b− a) + 1)‖u′‖Lp(I).

Remark 42. We denote by H1
0 (I) the space W 1,2

0 (I).

18

18.1 Sobolev spaces in one space dimension - 4
The content of this paragraph can be found in [3, Ch. VIII].

18.1.1 Examples of boundary value problems

Example 16 (Homogeneous Dirichlet problem). Let f ∈ C([0, 1]).
Find u ∈ C2(]0, 1[) ∩ C([0, 1]) such that{

−u′′ + u = f in ]0, 1[,

u(0) = u(1) = 0.
(46)

Problem (46) is known as the (classical) homogeneous Dirichlet problem. The
strategy for solving it will be the following.

a) Introduce a modified (weak) problem. The correct setting of this modified
problem will be crucial.

b) Solve the weak problem, using some suitable functional analysis results.

c) Check that the solution of the weak problem, with the conditions of the
classical problem, is actually the solution of the classical problem.

a) Let f̃ ∈ L2(]0, 1[).
Find w ∈ H1

0 (]0, 1[) such that∫
]0,1[

w′ v′ +

∫
]0,1[

w v =

∫
]0,1[

f̃ v, for all v ∈ H1
0 (]0, 1[). (47)

Problem (47) is the weak homogeneous Dirichlet problem.

Remark 43. If u is a solution of the classical problem then u is a solution of
the weak one, if f̃ = f . In fact, suppose that u ∈ C2(]0, 1[) ∩ C([0, 1]) is a
solution to the classical problem, then∫

]0,1[

(−u′′ + u) v =

∫
]0,1[

f v, for all v ∈ H1
0 (]0, 1[).

and, integrating by parts,∫
]0,1[

u′ v′ +

∫
]0,1[

u v =

∫
]0,1[

f v, for all v ∈ H1
0 (]0, 1[).

Finally, since u(0) = u(1) = 0, u ∈ H1
0 (]0, 1[).
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b) Let’s solve problem (47). We use Lax-Milgram theorem (see [3, Cor. V.8]).
We choose as Hilbert space H the space H1

0 (]0, 1[), as bilinear form a, the form

a(w, v) =

∫
]0,1[

w′ v′ +

∫
]0,1[

w v

and as φ, element of H ′, the functional

φ : H1
0 (]0, 1[)→ R, φ(v) =

∫
]0,1[

f̃ v.

The existence and uniqueness of the solution w ∈ H1
0 (]0, 1[) follows. Remark

that, in particular,∫
]0,1[

w′ ϕ′ =

∫
]0,1[

(f̃ − w)ϕ, for all ϕ ∈ D(]0, 1[),

with f̃ − w ∈ L2, so that w′ ∈ H1(]0, 1[) and consequently w ∈ H2(]0, 1[) ∩
H1

0 (]0, 1[).

c) We show that the solution of problem (47) with f̃ = f is the solution of
problem (46). Suppose that f̃ = f ∈ C([0, 1]). Take u = w. Since u ∈
H1

0 (]0, 1[), we have u ∈ C([0, 1]) with u(0) = u(1) = 0. Moreover∫
]0,1[

u′ v′ =

∫
]0,1[

(f − u) v, for all v ∈ H1
0 (]0, 1[).

In particular∫
]0,1[

u′ ϕ′ =

∫
]0,1[

(f − u)ϕ, for all ϕ ∈ D(]0, 1[),

i. e. u′ ∈ H1(]0, 1[) (notice that, in particular, f − u ∈ L2) and (u′)′ = u − f
in the sense of distributions. Consequently∫

]0,1[

(−(u′)′ + u− f)ϕ = 0, for all ϕ ∈ D(]0, 1[).

It remains to prove that u is in C2 and (u′)′ is the classical second derivative.
This is a consequence of the du Bois-Reymond theorem. In fact u′ is continuous
(it is in H1(]0, 1[)) and its derivative in the sense of distribution is u − f ,
which is continuous. Remark that we can obtain the same conclusion using
the fundamental theorem of calculus. In fact the theorem on the continuous
representative implies that

u′(x)− u′(y) =

∫ x

y

(u′)′(t) dt =

∫ x

y

(u(t)− f(t)) dt

but u− f is continuous, so that u′ is a C1 function.

Example 17 (Non-homogeneous Dirichlet problem). Let f ∈ C([0, 1]).
Find u ∈ C2(]0, 1[) ∩ C([0, 1]) such that{

−u′′ + u = f in ]0, 1[,

u(0) = a, u(1) = b, a, b ∈ R.
(48)
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Consider
v(x) = u(x)− (a+ (b− a)x).

Then

v′′ = u′′ and −v′′(x)+v(x) = −u′′(x)+u(x)−(a+(b−a)x) = f(x)−(a+(b−a)x)

and
v(0) = a− a = 0, v(1) = b− (a+ (b− a)) = 0,

i. e. v is the solution of{
−v′′ + v = f̃ in ]0, 1[,

v(0) = v(1) = 0,

where f̃(x) = f(x)− (a+ (b− a)x).

Example 18 (Homogeneous Neumann problem). Let f ∈ C([0, 1]).
Find u ∈ C2(]0, 1[) ∩ C1([0, 1]) such that{

−u′′ + u = f in ]0, 1[,

u′(0) = u′(1) = 0.
(49)

a) We introduce the weak problem considering f̃ ∈ L2(]0, 1[) and looking
for w ∈ H1(]0, 1[) such that∫

]0,1[

w′ v′ +

∫
]0,1[

w v =

∫
]0,1[

f̃ v, for all v ∈ H1(]0, 1[). (50)

We remark also in this case that the solutions to (49) are solutions to (50)
if f̃ = f . In fact, if {

−u′′ + u = f in ]0, 1[,

u′(0) = u′(1) = 0,

then
(−u′′ + u− f) v = 0, for all v ∈ H1(]0, 1[),

so that ∫
]0, 1[

−u′′ v +

∫
]0, 1[

u v =

∫
]0, 1[

f v

and

−
∫

]0, 1[

u′′ v = (−(u′v)
∣∣1
0
) +

∫
]0, 1[

u′ v′ = (u′(0)︸ ︷︷ ︸
=0

v(0)− u′(1)︸ ︷︷ ︸
=0

v(1)) +

∫
]0, 1[

u′ v′.

We obtain∫
]0, 1[

u′ v′ +

∫
]0, 1[

u v =

∫
]0, 1[

f v, for all v ∈ H1(]0, 1[).
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b) We show now that, by Lax-Milgram theorem, problem (50) has a unique
solution. We choose as Hilbert space H the space H1(]0, 1[), as bilinear form
a, the form

a(w, v) =

∫
]0,1[

w′ v′ +

∫
]0,1[

w v

and as φ, element of H ′, the functional

φ : H1(]0, 1[)→ R, φ(v) =

∫
]0,1[

f̃ v.

The existence and uniqueness of the solution w ∈ H1(]0, 1[) follows.

c) Let w be the solution of (50) with f̃ = f ∈ C([0, 1]). We have, in particular,∫
]0, 1[

w′ ϕ′ =

∫
]0, 1[

(f − w)ϕ, for all ϕ ∈ D(]0, 1[),

so that (w′)′ = −(f − w) ∈ C([0, 1]) and, consequently, w′ ∈ H1(]0, 1[), w ∈
H2(]0, 1[), and finally (remember du Bois-Reymond theorem or the fundamental
theorem) w ∈ C2(]0, 1[) ∩ C1([0, 1]) with

−w′′ + w = f.

We have, for all ψ ∈ H1(]0, 1[),

0 =

∫
]0, 1[

(−w′′ + w − f)ψ

=

∫
]0, 1[

w′ ψ′ +

∫
]0, 1[

wψ −
∫

]0, 1[

f ψ︸ ︷︷ ︸
= 0 from (50)

−(w′(0)ψ(0)− w′(1)ψ(1))

= w′(1)ψ(1)− w′(0)ψ(0).

choosing ψ in such a way that ψ(1) = 1 and ψ(0) = 0 we obtain that w(0) = 0
and, similarly, choosing ψ in such a way that ψ(0) = 0 and ψ(1) = 1, we deduce
that w(1) = 0.

18.1.2 Maximum principle for the Dirichlet problem

Theorem 62. Let f ∈ L2(]0, 1[). Let u ∈ H2(]0, 1[) be the solution to{
−u′′ + u = f in ]0, 1[,

u(0) = α, u(1) = β, α, β ∈ R.
(51)

Then, for all x ∈ [0, 1],

min{α, β, inf ess f} ≤ u(x) ≤ max{α, β, sup ess f}.

Proof. We have∫
]0,1[

u′ v′ +

∫
]0,1[

u v =

∫
]0,1[

f v, for all v ∈ H1
0 (]0, 1[). (52)
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Let G ∈ C1(R),

G(s) =

{
0 if s ≤ 0,

strictly increasing if s > 0.

Let K = max{α, β, sup ess f} and suppose that K < +∞.
We show that u(x) ≤ K for all x ∈ [0, 1] . Consider

v(x) = G(u(x)−K).

v ∈ H1(]0, 1[) and

v(0) = G(u(0)−K) = G(α−K) = 0,

v(1) = G(u(1)−K) = G(β −K) = 0.

Consequently v ∈ H1
0 (]0, 1[) and we use it inside (52), taking into account that

v′(x) = G′(u(x)−K)u′(x).

We have ∫
]0,1[

u′G′(u−K)u′ +

∫
]0,1[

uG(u−K) =

∫
]0,1[

f G(u−K)

i. e.∫
]0,1[

(u′)2G′(u−K)︸ ︷︷ ︸
≥0

+

∫
]0,1[

(u−K)G(u−K) =

∫
]0,1[

(f −K)G(u−K)︸ ︷︷ ︸
≤0

.

We obtain ∫
]0,1[

(u−K)G(u−K) ≤ 0.

Remarking finally that the function x 7→ xG(x) is nonnegative, we have that

(u(x)−K)G(u(x)−K) = 0 for all x ∈ [0, 1],

and hence u(x) − K ≤ 0 for all x ∈ [0, 1]. The computation to show that
u(x) ≥ min{α, β, inf ess f} is similar.

19

19.1 Sobolev spaces in N space dimensions - 1
The content of this paragraph can be found in [3, Ch. IX].

19.1.1 Generalities

Definition 42. Let Ω be an open set in RN . Let p ∈ [1, +∞]. We define

W 1,p(Ω) = {u ∈ Lp(Ω)
∣∣ ∃g1, . . . , gN ∈ Lp(Ω) :

∀φ ∈ C1
0 (Ω), ∀j = 1, . . . , N,

∫
Ω

u ∂jφ = −
∫

Ω

gj φ}.

W 1,2(Ω) will be denoted by H1(Ω).
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Remark 44. i) In the definition of W 1,p(Ω) it is sufficient that∫
Ω

u ∂jϕ = −
∫

Ω

gj ϕ, for all ϕ ∈ D(Ω).

ii) The functions g1, . . . , gN are unique and, for each j, gj is the (function
associated to the) jth partial derivative of u in the sense of distributions.
We set gj = ∂ju.

iii)
W 1,p(Ω) = {u ∈ Lp(Ω)

∣∣ ∇u ∈ (Lp(Ω))N},

where ∇u is the gradient of u in in the sense of distributions.

Definition 43. We define

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖(Lp(Ω))N = ‖u‖Lp(Ω) +

N∑
j=1

‖∂ju‖Lp(Ω)

and

‖u‖H1(Ω) = (‖u‖2L2(Ω) + ‖∇u‖2(L2(Ω))N )
1
2 = (‖u‖2L2(Ω) +

N∑
j=1

‖∂ju‖2L2(Ω))
1
2 .

Theorem 63. W 1,p(Ω) is a Banach space. If p ∈ [1,+∞[, then W 1,p(Ω) is
a separable Banach space. If p ∈ ]1,+∞[, then W 1,p(Ω) is a reflexive Banach
space. H1(Ω) is an Hilbert space.

Proof. The proof is the same in the case N = 1.

Remark 45. Also in the case of W 1,p(Ω), it will be useful to remember that if
a sequence (un)n is such that un

n−→ u in Lp(Ω) and, for all j, ∂jun
n−→ vj in

Lp(Ω), then u ∈W 1,p(Ω) and, for all j, ∂ju = vj.

19.1.2 Properties of W 1,p(Ω)

We give a first result of density.

Theorem 64 (Friedrichs). Let p ∈ [1, +∞[. Let u ∈W 1,p(Ω).
Then there exists (un)n ∈ D(RN ) such that

i)
un|Ω

n−→ u in Lp(Ω).

ii) for all ω, relatively compact open set in Ω,

∇un|ω
n−→ ∇u|ω in (Lp(ω))N .

In the case of Ω = RN , there exists (un)n ∈ D(RN ) such that

un
n−→ u in W 1,p(RN ).
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Proof (sketch). First of all, we consider the function

u(x) =

{
u(x) if x ∈ Ω,

0 if x ∈ RN \ Ω.

We have u ∈ Lp(RN ). With (ρn)n a family of mollifiers, we define

vn = ρn ∗ u.

Finally we take χ ∈ D(RN ) such that

χ(x) =

{
1 if |x| ≤ 1,

0 if |x| ≥ 2,

and, for all n ≥ 1, χn(x) = χ( 1
nx).

We define
un = χn(ρn ∗ u).

While the proving of un|Ω
n−→ u in Lp(RN ) is standard, a little more complicated

it will be to show that ∇un|ω
n−→ ∇u|ω in (Lp(ω))N , for all open relatively

compact set ω of Ω. For this it will be useful to remember that if f ∈ L1(RN ) and
v ∈W 1,p(RN ), with p ∈ [1, +∞], then f ∗v ∈W 1,p(RN ) and ∂j(f ∗v) = f ∗∂jv.

�

Remark 46. In general, if N > 1, a sequence (wn)n ∈ D(RN ) such that
wn|Ω

n−→ u in W 1,p(Ω) does not exist, differently from what happens for N = 1.
We will se that this depends on the regularity of ∂Ω.

Remark 47. Let Ω be an open set in RN . ConsiderW 1,p(Ω), with p ∈ [1, +∞[.
Let

H = {u ∈ C∞(Ω)
∣∣ u ∈ Lp(Ω) and ∇u ∈ (Lp(Ω))N} = C∞(Ω) ∩W 1,p(Ω).

It is possible to prove (see [12] and [1, Th.3.16]) that H is dense in W 1,p(Ω), i.
e. for all u ∈W 1,p(Ω) there exists (vn)n ∈ C∞(Ω) such that

i) vn
n−→ u in Lp(Ω),

ii) ∇vn
n−→ ∇u in (Lp(Ω))N .

Concerning this theorem, R. A. Adams says “it is surprising that this elementary
result remained undiscovered for so long” [1, p. 45].

We give a result on W 1,p(Ω), for p > 1.

Theorem 65 (Characterization of W 1,p(Ω), for p > 1). Let p ∈ ]1, +∞].
Suppose u ∈ Lp(Ω).

Then the following conditions are equivalent.

i) u ∈W 1,p(Ω).

ii) There exists C > 0 such that, for all ϕ ∈ D(Ω) and for all j = 1, . . . , N ,

|
∫

Ω

u ∂jϕ| ≤ C‖ϕ‖Lp′ , where
1

p
+

1

p′
= 1.
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iii) There exists C > 0 such that, for all ω, relatively compact open set in Ω,
and for all h ∈ RN , such that |h| ≤ dist(ω, ∂Ω),

‖τhu− u‖Lp(ω) ≤ C|h|, where τhu(x) = u(x− h).

Proof. The proof is the same as in the case N = 1, apart from the implication
i) ⇒ iii). Let’s see the details. Suppose first that u ∈ D(RN ), h ∈ RN , and
define

v(t) = u(x− th), t ∈ R.

We have v′(t) = −h · ∇u(x− th) and hence

u(x)− u(x− h) = v(0)− v(1) = −
∫ 1

0

v′(t) dt =

∫ 1

0

h · ∇u(x− th) dt.

As a consequence, using Hölder inequality,

|τhu(x)− u(x)|p ≤ |h|p
∫ 1

0

|∇u(x− th)|p dt,

and∫
ω

|τhu(x)− u(x)|p dx ≤ |h|p
∫
ω

∫ 1

0

|∇u(x− th)|p dt dx

≤ |h|p
∫ 1

0

∫
ω

|∇u(x− th)|p dx dt ≤ |h|p
∫ 1

0

∫
ω+th

|∇u(x)|p dx dt.

Considering now the fact that |h| ≤ dist(ω, ∂Ω), it will exists a relatively com-
pact open set ω′ in Ω such that ω + th ⊆ ω′ for all t ∈ [0, 1], so that

‖τhu− u‖pLp(ω) ≤ |h|
p

∫
ω′
|∇u|p. (53)

Let now u ∈ W 1,p(Ω), with p ∈ [1, +∞[. By Friedrichs’ theorem there exist a
sequence (un)n in D(RN ) such that un|Ω

n−→ u in Lp(Ω) and ∇un|ω′
n−→ ∇u|ω′

in (Lp(ω′))N . But from (53), for all n,

‖τhun − un‖Lp(ω) ≤ |h|(
∫
ω′
|∇un|p)

1
p ,

so that we can pass to the limit with respect to n. It remains to consider that
case p = +∞. Given u ∈W 1,∞(Ω) we have

‖τhu− u‖Lp(ω) ≤ |h|(
∫
ω′
|∇u|p)

1
p ,

for all p ∈ [1, +∞[ and we can pass to the limit with respect to p, obtaining

‖τhu− u‖L∞(ω) ≤ |h| ‖∇u‖L∞(ω′). (54)
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Remark 48. The difference in the proof of Theorem 65 above, with respect to
the Theorem 55, is due to the fact that for u ∈ W 1,p(Ω) with N ≥ 2 there is
no a continuous representative. An example is given by the function u(x, y) =

(x2 + y2)−
1
4 in Ω = {(x, y) ∈ R2

∣∣x2 + y2 < 1}. u ∈ W 1,1(Ω) but there is no
continuous functions defined on Ω which coincides with u almost everywhere.

Remark 49. From (54) it is possible to deduce the following fact. Let u ∈
W 1,∞(Ω). Then for all x0 ∈ Ω there exists rx0

> 0 such that, for almost all
x, y ∈ B(x0, rx0),

|u(x)− u(y)| ≤ ‖∇u‖L∞(Ω) |x− y|.

Remark 50. Let u ∈ L1(Ω) such that there exists C > 0 such that, for all
ϕ ∈ D(Ω) and for all j = 1, . . . , N ,

|
∫
I

u ∂jϕ| ≤ C‖ϕ‖L∞ .

This is equivalent to the fact that there exists C > 0 such that, for all ω relatively
compact open set in Ω and for all h ∈ RN such that |h| ≤ dist(ω, ∂Ω),

‖τhu− u‖L1(ω) ≤ C|h|.

The functions satisfying these properties are called BV (Ω) functions (functions
with bounded variation on Ω). We have

W 1,1(Ω)&BV (Ω).

We list finally three various properties on W 1,p(Ω). The proofs of the theo-
rems can be found in [3, Ch. IX].

Theorem 66 (Derivative of a product). Let p ∈ [1, +∞]. Let u, v ∈W 1,p(Ω)∩
L∞(Ω).

Then uv ∈W 1,p(Ω) ∩ L∞(Ω) and, for all j = 1, . . . , N ,

∂j(uv) = ∂ju v + u ∂jv.

Theorem 67 (Derivative of a composition). Let G ∈ C1(R) with G(0) = 0
and |G′(s)| ≤ M , for some M > 0 and for all s ∈ R. Let p ∈ [1, +∞] and
u ∈W 1,p(Ω).

Then G ◦ u ∈W 1,p(Ω) and, for all j = 1, . . . , N ,

∂j(G ◦ u) = (G′ ◦ u) ∂ju.

Theorem 68 (Change of variables formula). Let Ω and Ω′ open sets in RN and
suppose there exists a bijective function Φ : Ω′ → Ω such that

Φ ∈ C1(Ω′), Φ−1 ∈ C1(Ω), Jac Φ ∈ L∞(Ω′), Jac Φ−1 ∈ L∞(Ω),

where Jac Φ and Jac Φ−1 are the Jacobian matrices of Φ and Φ−1 respectively.
Let u ∈W 1,p(Ω).

Then u ◦ Φ ∈W 1,p(Ω′) and, for all j = 1, . . . , N ,

∂yj (u ◦ Φ)(y) =

N∑
h=1

∂xhu(Φ(y)) ∂yjΦh(y).
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19.1.3 The space Wm,p(Ω)

Definition 44. Let Ω be an open set in RN . Let p ∈ [1,+∞] and m ∈ N\{0, 1}.
We define

Wm,p(Ω) = {u ∈Wm−1,p(Ω)
∣∣ ∇u ∈ (Wm−1,p(Ω))N}

i. e.
Wm,p(Ω) = {u ∈ Lp(I)

∣∣ Dαu ∈ Lp(Ω), for |α| ≤ m},

where derivatives are to be considered in distributional sense. We set

‖u‖Wm,p =
∑
|α|≤m

‖Dαu‖Lp

or, equivalently, in the case of p ∈ [1, +∞[,

‖u‖Wm,p = (
∑
|α|≤m

‖Dαu‖pLp)
1
p .

Remark 51. We set Wm,2(Ω) = Hm(Ω). It is possible to show that

Hm(RN ) = {u ∈ L2(RN )
∣∣ (1 + |ξ|2)

m
2 û(ξ) ∈ L2(RN )}.

19.1.4 Extension operator for u ∈W 1,p(Ω)

As we will see, the possibility of extending a function of W 1,p(Ω) to the whole
RN will depend on the regularity of the border of Ω.

Definition 45. Let

x = (x1, . . . , xN ), x′ = (x1, . . . , xN−1), so that x = (x′, xN ).

Let R, r > 0 and

BR, r(x
′
0, xN 0) = {(x′, xN ) ∈ RN

∣∣ |x′ − x′0| < R, |xN − xN 0| < r}.

BR,r will denote BR, r(0, 0). Let Ω be an open set in RN . Ω is said to be of
class C1 if, for all x0 ∈ ∂Ω, there exists U , open neighborhood of x0 and there
exists Φ : U → BR,r such that

i) Φ is invertible and Φ ∈ C1(U), Φ−1 ∈ C1(BR,r);

ii) Φ(U ∩ ∂Ω) = {x ∈ BR,r
∣∣ xN = 0} and Φ(U ∩ Ω) = {x ∈ BR,r

∣∣ xN < 0}.

Theorem 69. Let p ∈ [1, +∞]. Let Ω be an open set of class C1 in RN .
Suppose that ∂Ω is bounded (or Ω is an half-space).

Then there exists an operator P : W 1,p(Ω)→W 1,p(RN ) such that:

i) for all u ∈W 1,p(Ω),
Pu|Ω = u;

ii) there exists C0 > 0 such that, for all u ∈W 1,p(Ω),

‖Pu‖Lp(RN ) ≤ C0‖u‖LP (Ω);
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iii) there exists C1 > 0 such that, for all u ∈W 1,p(Ω),

‖Pu‖W 1,p(RN ) ≤ C1‖u‖W 1,p(Ω).

Proof (sketch). The first result needed in the proof is the following lemma, the
proof of which can be found in [3, Ch.IX].

Lemma 21. Let p ∈ [1, +∞]. Let u ∈W 1,p(Ω), where

Ω = {x ∈ BR,r
∣∣ xN < 0}.

Let

v(x′, xN ) =

{
u(x′, xN ) if (x′, xN ) ∈ Ω,

u(x′,−xN ) if (x′,−xN ) ∈ Ω,

i. e. v is defined with a reflection with respect to the hyperplane {xN = 0}.
Then v ∈W 1,p(BR,r) and

‖v‖Lp(BR,r) ≤ 2‖u‖Lp(Ω), ‖v‖W 1,p(BR,r) ≤ 2‖u‖W 1,p(Ω).

Secondly, a modification of the usual partition of unity result will be es-
sential. The proof can be obtained suitably fitting out that one of Theorem
32.

Lemma 22. Let K be a compact set in RN . Let U1, . . . , Uk be open sets in RN ,
with K ⊆

⋃k
j=1 Uj.

Then there exist ϕ0 ∈ C∞(RN ) with Suppϕ0 ⊆ RN \ K and, for all j =
1, . . . , k, ϕj ∈ C∞0 (Uj) such that,

k∑
j=0

ϕj(x) = 1, for all x ∈ RN .

If Ω is a bounded open set and K = ∂Ω, then ϕ0|Ω ∈ C∞0 (Ω).

Let us come to the sketch of the proof of the extension theorem. If Ω is an
half-plane, a reflection (Lemma 21) will be sufficient to obtain the conclusion.
Suppose then that Ω is bounded and of class C1. Every point of the border of Ω
will have an open neighborhood U satisfying the requests of Definition 45. It is
possible to consider a finite sub-covering U1, . . . , Uk. We use Lemma 22 and we
construct a partition of unity. Take now the function u ∈W 1,p(Ω) and consider

u =

k∑
j=0

ϕju =

k∑
j=0

uj .

We extend each of the uj to RN . In particular u0 will be extended considering

ū0(x) =

{
u0(x) if x ∈ Ω,

0 if x 6∈ Ω.

To conclude let’s see how to do with u1. We consider the function u on U1 ∩Ω.
Using the function Φ from Definition 45 and the result of Theorem 68, we
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obtain a W 1,p function on the set {x ∈ BR,r
∣∣ xN < 0}. Lemma 21 extends

this function to the whole BR,r and Φ−1 gives a function on W 1,p(U1) which
coincides with u on U1 ∩ Ω. We call it v1. We set

ū1(x) =

{
ϕ1(x)v1(x) if x ∈ U1,

0 if x 6∈ U1.

To conclude the proof it will be sufficient to verify that

Pu =

k∑
j=0

ūj

satisfies all the requested properties. �

Corollary 18. Let p ∈ [1, +∞[. Let Ω be an open bounded set of class C1 in
RN . Let u ∈W 1,p(Ω).

Then there exists a sequence (un)n in D(RN ) such that

un|Ω
n−→ u in W 1,p(Ω),

i. e. the restrictions to Ω of the functions of D(RN ) are dense in W 1,p(Ω).

Proof (sketch). We extend the function u to Pu defined on the whole RN
using Theorem 69. Then the sequence (see Theorem 64)

un = χn(ρn ∗ Pu)

will give the wanted conclusion. �

Remark 52. In Corollary 18, the hypothesis of boundedness for the open set Ω
can be removed.

20

20.1 Sobolev spaces in N space dimensions - 2
The content of this paragraph can be found in [3, Ch. IX].

20.1.1 Sobolev embeddings

Remark 53. From now on we will use the notation

‖∇u‖Lp(RN ) instead of ‖∇u‖(Lp(RN ))N .

Theorem 70 (Sobolev-Gagliardo-Nirenberg). Let p ∈ [1, N [ and let p∗ such
that

1

p∗
=

1

p
− 1

N
i. e. p∗ =

pN

N − p
(note that p∗ > p).

Then
W 1,p(RN ) ⊆ Lp

∗
(RN )

and there exists C > 0 such that, for all u ∈W 1,p(RN ),

‖u‖Lp∗ (RN ) ≤ C‖∇u‖Lp(RN ). (55)
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Remark 54 (important). Let p ∈ [1, N [. Suppose that there exist q ∈ [1, +∞[
and C > 0 such that

W 1,p(Rn) ⊆ Lq(RN ) (56)

and
‖u‖Lq(RN ) ≤ C‖∇u‖Lp(RN ), for all u ∈W 1,p(RN ). (57)

Then necessarily

q =
pN

N − p
.

This result is due to the so called property of “scaling”. In fact, suppose (56) and
(57) are valid and consider u ∈ W 1,p(RN ). Then, taking λ > 0, the inequality
(57) should be true also for the function v(x) = u(λx) with the same value of
C, i. e.

‖u(λ·)‖Lq(RN ) = ‖v‖Lq(RN ) ≤ C‖∇v‖Lp(RN ) = C‖∇(u(λ·))‖Lp(RN ).

We have

‖u(λ·)‖Lq(RN ) = (

∫
RN
|u(λx)|q dx)

1
q = (

∫
RN
|u(y)|qλ−N dy)

1
q︸ ︷︷ ︸

change of variables λx=y

= λ−
N
q ‖u‖Lq(RN ).

On the other hand
∂jv(x) = ∂j(u(λx)) = λ∂ju(x),

so that
∇(u(λ·)) = λ(∇u)(λ·)

and

‖∇(u(λ·))‖Lp(RN ) = (

∫
RN
|λ(∇u)(λx)|p dx)

1
p

= (

∫
RN
|λ(∇u)(y)|p λ−N dy)

1
p = λ1−Np ‖∇u‖Lp(RN ).

Resuming, if (56) and (57) hold, then

λ−
N
q ‖u‖Lq(RN ) ≤ Cλ1−Np ‖∇u‖Lp(RN ), for all u ∈W 1,p(RN ) and for all λ > 0.

Choose now u ∈W 1,p(RN ) ⊆ Lq(RN ) such that ‖u‖Lq(RN ) 6= 0 (for this it would
be sufficient to take u ∈ D(RN ) with u 6= 0). We deduce

λ
N
p −

N
q −1 ≤ C

‖∇u‖Lp(RN )

‖u‖Lq(RN )

, for all λ > 0. (58)

If N
p −

N
q − 1 > 0, then, letting λ → +∞ in (58), we obtain a contradiction.

Similarly, if N
p −

N
q − 1 < 0, we obtain a contradiction letting λ → 0+. As a

consequence, necessarily,

N

p
− N

q
− 1 = 0, i. e.

1

q
=

1

p
− 1

N
.
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Lemma 23. Let N ≥ 2 and let f1, . . . , fN ∈ LN−1(RN−1). Denote

x̃i = (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ RN−1

and define
f(x) = f(x1, . . . , xN ) = f1(x̃1)f2(x̃2) . . . fN (x̃N ).

Then

f ∈ L1(RN ) and ‖f‖L1(RN ) ≤
N∏
i=1

‖fi‖LN−1(RN−1).

Proof. The case of N = 2 is the simplest. In fact, by hypothesis, we have
f1, f2 ∈ L1(R) and f(x1, x2) = f1(x2)f2(x1). Consequently f ∈ L1(R2) and

‖f‖L1(R2) =

∫
R2

|f1(x2)f(x1)| dx1dx2

=

∫
R
|f1(x2)| dx2

∫
R
|f2(x1)| dx1 = ‖f1‖L1(R)‖f2‖L1(R).

Consider N = 3. Then f1, f2, f3 ∈ L2(R2) and

f(x1, x2, x3) = f1(x2, x3)f2(x1, x3)f3(x1, x2).

The function
(x2, x3) 7→ f2

1 (x2, x3)

is in L1(R2), so that, for almost every x3 ∈ R and x1 ∈ R respectively, the
functions

x2 7→ f2
1 (x2, x3) and x2 7→ f2

3 (x1, x2)

are in L1(R). Hence for almost every x3 ∈ R and x1 ∈ R respectively, the
functions

x2 7→ f1(x2, x3) and x2 7→ f3(x1, x2)

are in in L2(R). Consequently, for almost every (x1, x3) ∈ R2, the function

x2 7→ f1(x2, x3)f3(x1, x2)

is in L1(R) and, from Cauchy-Schwarz,∫
R
|f1(x2, x3)f3(x1, x2)| dx2 ≤ (

∫
R
|f1(x2, x3)|2 dx2)

1
2 (

∫
R
|f3(x1, x2)|2 dx2)

1
2 .

(59)
Now the functions

x3 7→
∫
R
|f1(x2, x3)|2 dx2 and x1 7→

∫
R
|f3(x1, x2)|2 dx2

are both L1(R) and then

(x1, x3) 7→ (

∫
R
|f1(x2, x3)|2 dx2)

1
2 (

∫
R
|f3(x1, x2)|2 dx2)

1
2
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is in L2(R2). Hence, from (59), we have that the function

(x1, x3) 7→
∫
R
|f1(x2, x3)f3(x1, x2)| dx2

is in L2(R2) and∫
R2

|
∫
R
|f1(x2, x3)f3(x1, x2)| dx2|2 dx1dx3

≤
∫
R2

(

∫
R
|f1(x2, x3)|2 dx2

∫
R
|f3(x1, x2)|2 dx2) dx1dx3

=

∫
R
(

∫
R
|f1(x2, x3)|2 dx2) dx3 ·

∫
R

(

∫
R
|f3(x1, x2)|2 dx2) dx1

= ‖f1‖2L2(R2)) ‖f1‖2L2(R2)).

In conclusion the function

(x1, x3) 7→
∫
R
|f1(x2, x3)f3(x1, x2)| dx2

is in L2(R2) with norm ≤ ‖f1‖L2(R2) ‖f3‖L2(R2). We obtain that the function

x1, x3 7→ f2(x1, x3) ·
∫
R
|f1(x2, x3)f3(x1, x2)| dx2

is in L1(R2) and, again from Cauchy-Schwarz, we deduce∫
R3

|f2(x1, x3)f1(x2, x3)f3(x1, x2)| dx1dx2dx3

=

∫
R2

|f2(x1, x3)|(
∫
R
|f1(x2, x3)f3(x1, x2)| dx2) dx1dx3

≤ ‖f2‖L2(R2)‖f1‖L2(R2) ‖f3‖L2(R2).

The case N ≥ 4 is obtained with an intricate procedure of recursion on N . The
details can be found in [3, Ch. IX, Lemma IX.4].

Proof of Theorem 70. Let u ∈ C1
0 (RN ). We have, for all j = 1, 2, . . . , N ,

|u(x)| = |
∫ xj

−∞
∂ju(x1, . . . , xj−1, t, xj+1, . . . , xN ) dt| ≤

∫ +∞

−∞
|∂ju(x1, . . . , t, . . . , xN )| dt.

We set, for all j = 1, 2, . . . , N ,

gj(x̃j) =

∫ +∞

−∞
|∂ju(x1, . . . , t, . . . , xN )| dt

and consequently

|u(x)|N ≤
N∏
j=1

gj(x̃j).
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Defining
fj(x̃j) = (gj(x̃j))

1
N−1 ,

we have fj ∈ LN−1(RN−1) with

‖fj‖LN−1(RN−1) = (

∫
RN−1

|gj(x̃j)| dx̃j)
1

N−1 = ‖∂ju‖
1

N−1

L1(RN )
≤ ‖∇u‖

1
N−1

L1(RN )

and

|u(x)|
N
N−1 ≤

N∏
j=1

fj(x̃j).

We apply Lemma 23 and we obtain

‖u‖
N
N−1

L
N
N−1 (RN )

= ‖|u|
N
N−1 ‖L1(RN ) ≤

N∏
j=1

‖fj‖LN−1(RN−1) ≤
N∏
j=1

‖∇u‖
1

N−1

L1(RN )
.

In conclusion, we have proved that if u ∈ C1
0 (RN ) then

‖u‖
L

N
N−1 (RN )

≤ ‖∇u‖L1(RN ). (60)

Remark that (60) is actually (55) in the case p = 1. Suppose p > 1. Now, for
t ≥ 1, we apply (60) to the function v(x) = |u(x)|t−1u(x). Remarking that

∂jv(x) = t|u(x)|t−1∂ju(x)

we obtain

‖u‖t
L

tN
N−1 (RN )

= ‖v‖
L

N
N−1 (RN )

≤ ‖∇v‖L1(RN ) = t‖|u|t−1∇u‖L1(RN ).

Since u ∈ C1
0 (Rn), we infer

|u|t−1 ∈ Lp
′
(RN ) and ∇u ∈ Lp(RN ) with

1

p
+

1

p′
= 1.

Using Hölder inequality we have

‖|u|t−1∇u‖L1(RN ) ≤ ‖|u|t−1‖Lp′ (RN ) ‖∇u‖Lp(RN ) = ‖u‖t−1
Lp′(t−1)(RN )

‖∇u‖Lp(RN ).

Putting all together we finally obtain

‖u‖t
L

tN
N−1 (RN )

≤ t‖u‖t−1
Lp′(t−1)(RN )

‖∇u‖Lp(RN ). (61)

The trick is to choose t ≥ 1 is such a way that

tN

N − 1
= p′(t− 1) i. e. t =

p

N − p
(N − 1). (62)

With this choice, (61) becomes

‖u‖Lp∗ (RN ) ≤
p(N − 1)

N − p︸ ︷︷ ︸
=CN,p

‖∇u‖Lp(RN ) with
1

p∗
=

1

p
− 1

N
.
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Suppose now u ∈ W 1,p(RN ). From Friedrichs theorem we know that there
exists a sequence (un)n in D(RN ) such that un

n−→ u in W 1,p(RN ). It is not
restrictive to suppose that un

n−→ u a. e.. This sequence is a Cauchy sequence
in W 1,p(RN ) so that, from (55), it is a Cauchy sequence in Lp

∗
(RN ) and it

converges a. e. to u. Consequently u ∈ Lp∗(RN ) and we can pass to the limit
in (55). The proof is complete.

�

Corollary 19. Let Ω be an open set of class C1 in RN . Suppose that ∂Ω is
bounded (or Ω is an half-space). Let p and let p∗ as in Theorem 70.

Then
W 1,p(Ω) ⊆ Lp

∗
(Ω)

and there exists C > 0 such that, for all u ∈W 1,p(Ω),

‖u‖Lp∗ (Ω) ≤ C‖u‖W 1,p(Ω).

Proof. Use the extension theorem (Theorem 69) and Theorem 70. In particular

‖u‖Lp∗ (Ω) ≤ ‖Pu‖Lp∗ (RN ) ≤ C‖Pu‖W 1,p(RN ) ≤ C ′‖u‖W 1,p(Ω).

Corollary 20 (case p = N). For all q ∈ [N,+∞[,

W 1,N (RN ) ⊆ Lq(RN )

and there exists Cq > 0 such that, for all u ∈W 1,N (RN ),

‖u‖Lq(RN ) ≤ Cq‖u‖W 1,N (RN ).

Proof. Let u ∈ C1
0 (Rn). We know that (remember that, in the proof of Theorem

70, up to the point (61), we did not use the fact that p < N ; this condition was
only used in determining the correct t in (62))

‖u‖t
L

tN
N−1 (RN )

≤ t‖u‖t−1
Lp′(t−1)(RN )

‖∇u‖Lp(RN ),

and this is valid also in the case p = N , so that

‖u‖t
L

tN
N−1 (RN )

≤ t‖u‖t−1

L
(t−1) N

N−1 (RN )
‖∇u‖LN (RN ),

for all t ≥ 1. We deduce

‖u‖
L

tN
N−1 (RN )

≤ Ct‖u‖
1− 1

t

L
(t−1) N

N−1 (RN )
‖∇u‖

1
t

LN (RN )
,

and finally, from Young inequality,

‖u‖
L

tN
N−1 (RN )

≤ Ct(‖u‖
L

(t−1) N
N−1 (RN )

+ ‖∇u‖LN (RN )). (63)

Choosing t = N in (63) we have

‖u‖
L
N2
N−1 (RN )

≤ CN (‖u‖LN (RN ) + ‖∇u‖LN (RN ))
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and, by interpolation, we infer that

‖u‖Lq(RN ) ≤ CN,q‖u‖W 1,N (RN ) (64)

for all q ∈ [N, N2

N−1 ] = [N,N + N
N−1 ]. Choosing t = N + 1 in (63) we have

‖u‖
L
N2+N
N−1 (RN )

≤ CN+1(‖u‖
L
N2
N−1 (RN )

+ ‖∇u‖LN (RN ))

and, from (64),

‖u‖
L
N2+N
N−1 (RN )

≤ C̃N+1(‖u‖LN (RN ) + ‖∇u‖LN (RN )).

Finally
‖u‖Lq(RN ) ≤ CN,q‖u‖W 1,N (RN )

for all q ∈ [N + N
N−1 , N + 2N

N−1 ]. Iterating this procedure we obtain that

‖u‖Lq(RN ) ≤ CN,q‖u‖W 1,N (RN )

for all u ∈ C1
0 (RN ) and for all q ∈ [N,+∞[. An approximation procedure like

in Theorem 70 gives the conclusion.

Corollary 21. Let Ω be an open set of class C1 in RN . Suppose that ∂Ω is
bounded (or Ω is an half-space). For all q ∈ [N,+∞[,

W 1,N (Ω) ⊆ Lq(Ω)

and there exists Cq > 0 such that, for all u ∈W 1,N (Ω),

‖u‖Lq(Ω) ≤ Cq‖u‖W 1,N (Ω).

Proof. Use the extension theorem (69) and Corollary 20.

21

21.1 Sobolev spaces in N space dimensions - 3
The content of this paragraph can be found in [3, Ch. IX].

21.1.1 Morrey theorem

Theorem 71 (Morrey). Let p ∈ ]N, +∞].
Then

W 1,p(RN ) ⊆ L∞(RN )

and there exists C > 0 such that, for all u ∈W 1,p(RN ),

‖u‖L∞(RN ) ≤ C‖u‖W 1,p(RN ). (65)

Moreover there exists C ′ > 0 such that, for all u ∈W 1,p(RN ),

|u(x)− u(y)| ≤ C ′ ‖∇u‖Lp(RN ) |x− y|α for almost every x, y ∈ RN , (66)

where α = 1− N
p .
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Proof. In the case p = +∞, (65) is immediate and (66) has been proved in
Remark 49. Let p ∈ ]N, +∞[. Let u ∈ C1

0 (RN ). Let Q be a cube in RN , con-
taining 0 and such that the sides, of length r > 0, are parallel to the coordinate
axes. Let x ∈ Q. We have

u(x)− u(0) =

∫ 1

0

v′(t) dt, where v(t) = u(tx).

Consequently

|u(x)− u(0)| ≤
∫ 1

0

|v′(t)| dt ≤
∫ 1

0

N∑
j=1

|xj | |∂ju(tx)| dt ≤ r
N∑
j=1

∫ 1

0

|∂ju(tx)| dt.

(67)
Defining

ū =
1

|Q|

∫
Q

u(x) dx =
1

rN

∫
Q

u(x) dx,

we have

|ū− u(0)| = | 1

rN

∫
Q

u(x) dx− u(0)|

= | 1

rN

∫
Q

(u(x)− u(0)) dx| ≤ 1

rN

∫
Q

|u(x)− u(0)| dx,

so that, from (67),

|ū− u(0)| ≤ 1

rN−1

N∑
j=1

∫
Q

(

∫ 1

0

|∂ju(tx)| dt) dx

≤ 1

rN−1

∫ 1

0

(

N∑
j=1

∫
Q

|∂ju(tx)| dx) dt

≤ 1

rN−1

∫ 1

0

t−N (

N∑
j=1

∫
tQ

|∂ju(y)| dy) dt.

Considering the fact that, for all t ∈ [0, 1], tQ ⊆ Q, from Hölder inequality we
have∫

tQ

|∂ju(y)| dy ≤ |(t r)N |
1
p′ (

∫
tQ

|∂ju(y)|p dy)
1
p ≤ r

N
p′ t

N
p′ (

∫
Q

|∂ju(y)|p dy)
1
p .

Putting together we obtain

|ū− u(0)| ≤ 1

rN−1
‖∇u‖Lp(Q) r

N
p′

∫ 1

0

t−N t
N
p′ dt

≤ r
1+N

p′−N‖∇u‖Lp(Q)

∫ 1

0

t
N
p′−N dt =

r1−Np

1− N
p

‖∇u‖Lp(Q).
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This last inequality remains valid, by translation, for all cube Q with length
side r, so that we have, for all for all cube Q with sides of length r,

|ū− u(x)| ≤ r1−Np

1− N
p

‖∇u‖Lp(Q), for all x ∈ Q. (68)

Consequently, for all x, y ∈ Q,

|u(x)− u(y)| ≤ |ū− u(x)|+ |ū− u(y)| ≤ 2
r1−Np

1− N
p

‖∇u‖Lp(Q).

Since for every couple of points x, y ∈ RN we can construct a cube of length
side r = 2|x − y| (with the sides parallel to the coordinate axes) containing x
and y, we have, for all x, y ∈ RN ,

|u(x)− u(y)| ≤ 2
(2|x− y|)1−Np

1− N
p

‖∇u‖Lp(Q) ≤ C ′|x− y|1−
N
p ‖∇u‖Lp(RN )

and (66) is proved for u ∈ C1
0 (RN ). To obtain (66) for u ∈ W 1,p(RN ) we

use Friedrichs theorem as done in the proof of Sobolev-Gagliardo-Nirenberg
theorem.

It remains to prove (65) in the case p ∈ ]N, +∞[. Let u ∈ C1
0 (RN ), let Q be

a cube of side of length 1 and let x ∈ Q. From (68) we have

|u(x)| ≤ |ū|+ |ū−u(x)| ≤ |ū|+C‖∇u‖Lp(Q) ≤ C ′‖u‖W 1,p(Q) ≤ C ′‖u‖W 1,p(RN ),

where C and C ′ depend only on p and N . Hence there exists C > 0 such that

‖u‖L∞(RN ) ≤ C‖u‖W 1,p(RN ), for all u ∈ C1
0 (RN ).

This last inequality can be proved for all u ∈W 1,p(RN ) with the usual applica-
tion of Friedrichs theorem.

Remark 55. The condition (66) says that, if p > N , u ∈ W 1,p(RN ) has an
Hölder-continuous representative, i. e. we will write

W 1,p(RN ) ⊆ C 0,α(RN ),

where α = 1− N
p .

Corollary 22. Let p ∈ ]N, +∞[. Let u ∈W 1,p(RN ).
Then

lim
|x|→+∞

u(x) = 0.

Proof. Exercise.

Corollary 23. Let Ω be an open set of class C1 in RN . Suppose that ∂Ω is
bounded (or Ω is an half-space). Let p ∈ ]N, +∞].

Then
W 1,p(Ω) ⊆ L∞(Ω)

and there exists C > 0 such that, for all u ∈W 1,p(Ω),

‖u‖L∞(Ω) ≤ C‖u‖W 1,p(Ω).

Proof. Exercise.
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21.1.2 Rellich theorem

Theorem 72 (Rellich). Let Ω be an open bounded set of class C1 in RN .

i) If p ∈ [1, N [, then W 1,p(Ω) ⊆ Lq(Ω), for all q ∈ [1, p∗[, with 1
p∗ = 1

p −
1
N .

ii) If p = N , then W 1,p(Ω) ⊆ Lq(Ω), for all q ∈ [1, +∞[.

iii) If p ∈ ]N, +∞], then W 1,p(Ω) ⊆ C(Ω).

All the above embeddings are continuous and compact.

Proof (sketch). Sobolev-Gagliardo-Nirenberg theorem, Morrey theorem and
corollaries, give the continuity of the embedding

W 1,p(Ω)→ Lq(Ω)

in the the cases p < N and q = p∗, p = N and q ∈ [p,+∞[ and p > N , q = +∞
respectively. Since Ω is bounded, remarking that, for all 1 ≤ r < q

Lq(Ω) ⊆ Lr(Ω) and ‖u‖Lr(Ω) ≤ |Ω|
1
r−

1
q ‖u‖Lq(Ω) for all u ∈ Lq(Ω),

we have the continuity in all the cases quoted in points i), ii) and iii). Conse-
quently only the compactness is of interest (remark also that, in any case, every
compact operator is continuous).

The point iii) is the same as in the case of N = 1 and it is a consequence of
(65), (66) and Ascoli-Arzelà theorem.

The point ii) is a consequence of the point i), since, for Ω open bounded, a
bounded set in W 1,p(Ω) is bounded also in W 1,r(Ω), for all r ∈ [1, p[.

The point i) will be proved using Riesz-Fréchet-Kolmogorov theorem (see
[3, Cor. IV.26]). We recall that a set B is relatively compact in Lq(Ω) if the
following two conditions hold.

a) For all ε > 0 and for all relatively compact set ω in Ω, there exists δ <
dist (ω, ∂Ω) such that,

‖τhu− u‖Lq(ω) ≤ ε, for all h ∈ R, with |h| < δ, and for all u ∈ B.

b) For all ε > 0 there exists a relatively compact set ω in Ω such that

‖u‖Lq(Ω\ω) < ε, and for all u ∈ B,

Let q ∈ [1, p∗[ and α ∈ ]0, 1] such that

1

q
=
α

1
+

1− α
p∗

.

Let ω be an open relatively compact set in Ω and |h| < dist (ω, ∂Ω). From
interpolation inequality we have

‖τhu− u‖Lq(ω) ≤ ‖τhu− u‖αL1(ω) ‖τhu− u‖
1−α
Lp∗ (ω)

.

From point iii) of Theorem 65,

‖τhu− u‖L1(ω) ≤ |h| ‖∇u‖L1(Ω),
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so that

‖τhu− u‖Lq(ω) ≤ (|h| ‖∇u‖L1(Ω))
α (2‖u‖Lp∗ (ω))

1−α ≤ C |h|α

and finally ‖τhu − u‖Lq(ω) < ε for |h| sufficiently small, for all u in a bounded
set of W 1,p(Ω). Similarly, it is possible to choose ω open relatively compact set
in Ω such that

‖u‖Lq(Ω\ω) ≤ ‖u‖Lp∗ (Ω\ω)|Ω \ ω|
1− q

p∗︸ ︷︷ ︸
Hölder

≤ C|Ω \ ω|1−
q
p∗ < ε.

�

21.1.3 Sobolev embeddings for Wm,p spaces

Example 19. Let u ∈W 2,p(RN ), with p ∈ [1, N [. We know that

u ∈W 1,p(RN ) and ∇u ∈W 1,p(RN ),

so that, by Sobolev embedding,

u ∈ Lp
∗
(RN ) and ∇u ∈ Lp

∗
(RN ), with

1

p∗
=

1

p
− 1

N
.

In conclusion, if p ∈ [1, N [,

W 2,p(RN ) ⊆W 1,p∗(RN ), with
1

p∗
=

1

p
− 1

N
.

Example 20. Let u ∈W 2,p(RN ), with p ∈ ]N2 , N [. We know that

u ∈W 1,p∗(RN ), with
1

p∗
=

1

p
− 1

N
.

We have

N

2
< p < N i. e.

1

N
<

1

p
<

2

N
so that

1

p∗
=

1

p
− 1

N
<

1

N
i. e. p∗ > N.

In conclusion, if p ∈ ]N2 , N [,

W 2,p(RN ) ⊆ L∞(RN ).

Example 21. Let u ∈W 2,N2 (RN ). We know that

u ∈W 1,p∗(RN ), with
1

p∗
=

2

N
− 1

N
=

1

N
,

so that u ∈W 1,N (RN ). In conclusion

W 2,N2 (RN ) ⊆ Lq(RN ) for all q ∈ [
N

2
,+∞[.
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Example 22. Let u ∈W 2,p(RN ), with p ∈ [1, N2 [. We know that

u ∈W 1,p∗(RN ), with
1

p∗
=

1

p
− 1

N
.

We have

p <
N

2
i. e.

2

N
<

1

p
so that

1

p∗
=

1

p
− 1

N
>

1

N
i. e. p∗ < N.

In conclusion, if p ∈ [1, N2 [,

W 2,p(RN ) ⊆ Lp
∗∗

(RN ), with
1

p∗∗
=

1

p∗
− 1

N
=

1

p
− 2

N
.

Theorem 73. Let m ∈ N \ {0, 1}. Let p ∈ [1, +∞].

i) If p < N
m , then Wm,p(RN ) ⊆ Lp∗∗(RN ), with 1

p∗∗ = 1
p −

m
N .

ii) If p = N
m , then Wm,p(RN ) ⊆ Lq(RN ), for all q ∈ [Nm ,+∞[.

iii) If p > N
m , then Wm,p(RN ) ⊆ L∞(RN ).

All the above embeddings are continuous. Moreover if m − N
p > 0 (i.e. in the

case iii)) and m− N
p is not an integer, denoting by

k = integer part of m− N

p
, θ = fractional part of m− N

p
,

we have
Wm,p(RN ) ⊆ Ck(RN ),

and there exists C > 0 such that∑
|α|≤k

‖Dαu‖L∞(RN ) ≤ C‖u‖Wm,p(RN )

and
|Dαu(x)−Dαu(y)| ≤ C‖u‖Wm,p(RN ) |x− y|θ

for a. e. x, y ∈ RN and for all α with |α| = k (we will say that u ∈ Ck,θ(RN )).

Proof. Exercise.

Corollary 24. Let Ω be an open set of class C1 in RN . Suppose that ∂Ω is
bounded (or Ω is an half-space). Let m ∈ N \ {0, 1}. Let p ∈ [1, +∞[.

i) If p < N
m , then Wm,p(Ω) ⊆ Lp∗∗(Ω), with 1

p∗∗ = 1
p −

m
N .

ii) If p = N
m , then Wm,p(Ω) ⊆ Lq(Ω), for all q ∈ [Nm ,+∞[.

iii) If p > N
m , then Wm,p(Ω) ⊆ L∞(Ω).
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All the above embeddings are continuous. Moreover, in the case iii), i. e. if
m− N

p > 0 and m− N
p is not an integer, denoting by

k = integer part of m− N

p
, θ = fractional part of m− N

p
,

we have
Wm,p(Ω) ⊆ Ck(Ω),

and there exists C > 0 such that∑
|α|≤k

‖Dαu‖L∞(RN ) ≤ C‖u‖Wm,p(Ω)

and
|Dαu(x)−Dαu(y)| ≤ C‖u‖Wm,p(Ω) |x− y|θ

for a. e. x, y ∈ RN and for all α with |α| = k. i. e. u ∈ Ck,θ(Ω).

22

22.1 Sobolev spaces in N space dimensions - 4
The content of this paragraph can be found in [3, Ch. IX].

22.1.1 The space W 1,p
0 (Ω)

Definition 46. Let p ∈ [1, +∞[. Let Ω be an open bounded set in RN . We
denote by W 1,p

0 (Ω) the closure of C1
0 (Ω) (or equivalently C∞0 (Ω)) in W 1,p(Ω).

We set
W 1,2

0 (Ω) = H1
0 (Ω).

Remark 56. Let p ∈ [1, +∞[. We have definedW 1,p
0 (I) andW 1,p

0 (Ω) for I ⊆ R
and Ω ⊆ RN open bounded set, in particular I is an open bounded interval.
Suppose to define W 1,p

0 (I) and W 1,p
0 (Ω) for I and Ω open sets different from R

and RN respectively. In such a case we know that

W 1,p
0 (I)&W 1,p(I).

In fact, for all u ∈ W 1,p
0 (I), u is continuous on I and u|∂I = 0. On the

contrary, for Ω open set in RN , N ≥ 2, it is not the case, in general. E. g.
consider Ω = R2 \ {0},

W 1,p
0 (Ω) = W 1,p(Ω)

for p ∈ [1, 2[. The proof is let as an exercise.

It is possible to prove the following result (details can be found in [3, Ch.
IX]).

Theorem 74. Let p ∈ [1, +∞[. Let Ω be an open bounded set in RN . Let Ω be
of class C1. Let

u ∈W 1,p(Ω) ∩ C(Ω).

Then
u ∈W 1,p

0 (Ω) if and only if u|∂Ω = 0.
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Remark 57. We remark that, given u ∈W 1,p(Ω) ∩ C(Ω),

if u|∂Ω = 0 then u ∈W 1,p
0 (Ω),

without any hypothesis in the regularity of ∂Ω. In fact consider a function
G ∈ C1(R) such that,

G(s) =

{
s if |s| ≥ 2,

0 if |s| ≤ 1,

and, for all s ∈ R, |G(s)| ≤ |s|. take

un(x) =
1

n
G(nu(x)).

From Theorem 67 we deduce that un ∈ W 1,p(Ω). Moreover un ∈ C(Ω̄) and
un(x) = 0 if |u(x)| < 1

n , hence Suppun is a compact set contained in Ω. It is
possible, using the usual technique of approximation by convolution with a family
of mollifiers, to show that un ∈ W 1,p

0 (Ω). It remains to prove that un
n−→ u in

W 1,p(Ω).

Here a characterization of W 1,p
0 (Ω), for p > 1.

Theorem 75 (Characterization of W 1,p
0 (Ω), for p > 1). Let p ∈ ]1, +∞[. Let

Ω be an open bounded set in RN . Let Ω be of class C1. Suppose u ∈ Lp(Ω).
Then the following conditions are equivalent.

i) u ∈W 1,p
0 (Ω).

ii) There exists C > 0 such that, for all ϕ ∈ D(RN ) and for all j = 1, . . . , N ,

|
∫

Ω

u ∂jϕ| ≤ C‖ϕ‖Lp′ , where
1

p
+

1

p′
= 1.

iii) The function

ū(x) =

{
u(x) if x ∈ Ω,

0 if x 6∈ Ω,

is in W 1,p(RN ).

Proof. Let i). Let (un)n be a sequence in D(Ω) such that un
n−→ u in W 1,p(Ω).

Then, for all ϕ ∈ D(RN ) and for all j = 1, . . . , N ,

|
∫

Ω

un ∂jϕ| = |
∫

Ω

∂jun ϕ| ≤ ‖∇un‖Lp‖ϕ‖Lp′ .

Passing to the limit in n, we obtain ii).
Let ii). We have

|
∫
RN

ū ∂jϕ| = |
∫

Ω

u ∂jϕ| ≤ C‖ϕ‖Lp′ , for all ϕ ∈ D(RN ).

Applying Theorem 65 we obtain that ū ∈W 1,p(RN ), i. e. iii).
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Let finally iii). Using a local change of variables and the partition of unity
the point i) is obtained proving the following statement: let u ∈ Lp({x ∈
BR,r

∣∣∣xN < 0}) and suppose that the function

ū(x) =

{
u(x) if x ∈ BR,r and xN < 0,

0 if x ∈ BR,r and xN ≥ 0,

is in W 1,p(BR,r). Then

ψu ∈W 1,p
0 ({x ∈ BR,r

∣∣xN < 0}) for all ψ ∈ D(BR,r).

It would be sufficient to take a family of mollifier (ρn)n such that

Supp ρn ⊆ {x ∈ RN
∣∣ 1

2n
< xn <

1

n
}

and to consider vn = ρn∗(ψū) for obtaining, for n sufficiently big, vn ∈ C∞0 ({x ∈
BR,r

∣∣xN < 0}) and vn
n−→ ψu in W 1,p({x ∈ BR,r

∣∣xN < 0}).

Remark 58. In the previous proof the implications i) ⇒ ii) ⇒ iii) are true
without any assumption on the regularity of ∂Ω. We remark also that it is
possible to prove directly that u ∈ W 1,p

0 (Ω) implies that the function ū is in
W 1,p(RN ), for all p ∈ [1,+∞[, using Remark 45.

We end this subparagraph showing the Poincaré inequality.

Theorem 76 (Poincaré inequality). Let p ∈ [1, +∞[. Let Ω be an open bounded
set in RN .

Then there exists C > 0 (depending on N , p and Ω) such that

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω), for all u ∈W 1,p
0 (Ω),

i. e. ‖∇u‖Lp(Ω) is an equivalent norm in W 1,p
0 (Ω).

Proof. Let u ∈W 1,p
0 (Ω). As said in Remark 58,

ū(x) =

{
u(x) if x ∈ Ω,

0 if x 6∈ Ω,

is in W 1,p(RN ) without any condition on the boundary of Ω.
Consequently, if p ∈ [1, N [, from Sobolev-Gagliardo-Nirenberg theorem,

‖ū‖Lp∗ (RN ) ≤ CN,p‖∇ū‖Lp(RN ).

But, on one side, being Ω bounded,

‖u‖Lp(Ω) ≤ |Ω|
1
p−

1
p∗ ‖u‖Lp∗ (Ω) = |Ω|

1
p−

1
p∗ ‖ū‖Lp∗ (RN ).

On the other side
‖∇ū‖Lp(RN ) = ‖∇u‖Lp(Ω).

Hence
‖u‖Lp(Ω) ≤ CN,p |Ω|

1
p−

1
p∗︸ ︷︷ ︸

=C(N, p, |Ω|)

‖∇u‖Lp(Ω).
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If, on the contrary, p ∈ [N,+∞[, let q = Np
N+p . Remark that, since we can

suppose N ≥ 2, q ∈ [1, N [. We have q < p, so that ū ∈ Lq(RN ) and ∇ū ∈
Lq(RN ). Moreover

1

q∗
=

1

q
− 1

N
=

1

p
.

Consequently, again from Sobolev-Gagliardo-Nirenberg theorem,

‖ū‖Lp(RN ) = ‖ū‖Lq∗ (RN ) ≤ CN,q‖∇ū‖Lq(RN ).

But
‖∇ū‖Lq(RN ) = ‖∇u‖Lq(Ω) ≤ |Ω|

1
q−

1
p ‖∇u‖Lp(Ω),

and the conclusion follows also in this case.

22.1.2 Examples of boundary value problems

Example 23 (Homogeneous Dirichlet problem). Let Ω be a bounded open set
in RN , of class C1. Let f ∈ C(Ω).

Find u ∈ C(Ω) ∩ C2(Ω) such that{
−∆u+ u = f in Ω,

u = 0 in ∂Ω.
(69)

As in the case of N = 1, the strategy for solving it will be the following.

a) Introduce a modified (weak) problem. The correct setting of this modified
problem will be crucial.

b) Solve the weak problem, using some suitable functional analysis results.

c) Check that the solution of the weak problem, with the conditions of the
classical problem, is enough regular to be the solution of the classical
problem.

We remark that the most difficult point will be the point c).
a) Let f̃ ∈ L2(Ω).

Find w ∈ H1
0 (Ω) such that∫

Ω

∇w · ∇v +

∫
Ω

w v =

∫
Ω

f̃ v, for all v ∈ H1
0 (Ω). (70)

Problem (70) is the weak homogeneous Dirichlet problem.

Remark 59. If u is a solution of the classical problem, then u is a solution of
the weak one, if f̃ = f . In fact, suppose that u ∈ C(Ω) ∩C2(Ω) is a solution to
the classical problem, then, multiplying the first line of (69) by v and integrating
on Ω, ∫

Ω

(−∆u+ u) v =

∫
Ω

f v, for all v ∈ H1
0 (Ω).

and, integrating by parts,∫
Ω

∇u · ∇v +

∫
Ω

u v =

∫
]0,1[

f v, for all v ∈ H1
0 (Ω).

Finally, since u = 0 on ∂Ω, we have that u ∈ H1
0 (Ω).
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b) Let’s solve problem (70). We use Lax-Milgram theorem (see [3, Cor. V.8]).
We choose as Hilbert space H the space H1

0 (Ω), as bilinear form a, the form

a(w, v) =

∫
Ω

∇w · ∇v +

∫
Ω

w v

and as φ, element of H ′, the functional

φ : H1
0 (Ω)→ R, φ(v) =

∫
Ω

f̃ v.

The existence and uniqueness of the solution w ∈ H1
0 (Ω) follows.

c) To show that weak solutions to (70) are in fact regular (continuous, with con-
tinuous first and second derivatives) is a complicate matter, which presuppose
also a certain regularity of the border of Ω. Details can be found in [3, Ch. IX,
Par. 6]. Here we suppose, a priori, that w, solution of the weak problem, is in
C(Ω)∩C2(Ω). From Theorem 74 we have w|∂Ω = 0 and moreover, since w is in
C2(Ω),∫

Ω

∇w · ∇ϕ+

∫
Ω

wϕ =

∫
Ω

(−∆w + w)ϕ =

∫
Ω

fϕ, for all ϕ ∈ D(Ω).

As a consequence −∆w+w− f = 0 almost eveywhere in Ω, but, since −∆w+
w − f is a continuous function in Ω, −∆w + w = f everywhere in Ω.

Example 24 (Non-homogeneous Dirichlet problem). Let Ω be a bounded open
set in RN , of class C1. Let f ∈ C(Ω). Let g ∈ C(∂Ω).

Find u ∈ C(Ω) ∩ C2(Ω) such that{
−∆u+ u = f in Ω,

u = g in ∂Ω.
(71)

It is possible to prove that there exists a function g̃ ∈ H1(Ω) ∩ C(Ω) such
that g = g̃ on ∂Ω. Introducing the set

K = {v ∈ H1(Ω)
∣∣ v − g̃ ∈ H1

0 (Ω)},

from Theorem 74, K does not depend on g̃ but only on g. The weak non-
homogeneous Dirichlet problem associated to (71) is the following: find w ∈ K
such that ∫

Ω

∇w · ∇v +

∫
Ω

w v =

∫
Ω

f v, for all v ∈ H1(Ω). (72)

By Stampacchia’s theorem (see [3, Th. V.6]), (72) has a unique solution. It is
possible to prove that, under particular regularity conditions on ∂Ω, the solution
of (72) has a sufficient regularity and it is the solution to (71).

Example 25 (Homogeneous Neumann problem). Let Ω be a bounded open set
in RN , of class C1. Let f ∈ C(Ω).

Find u ∈ C1(Ω) ∩ C2(Ω) such that{
−∆u+ u = f in Ω,

∂nu = 0 in ∂Ω,
(73)

where ∂nu denote the external normal derivative of u with respect to ∂Ω, i. e.
∂nu = ∇u · n, where n is the external normal vector to ∂Ω of length 1.
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The weak homogeneous Neumann problem is the following: find w ∈ H1(Ω)
such that ∫

Ω

∇w · ∇v +

∫
Ω

w v =

∫
Ω

f v, for all v ∈ H1(Ω). (74)

Lax-Milgram theorem guarantees that (74) has a unique solution. Again, under
particular regularity conditions on ∂Ω, it is possible to prove that the solution
of (74) has a sufficient regularity and it is the solution to (73).

22.1.3 Maximum principle for the Dirichlet problem

Theorem 77. Let Ω be a bounded open set in RN . Let f ∈ L2(Ω). Let u ∈
H1(Ω) ∩ C(Ω) be such that∫

Ω

∇u · ∇v +

∫
Ω

w v =

∫
Ω

f v, for all v ∈ H1
0 (Ω). (75)

Then, for all x ∈ Ω,

min{min
∂Ω

u, inf
Ω
f } ≤ u(x) ≤ max{max

∂Ω
u, sup

Ω
f }

where here above inf and sup denote inf ess and sup ess respectively.

Proof. Let G ∈ C1(R) such that

G(s) =

{
0 if s ≤ 0,

strictly increasing if s > 0

and G′(s) ≤M , for all s ∈ R.
Let

K = max{max
∂Ω

u, sup
Ω

f}

and suppose that K < +∞. We show that u(x) ≤ K for all x ∈ Ω . Consider

v(x) = G(u(x)−K).

v ∈ H1(Ω) (see Theorem 67) and, for all x ∈ ∂Ω,

v(x) = G(u(x)−K) = 0.

Consequently v ∈ H1
0 (Ω). We use v inside (75), taking into account that

∇v(x) = G′(u(x)−K)∇u(x).

We have ∫
Ω

G′(u−K)∇u · ∇u+

∫
Ω

uG(u−K) =

∫
Ω

f G(u−K)

i. e. ∫
Ω

|∇u|2G′(u−K)︸ ︷︷ ︸
≥0

+

∫
Ω

(u−K)G(u−K) =

∫
Ω

(f −K)G(u−K)︸ ︷︷ ︸
≤0

.
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We obtain ∫
Ω

(u−K)G(u−K) ≤ 0.

Remarking finally that the function s 7→ sG(s) is nonnegative, we have that

(u(x)−K)G(u(x)−K) = 0 for all x ∈ Ω,

and hence u(x) −K ≤ 0 for all x ∈ Ω. The computation to show that u(x) ≥
min{min∂Ω u, infΩ f } is similar.
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Appendix
Young’s inequality

Let α, β ∈ [0, 1], with α+ β = 1 and let x, y ∈ ]0,+∞[.
Then

xαyβ ≤ αx+ βy.

In fact it is sufficient to remark that, since the logarithmic function is concave,

log(xαyβ) = α log x+ β log y ≤ log(αx+ βy).

log y

log x

yx αx+ βy

log(xαyβ) = α log x+ β log y

log(αx+ βy)

Equivalently, for p, q ∈ [0, 1], with p+ q = 1 and for a, b ∈ ]0,+∞[,

ab ≤ p a
1
p + q b

1
q .

Lax-Milgram Theorem

Theorem 78. ([3, Cor. V.8]). Let a(u, v) be a bilinear, continuous and coercive
form, defined on the Hilbert space H.

Then, for all φ ∈ H ′, there exists a unique u ∈ H such that

a(u, v) = φ(v), for all v ∈ H. (76)

Moreover, if a is symmetric, then u, solution of (76), is characterized by

u ∈ H and
1

2
a(u, u)− φ(u) = min

v∈H
{1

2
a(v, v)− φ(v)}.
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