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Abstract: Hidden Markov models (HMMs) have been extensively used in biological sequence analysis. In this paper, we

give a tutorial review of HMMs and their applications in a variety of problems in molecular biology. We especially focus

on three types of HMMs: the profile-HMMs, pair-HMMs, and context-sensitive HMMs. We show how these HMMs can

be used to solve various sequence analysis problems, such as pairwise and multiple sequence alignments, gene annotation,

classification, similarity search, and many others.

Received on: December 04, 2008 - Revised on: February 28, 2009 - Accepted on: March 02, 2009

Key Words: Hidden Markov model (HMM), pair-HMM, profile-HMM, context-sensitive HMM (csHMM), profile-csHMM,
sequence analysis.

1. INTRODUCTION

The successful completion of many genome sequencing
projects has left us with an enormous amount of sequence
data. The sequenced genomes contain a wealth of invaluable
information that can help us better understand the underlying
mechanisms of various biological functions in cells.
However, considering the huge size of the available data, it
is virtually impossible to analyze them without the help of
computational methods. In order to extract meaningful
information from the data, we need computational
techniques that can efficiently analyze the data according to
sound mathematical principles. Given the expanding list of
newly sequenced genomes and the increasing demand for
genome re-sequencing in various comparative genomics
projects, the importance of computational tools in biological
sequence analysis is expected to grow only further.

Until now, various signal processing models and
algorithms have been used in biological sequence analysis,
among which the hidden Markov models (HMMs) have been
especially popular. HMMs are well-known for their
effectiveness in modeling the correlations between adjacent
symbols, domains, or events, and they have been extensively
used in various fields, especially in speech recognition [1]
and digital communication. Considering the remarkable
success of HMMs in engineering, it is no surprise that a wide
range of problems in biological sequence analysis have also
benefited from them. For example, HMMs and their variants
have been used in gene prediction [2], pairwise and multiple
sequence alignment [3, 4], base-calling [5], modeling DNA
sequencing errors [6], protein secondary structure prediction
[7], ncRNA identification [8], RNA structural alignment [9],
acceleration of RNA folding and alignment [10], fast
noncoding RNA annotation [11], and many others.
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In this paper, we give a tutorial review of HMMs and
their applications in biological sequence analysis. The
organization of the paper is as follows. In Sec. 2, we begin
with a brief review of HMMs and the basic problems that
must be addressed to use HMMs in practical applications.
Algorithms for solving these problems are also introduced.
After reviewing the basic concept of HMMs, we introduce
three types of HMM variants, namely, profile-HMMs, pair-
HMMs, and context-sensitive HMMs, that have been useful
in various sequence analysis problems. Section 3 provides an
overview of profile hidden Markov models and their
applications. We also introduce publicly available profile-
HMM software packages and libraries of pre-built profile-
HMMs for known sequence families. In Sec. 4, we focus on
pair-HMMs and their applications in pairwise alignment,
multiple sequence alignment, and gene prediction. Section 5
reviews context-sensitive HMMs (csHMMs) and profile
context-sensitive HMMs (profile-csHMMs), which are
especially useful for representing RNA families. We show
how these models and other types of HMMs can be
employed in RNA sequence analysis.

2. HIDDEN MARKOV MODELS

A hidden Markov model (HMM) is a statistical model
that can be used to describe the evolution of observable
events that depend on internal factors, which are not directly
observable. We call the observed event a `symbol' and the
invisible factor underlying the observation a `state'. An
HMM consists of two stochastic processes, namely, an
invisible process of hidden states and a visible process of
observable symbols. The hidden states form a Markov chain,
and the probability distribution of the observed symbol
depends on the underlying state. For this reason, an HMM is
also called a doubly-embedded stochastic process [1].

Modeling observations in these two layers, one visible
and the other invisible, is very useful, since many real world
problems deal with classifying raw observations into a
number of categories, or class labels, that are more
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meaningful to us. For example, let us consider the speech
recognition problem, for which HMMs have been
extensively used for several decades [1]. In speech
recognition, we are interested in predicting the uttered word
from a recorded speech signal. For this purpose, the speech
recognizer tries to find the sequence of phonemes (states)
that gave rise to the actual uttered sound (observations).
Since there can be a large variation in the actual
pronunciation, the original phonemes (and ultimately, the
uttered word) cannot be directly observed, and need to be
predicted.

This approach is also useful in modeling biological
sequences, such as proteins and DNA sequences. Typically,
a biological sequence consists of smaller substructures with
different functions, and different functional regions often
display distinct statistical properties. For example, it is well-
known that proteins generally consist of multiple domains.
Given a new protein, it would be interesting to predict the
constituting domains (corresponding to one or more states in
an HMM) and their locations in the amino acid sequence
(observations). Furthermore, we may also want to find the
protein family to which this new protein sequence belongs.
In fact, HMMs have been shown to be very effective in
representing biological sequences [3], as they have been
successfully used for modeling speech signals. As a result,
HMMs have become increasingly popular in computational
molecular biology, and many state-of-the-art sequence
analysis algorithms have been built on HMMs.

2.1. Definition

Let us now formally define an HMM. We denote the

observed symbol sequence as
Lxxx …21=x and the

underlying state sequence as
Lyyy …21=y , where ny is the

underlying state of the n th observation nx . Each symbol

nx takes on a finite number of possible values from the set

of observations },,,{= 21 NOOO …O , and each state ny

takes one of the values from the set of states },{1,2,= M…S ,

where N and M denote the number of distinct observations

and the number of distinct states in the model, respectively.

We assume that the hidden state sequence is a time-

homogeneous first-order Markov chain. This implies that the

probability of entering state j in the next time point depends

only on the current state i, and that this probability does not

change over time. Therefore, we have

P{yn+1 = j | yn = i, yn�1 = in�1,…, y1 = i1} =

P{yn+1 = j | yn = i} = t(i, j)
(1)

for all states i, j �S and for all 1�n . The fixed probability

for making a transition from state i to state j is called the

transition probability, and we denote it by t(i, j) . For the

initial state 1y , we denote the initial state probability as

� (i) = P{y
1
= i} , for all i �S . The probability that the n th

observation will be x
n
= x depends only on the underlying

state
ny , hence

P{xn = x | yn = i, yn�1, xn�1,…} =

P{xn = x | yn = i} = e(x | i)
(2)

for all possible observations x �O , all state i �S , and all
n � 1 . This is called the emission probability of x at state
i , and we denote it by e(x | i) . The three probability
measures t(i, j) , � (i) , and e(x | i) completely specify an

HMM. For convenience, we denote the set of these

parameters as � .

Based on these parameters, we can now compute the

probability that the HMM will generate the observation

sequence
Lxxx …21=x with the underlying state sequence

Lyyy …21=y . This joint probability P{x, y | �} can be

computed by

P{x, y | �} = P{x | y,�}P{y | �}, (3)

where

P{x | y,�} = e(x1 | y1)e(x2 | y2 )e(x3 | y3)�e(xL | yL ) (4)

P{y |�} = � (y1)t(y1, y2 )t(y2 , y3)�t(yL�1, yL ). (5)

As we can see, computing the observation probability is

straightforward when we know the underlying state

sequence.

2.2. A Simple HMM for Modeling Eukaryotic Genes

As we mentioned earlier, HMMs can be effectively used

for representing biological sequences. As a simple example,

let us consider an HMM that models protein-coding genes in

eukaryotes. It is well known that many protein-coding

regions display codon bias. The nonuniform usage of codons

results in different symbol statistics for different codon

positions [12], and it is also a source of the period-3 property

in the coding regions [13]. These properties are not observed

in introns, which are not translated into amino acids.

Therefore, it is important to incorporate these codon

statistics when modeling protein-coding genes and building a

gene-finder. Fig. (1) shows a toy HMM for modeling

eukaryotic genes. The given HMM tries to capture the

statistical differences in exons and introns. The HMM has

four states, where
1E , 2E , and 3E are used to model the base

statistics in exons. Each
kE uses a different set of emission

probabilities to reflect the symbol statistics at the k th
position of a codon. The state I is used to model the base
statistics in introns. Note that this HMM can represent genes

with multiple exons, where the respective exons can have

variable number of codons, and the introns can also have

variable lengths. This example shows that if we know the

structure and the important characteristics of the biological

sequences of interest, building the corresponding HMM is

relatively simple and it can be done in an intuitive manner.

The constructed HMM can now be used to analyze

new observation sequences. For example, let us assume

that we have a new DNA sequence x = x
1
�x

19
=

ATGCGACTGCATAGCACTT How can we find out

whether this DNA sequence is a coding gene or not? Or, if
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we assume that x is a protein-coding gene, how can we

predict the locations of the exons and introns in the given

sequence? We can answer the first question by computing

the observation probability of x based on the given HMM
that models coding genes. If this probability is high, it

implies that this DNA sequence is likely to be a coding gene.

Otherwise, we may conclude that x is unlikely to be a

coding gene, since it does not contain the statistical

properties that are typically observed in protein-coding

genes. The second question is about predicting the internal

structure of the sequence, as it cannot be directly observed.

To answer this question, we may first predict the state

sequence y in the HMM that best describes x. Once we
have inferred the best y, it is straightforward to predict the
locations of the exons and introns. For example, assume that

the optimal state sequence y is as shown in Fig. (1). This

implies that the first nine bases
91 xx � belong to the first

exon, the following four bases
1310 xx � belong to an intron,

and the last six bases
1914 xx � belong to another exon. As

these examples show, HMMs provide a formal probabilistic

framework for analyzing biological sequences.

2.3. Basic Problems and Algorithms for HMMs

There are three basic problems that have to be addressed

in order to use HMMs in practical applications. Suppose we

have a new symbol sequence
Lxxx …21=x . How can we

compute the observation probability P{x | �} based on a

given HMM? This problem is sometimes called the scoring

problem, since computing the probability P{x | �} is a

natural way of `scoring' a new observation sequence x
based on the model at hand. Note that for a given x , its
underlying state sequence is not directly observable and

there can be many state sequences that yield x . Therefore,
one way to compute the observation probability is to

consider all possible state sequences y for the given x and
sum up the probabilities as follows

}.|,{=}|{ �� � yxx
y

PP (6)

However, this is computationally very expensive, since

there are LM possible state sequences. For this reason, we

definitely need a more efficient method for computing

P{x | �} . There exist a dynamic programming algorithm,
called the forward algorithm, that can compute P{x | �} in

an efficient manner [1]. Instead of enumerating all possible

state sequences, this algorithm defines the following forward

variable

}.|=,{=),( 1 �iyxxPin nn�� (7)

This variable can be recursively computed using the

following formula

)],|(),()1,([=),( ixeiktknin n

k

�� �� (8)

for n = 2,…, L . At the end of the recursions, we can

compute ),(=}|{ kLP
k
���x . This algorithm computes the

observation probability of x with only )( 2LMO

computations. Therefore, the amount of time required for

computing the probability increases only linearly with the

sequence length L , instead of increasing exponentially.

Another practically important problem is to find the

optimal state sequence, or the optimal path, in the HMM that

maximizes the observation probability of the given symbol

sequence x. Among all possible state sequences y, we want
to find the state sequence that best explains the observed

symbol sequence. This can be viewed as finding the best

alignment between the symbol sequence and the HMM,

hence it is sometimes called the optimal alignment problem.

Formally, we want to find the optimal path *y that satisfies

the following

}.,|{a=
*

�xyy
y

Pmaxrg (9)

Note that this is identical to finding the state sequence

that maximizes P{x, y | �} , since we have

.
}|{

}|,{
=},|{

�

�
�

x

yx
xy

P

P
P (10)

Fig. (1). A simple HMM for modeling eukaryotic genes.
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Finding the optimal state sequence *y by comparing all

LM possible state sequences is computationally infeasible.

However, we can use another dynamic programming

algorithm, well-known as the Viterbi algorithm, to find the

optimal path *y efficiently [14, 15]. The Viterbi algorithm

defines the variable

},|=,{max=),( 111

1
,,

1

�
�

�

iyyyxxPin nnn

n
yy

��
…

� (11)

and computes it recursively using the following formula

)].|(),()1,([max=),( ixeiktknin n
k

��� (12)

At the end, we can obtain the maximum observation

probability as follows

).,(max=}|,{max=* kLPP
k

��yx
y

(13)

The optimal path *y can be easily found by tracing back

the recursions that led to the maximum probability

}|,{= **
�yxPP . Like the forward algorithm, the Viterbi

algorithm finds the optimal state sequence in )( 2LMO time.

As we have seen, the Viterbi algorithm finds the optimal

path that maximizes the observation probability of the entire

symbol sequence. In some cases, it may be more useful to

find the optimal states individually for each symbol position.

In this case, we can find the optimal state
ny that is most

likely to be the underlying state of nx as follows

},,|={a=ˆ �xiyPmaxrgy n
i

n
(14)

based on the given x and � . The posterior probability

},|={ �xiyP n
can be computed from

P{yn = i | x,�} =
P{x1�xn , yn = i |�}P{xn+1�xL | yn = i,�}

P{x |�}

,
),(),(

),(),(
=

knkn

inin

k

��

��

�

(15)

where �(n, i) is defined as

}.,=|{=),( 1 �
+

iyxxPin nLn �� (16)

This backward variable �(n, i) can be recursively

computed using the backward algorithm as follows

)],1,()|(),([=),( 1 knkxekitin n

k

+
+� �� (17)

for n = L � 1, L � 2,…,1 . The advantage of predicting the
optimal states individually is that this approach will

maximize the expected number of correctly predicted states.

However, the overall state sequence ŷ = ŷ1ŷ2� ŷL will be
generally suboptimal, hence P{x, ŷ |�} � P{x,y* |�} . In

some cases, the predicted path ŷ may not be even a

legitimate path in the given HMM, in which case we will

have P{x, ŷ | �} = 0 . For this reason, the Viterbi algorithm is

often preferred when we are interested in inferring the

optimal state sequence for the entire observation x , while
the posterior-decoding approach in (14) is preferred when

our interest is mainly in predicting the optimal state at a

specific position. The posterior probability in (15) can also

be useful for estimating the reliability of a state prediction.

For example, we may first predict the optimal path
**

1

* = Lyy �y as in (9) using the Viterbi algorithm, and then

estimate the reliability of the individual state prediction *

ny

by computing the posterior probability },|={ *
�xnn yyP as

in (15).

The scoring problem and the alignment problem are

concerned about analyzing a new observation sequence x
based on the given HMM. However, the solutions to these

problems are meaningful only if the HMM can properly

represent the sequences of our interest. Let us assume that

we have a set of related observation sequences

},,,{= 21 TxxxX … that we want to represent by an HMM.

For example, they may be different speech recordings of the

same word or protein sequences that belong to the same

functional family. Now, the important question is how we

can reasonably choose the HMM parameters based on these

observations. This is typically called the training problem.

Although there is no optimal way of estimating the

parameters from a limited number of finite observation

sequences, there are ways to find the HMM parameters that

locally maximize the observation probability [1, 16-18]. For

example, we can use the Baum-Welch algorithm [16] to train

the HMM. The Baum-Welch algorithm is an expectation-

maximization (EM) algorithm that iteratively estimates and

updates � based on the forward-backward procedure [1,

16]. Since the estimation of the HMM parameters is

essentially an optimization problem, we can also use

standard gradient-based techniques to find the optimal

parameters of the HMM [17, 18]. It has been demonstrated

that the gradient-based method can yield good estimation

results that are comparable to those of the popular EM-based

method [18]. When the precise evaluation of the probability

(or likelihood) of an observation is practically intractable for

the HMM at hand, we may use simulation-based techniques

to evaluate it approximately [17, 19]. These techniques allow

us to handle a much broader class of HMMs. In such cases,

we can train the HMM using the Monte Carlo EM (MCEM)

algorithm, which adopts the Monte Carlo approach to

approximate the so-called E-step (expectation step) in the

EM algorithm [19]. There are also training methods based on

stochastic optimization algorithms, such as simulated

annealing, that try to improve the optimization results by

avoiding local maxima [20, 21]. Currently, there exists a vast

literature on estimating the parameters of hidden Markov

models, and the reader is referred to [1, 17, 19, 22, 23] for

further discussions.
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2.4. Variants of HMMs

There exist a large number of HMM variants that modify

and extend the basic model to meet the needs of various

applications. For example, we can add silent states (i.e.,

states that do not emit any symbol) to the model in order to

represent the absence of certain symbols that are expected to

be present at specific locations [24, 25]. We can also make

the states emit two aligned symbols, instead of a single

symbol, so that the resulting HMM simultaneously generates

two related symbol sequences [3, 4, 26]. It is also possible to

make the probabilities at certain states dependent on part of

the previous emissions [9, 27] so that we can describe more

complex symbol correlations. In the following sections, we

review a number of HMM variants that have been used in

various biological sequence analysis problems.

3. PROFILE HIDDEN MARKOVMODELS

Let us assume that we have a multiple sequence

alignment of proteins or DNA sequences that belong to the

same functional family. How can we build an HMM that can

effectively represent the common patterns, motifs, and other

statistical properties in the given alignment? One model that

is especially useful for representing the profile of a multiple

sequence alignment is the profile hidden Markov model

(profile-HMM) [24, 25]. Profile-HMMs are HMMs with a

specific architecture that is suitable for modeling sequence

profiles. Unlike general HMMs, profile-HMMs have a

strictly linear left-to-right structure that does not contain any

cycles. A profile-HMM repetitively uses three types of

hidden states, namely, match states
kM , insert states

kI , and

delete states
kD , to describe position-specific symbol

frequencies, symbol insertions, and symbol deletions,

respectively.

3.1. Constructing a Profile-HMM

To see how profile-HMMs work, let us consider the

following example. Suppose we want to construct a profile-

HMM based on the multiple alignment shown in Fig. (2a).

As we can see, the given alignment has five columns,

where the base frequencies in the respective columns are

different from each other. The k th match state
kM in the

profile-HMM is used to describe the symbol frequencies in

the k th column of the alignment. It is called a `match' state,
since it is used to represent the case when a symbol in a new

observation sequence matches the k th symbol in the

consensus sequence of the original alignment. As a result,

the number of match states in the resulting profile-HMM is

identical to the length of the consensus sequence. The

emission probability )|( kMxe at the k th match state
kM

reflects the observed symbol frequencies in the k th
consensus column. By interconnecting the match states

521 ,,, MMM … , we obtain an ungapped HMM as shown in

Fig. (2b). This ungapped HMM can represent DNA

sequences that match the consensus sequence of the

alignment without any gap, and it serves as the backbone of

the final profile-HMM that is to be constructed.

Once we have constructed the ungapped HMM, we add

insert states
kI and delete states

kD to the model so that we

can account for insertions and deletions in new observation

sequences. Let us first consider the case when the observed

DNA sequence is longer than the consensus sequence of the

original alignment. In this case, if we align these sequences,

there will be one or more bases in the observed DNA

sequence that are not present in the consensus sequence.

These additional symbols are modeled by the insert states.

The insert state
kI is used to handle the symbols that are

inserted between the k th and the (k + 1) th positions in the
consensus sequence. Now, let us consider the case when the

new observed sequence is shorter than the consensus

sequence. In this case, there will be one or more bases in the

consensus sequence that are not present in the observed

DNA sequence. The k th delete state
kD is used to handle

the deletion of the k th symbol in the original consensus
sequence. As delete states represent symbols that are

missing,
kD is a non-emitting state, or a silent state, which is

simply used as a place-holder that interconnects the

neighboring states. After adding the insert states and the

delete states to the ungapped HMM in Fig. (2b), we obtain

the final profile-HMM that is shown in Fig. (2c).

Estimating the parameters of a profile-HMM based on a

given multiple sequence alignment is relatively simple. We

first have to decide which columns should be represented by

match states and which columns should be modeled by insert

states. Suppose we have a column that contains one or more

gaps. Should we regard the symbols in the column as

`insertions', or should we rather view the gaps in the column

as `deletions'? One simple rule would be to compare the

number of symbols and the number of gaps. If the column

has more symbols than gaps, we treat the gaps as symbol

deletions. Therefore, we model the column using a match

state
kM (for the symbols in the given column) and a delete

state
kD (for the gaps in the same column). On the contrary,

if we have more gaps than symbols, it would make more

sense to view the symbols as insertions, hence we use an

insert state
kI to represent the column. Once we have

decided which columns should be represented by match

states and which ones should be represented by insert states,

we know the underlying state sequence for each symbol

sequence in the alignment. Therefore, we can estimate the

transition probabilities and the emission probabilities of the

profile-HMM by counting the number of each state transition

or symbol emission and computing their relative frequencies.

To allow small probability for state transitions or symbol

emissions that are not observed in the original alignment, we

can add the so-called pseudocounts to the actual counts [3].

We can also use more sophisticated methods for

parameterizing the profile-HMMs. In fact, there have been

considerable research efforts for optimal construction and

parameterization of profile-HMMs to improve their overall

performance. More discussions on this topic can be found in

[3, 28-32].
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Fig. (2). Profile hidden Markov model. (a) Multiple sequence alignment for constructing the profile-HMM. (b) The ungapped HMM that
represents the consensus sequence of the alignment. (c) The final profile-HMM that allows insertions and deletions.

3.2. Applications of Profile-HMMs

Due to the convenience and effectiveness in representing

sequence profiles, profile-HMMs have been widely used for

modeling and analyzing biological sequences. When profile-

HMMs were first proposed, they were quickly adopted for

modeling the characteristics of a number of protein families,

such as globins, immunoglobulins, and kinases [33]. They

have been shown to be useful for various tasks, including

protein classification, motif detection, and finding multiple

sequence alignments. Nowadays, there exist publicly

available software packages, such as HMMER [3] and SAM

[34, 35], that can be readily used to build and train profile-

HMMs. These packages provide convenient tools for

applying profile-HMMs to various sequence analysis

problem. A comparison between these two popular HMM

packages and an assessment of their critical features can be

found in [32].

It would be also very convenient to have a library of

ready-made profile-HMMs for known sequence families.

Currently, we have two such libraries that have compiled a

large number of profile-HMMs for various protein families:

the PROSITE database [36, 37] and the Pfam database [38,

39]. Given a profile-HMM that represents a biological

sequence family, we can use it to search a sequence database

to find additional homologues that belong to the same

family. In a similar manner, if we have a database of pre-

built profile-HMMs, we can use a single query sequence to

search through the database to look for matching profiles.

This strategy can be used for classification and annotation of

the given sequence. For example, by querying a new protein

sequence against Pfam or PROSITE, we can find out

whether the sequence contains any of the known protein

domains.

Sometimes, we may want to compare two multiple

sequence alignments or sequence profiles, instead of

comparing a single sequence against a multiple alignment or

a profile. Comparing sequence profiles can be beneficial for

detecting remote homologues, and profile-HMMs have also

been used for this purpose [40-42]. For example, COACH

[40] allows us to compare sequence alignments, by building

a profile-HMM from one alignment and aligning the other

alignment to the constructed profile-HMM. HHsearch [42]

generalizes the traditional pairwise sequence alignment

algorithm for finding the alignment of two profile-HMMs.

Another program, called PRC (profile comparer) [41],

provides a tool for scoring and aligning profile-HMMs

produced by popular software tools, including HMMER [3]

and SAM [34, 35].

Although profile-HMMs have been widely used for

representing sequence profiles, their application is by no

means limited to modeling amino acid or nucleotide

sequences. For example, Di Francesco et al. [43, 44] used

profile-HMMs to model sequences of protein secondary

structure symbols: helix (H), strand (E), and coil (C).

Therefore, the model emits only three types of symbols

instead of twenty different amino acids. It has been

demonstrated that this profile-HMM can be used for

recognizing the three-dimensional fold of new protein

sequences based on their secondary structure predictions.

Another interesting example is the feature-based profile-
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HMM that was proposed to improve the performance of

remote protein homology detection [45]. Instead of emitting

amino acids, emissions of these HMMs are based on

`features' that capture the biochemical properties of the

protein family of interest. These features are extracted by

performing a spectral analysis of a number of selected

`amino acid indices' [46] and using principal component

analysis (PCA) to reduce the redundancy in the resulting

signal.

There are also variants of the basic profile-HMM, where

the jumping profile-HMM (jpHMM) [47] is one such

example. The jumping profile-HMM is a probabilistic

generalization of the so-called jumping-alignment approach.

The jumping-alignment approach is a strategy for comparing

a sequence with a multiple alignment, where the sequence is

not aligned to the alignment as a whole, but it can `jump'

between the sequences that constitute the alignment. In this

way, different parts of the sequence can be aligned to

different sequences in the given alignment. A jpHMM uses

multiple match states for each column to represent different

sequence subtypes. The HMM is allowed to jump between

these match states based on the local similarity of the

sequence and the different sequence subtypes in the model.

This approach has been shown to be especially useful for

detecting recombination breakpoints [47].

4. PAIR HIDDEN MARKOV MODELS

In biological sequence analysis, it is often important to

compare two sequences to find out whether these sequences

are functionally related. Sequence similarity is often a good

indicator of their functional relevance, and for this reason,

methods for quantitatively measuring the similarity of two

proteins or DNA sequences have been of interest to many

researchers. A typical approach for comparing two biological

sequences is to align them based on their similarity, compute

their alignment score, and evaluate the statistical significance

of the predicted alignment. To find the best alignment

between the sequences, we first have to define a reasonable

scoring scheme for ranking different alignments. Based on

this scoring scheme, we can choose the alignment that

maximizes the alignment score.

4.1. Pair-HMMs for Modeling Aligned Sequence Pairs

The pair hidden Markov model (pair-HMM) [3] is a

variant of the basic HMM that is especially useful for finding

sequence alignments and evaluating the significance of the

aligned symbols. Unlike the original HMM, which generates

only a single sequence, a pair-HMM generates an aligned

pair of sequences. For example, let us consider the pair-

HMM shown in Fig. (3).

This simple pair-HMM traverses between the states
XI ,

ZI , and A , to simultaneously generate two aligned DNA

sequences
x
Lxx �1=x (sequence 1) and

z
Lzz �1=z

(sequence 2). The state
XI emits a single unaligned symbol

ix in the first sequence x . Similarly, the state
ZI emits an

unaligned symbol
jz only in the second sequence z .

Finally, the state A generates an aligned pair of two symbols

ix and jz , where ix is inserted in x and jz is inserted in

z . For example, let us consider the alignment between
TTCCG== 54321 xxxxxx and CCGTT== 54321 zzzzzz

illustrated in Fig. (3). We assume that the underlying state

sequence is
ZZXX IAAAIII=y as shown in the figure. As we

can see,
1x and 2x are individually emitted at XI , hence they

are not aligned to any bases in z . The pairs ),( 13 zx ,

),( 24 zx , and ),( 35 zx are jointly emitted at A , and therefore

the bases in the respective pairs are aligned to each other.

Finally,
4z and

5z are individually emitted at
zI as

unaligned bases.

As we can see from this example, there is a one-to-one

relationship between the hidden state sequence y and the
alignment between the two observed sequences x and z .
Therefore, based on the pair-HMM framework, the problem

of finding the best alignment between x and z reduces to
the problem of finding the following optimal state sequence

}.,,|{a=
*

�zxyy
y

Pmaxrg (18)

Fig. (3). Example of a pair hidden Markov model. A pair-HMM generates an aligned pair of sequences. In this example, two DNA sequences
x and z are simultaneously generated by the pair-HMM, where the underlying state sequence is y. Note that the state sequence y

uniquely determines the pairwise alignment between x and z .
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Note that this is identical to finding the optimal path that

maximizes P{x, z, y | �} , since we have

P{y | x, z,�} =
P{x, z, y | �}

P{x, z | �}
. (19)

The optimal state sequence *y can be found using

dynamic programming, by a simple modification of the

Viterbi algorithm [3]. The computational complexity of the

resulting alignment algorithm is only )( zxLLO , where
xL

and
zL are the lengths of x and z , respectively.

An important advantage of the pair-HMM based

approach over traditional alignment algorithms is that we can

use the pair-HMM to compute the alignment probability of a

sequence pair. When the given sequences do not display

strong similarities, it is difficult to find the correct alignment

that is biologically meaningful. In such cases, it would be

more useful to compute the probability that the sequences

are related, instead of focusing only on their best alignment.

The joint observation probability P{x, z | �} of sequences
x and z can be computed by summing over all possible

state sequences

}.|,,{=}|,{ �� � yzxzx
y

PP (20)

Instead of enumerating all possible state sequences, we

can modify the original forward algorithm to compute

P{x, z | �} in an efficient manner [3]. It is also possible to

compute the alignment probability for individual symbol

pairs. For example, the probability that ix will be aligned to

jz is ),,|=( �zxAyP k
, where

ky denotes the underlying

state for the aligned pair ),( ji zx . This probability can be

computed as follows

P{yk = A | x,z,�} =

P{x1�xi , z1�z j , yk = A |�}P{xi+1�xLx , z j+1�zLz | yk = A,�}

P{x,z |�}
(21)

using a modified forward-backward algorithm [3].

4.2. Applications of Pair-HMMs

As pair-HMMs provide a full probabilistic framework for

handling pairwise alignments, they have been extensively

used for finding pairwise alignment of proteins and DNA

sequences [3]. For example, the pair-HMM was used to

approximate an explicit model for symbol insertions and

deletions (indels) in [48]. The constructed pair-HMM was

then used to find the optimal sequence alignment, compute

the overall alignment probability, and estimate the reliability

of the individual alignment regions. It was demonstrated that

using geometrically distributed indel lengths based on pair-

HMMs has many potential advantages [48]. More recently,

another method called MCALIGN2 [49] also adopted pair-

HMMs with a slightly different structure, for global pairwise

alignment of noncoding DNA segements. Using pair-HMMs

to describe specific indel length distributions has been shown

to be very useful for finding accurate alignments of non-

coding DNA sequences.

Many multiple sequence alignment (MSA) algorithms

also make use of pair-HMMs [50-52]. The most widely

adopted strategy for constructing a multiple alignment is the

progressive alignment approach, where sequences are

assembled into one large multiple alignment through

consecutive pairwise alignment steps according to a guide

tree [53, 54]. The algorithms proposed in [50-52] combine

pair-HMMs with the progressive alignment approach to

construct multiple sequence alignments. For example, the

MSA algorithm in [51] uses a pair-HMM to find pairwise

alignments and to estimate their alignment reliability. In

addition to predicting the best multiple alignment, this

method computes the minimum posterior probability for

each column, which has been shown to correlate well with

the correctness of the prediction. These posterior

probabilities can be used to filter out the columns that are

unreliably aligned. Another state-of-the-art MSA algorithm

called ProbCons [50] also uses a pair-HMM to compute the

posterior alignment probabilities. Instead of directly using

the optimal alignment predicted by the Viterbi algorithm,

ProbCons tries to find the pairwise alignment that maximizes

the expected number of correctly aligned pairs based on the

posterior probabilities. Furthermore, the algorithm

incorporates multiple sequence conservation information

when finding the pairwise alignments. This is achieved by

using the match quality scores that are obtained from

probabilistic consistency transformation of the posterior

probabilities, when finding the alignments. It was

demonstrated that this probabilistic consistency based

approach can achieve significant improvement over

traditional progressive alignment algorithms [50].

Pair-HMMs have also been used for gene prediction [4,

55-58]. For example, a method called Pairagon+N-

SCAN_EST provides a convenient pipeline for gene

annotation by combining a pair-HMM with a de novo gene

prediction algorithm [56]. In this method, a pair-HMM is

first used to find accurate alignments of cDNA sequences to

a given genome, and these alignments are combined with a

gene prediction algorithm for accurate genome annotation. A

number of gene-finders adopt a comparative approach for

gene prediction [4, 55, 57, 58]. The generalized pair hidden

Markov model (GPHMM) [4] provides a convenient

probabilistic framework for comparative gene prediction by

combining the pair-HMM (widely used for sequence

alignment and comparison) and the generalized HMM (used

by many gene finders). Comparative gene-finders such as

SLAM [55] and TWAIN [57] are implemented based on the

GPHMM framework. A similar model has been also

proposed in [58] to compare two DNA sequences and jointly

analyze their gene structures.

Although the pair-HMM is originally defined on the

pairwise alignment of linear symbol sequences, we can use it

for aligning more complex structures, such as trees. For

example, the PHMMTSs (pair hidden Markov models on

tree structures) extend the pair-HMMs so that we can use
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them for aligning trees [59]. As most RNA secondary

structures can be represented by trees, PHMMTSs provide a

useful probabilistic framework for aligning RNA sequences.

In [59], PHMMTSs have been used to find the structural

alignment of RNAs, where an RNA with an unknown

structure is aligned to an RNA with a known secondary

structure. This structural alignment is distinct from a

sequence-based alignment, in the sense that we consider both

the structural similarity and the sequence similarity when

finding the optimal alignment between the RNAs. Pair

stochastic tree adjoining grammars (PSTAGs) extend the

PHMMTSs further, so that we can use them to align TAG

(tree adjoining grammar) trees [60]. This extension allows us

to align RNAs with more complicated secondary structures,

including pseudoknots.

5. CONTEXT-SENSITIVE HMMS AND PROFILE-

CSHMMS

Despite their usefulness in various sequence analysis

problems, especially, those dealing with proteins and DNA

sequences, traditional HMMs have inherent limitations that

make them not suitable for handling RNA sequences. Many

non-coding RNAs (ncRNAs) conserve base-paired

secondary structures that induce pairwise correlations

between non-adjacent bases [61]. However, traditional

HMMs assume that the emission probability of each symbol

depends solely on the underlying state, and since each state

depends only on its previous state, they cannot effectively

describe correlations between distant symbols. For this

reason, more complex models such as the stochastic context-

free grammars (SCFGs) have been employed in RNA

sequence analysis [62, 63]. Although HMMs cannot be

directly used for modeling RNAs, we can extend the original

model to handle pairwise base correlations. The context-

sensitive HMM (csHMM) is a variant of HMM that can be

used for this purpose [27, 64].

5.1. Context-Sensitive Hidden Markov Models

The main difference between a context-sensitive HMM

and a traditional HMM is that a csHMM can use part of the

past emissions (called the `context') to adjust the

probabilities at certain future states. The use of such

contextual information is very useful in describing long-

range correlations between symbols, and this context-

dependency increases the descriptive capability of the HMM

considerably [27]. Unlike traditional HMMs, csHMMs use

three different types of hidden states: single-emission states

nS , pairwise-emission states nP , and context-sensitive states

nC . The single-emission states are similar to the regular

states in traditional HMMs. They have fixed emission

probabilities and do not make use of any contextual

information. In addition to the single-emission states, two

new types of states, the pairwise-emission states and the

context-sensitive states, are introduced in csHMMs. These

states cooperate to describe pairwise symbol correlations.

Like single-emission states, pairwise-emission states also

have fixed emission probabilities. However, the symbols

emitted at a pairwise-emission state
nP are stored in the

memory
1
that is associated with the state

nP . These symbols

are used later on as the `contextual information' for adjusting

the probabilities at the corresponding context-sensitive state

nC . When we enter the context-sensitive state nC , we first

access the associated memory to retrieve the symbol
ix that

was previously emitted at the corresponding pairwise-

emission state
ni Py = . The emission probability at

nj Cy =

( j > i ) is adjusted based on the retrieved symbol ix (the

`context'). We can denote this context-sensitive emission

probability as

e(x j | xi , yi , yj ) = P{x j is emitted at yj = Cn ,

given that xi was emitted at yi = Pn}.
(22)

Note that by combining the emission probability

)|( ii yxe at a pairwise-emission state
ni Py = and the

emission probability ),,|( jiij yyxxe at the corresponding

context-sensitive state
nj Cy = , we obtain the joint emission

probability of
ix and jx

},,|{}|{=},|,{ jiijiijiji yyxxPyxPyyxxP

),,,|()|(= jiijji yyxxeyxe (23)

where we used the fact that
ix is independent of

jy . This

clearly shows that we can describe long-range pairwise

symbol correlations by using a pair of
nP and

nC , and then

specifying their emission probabilities. Since a given

pairwise-emission state
nP and its corresponding context-

sensitive state
nC work together to describe the symbol

correlations, these states always exist in pairs, and a separate

memory is allocated to each state pair ),( nn CP . As we need

the contextual information to adjust the emission

probabilities at a context-sensitive state, the transition

probabilities in the model are adjusted such that we never

enter a context-sensitive state if the associated memory is

empty [27].

Using context-sensitive HMMs, we can easily describe

any kind pairwise symbol correlations by arranging the

pairwise emission states
nP and the corresponding context-

sensitive states
nC accordingly. As a simple example, let us

consider a csHMM that generates only symmetric sequences,

or palindromes. Such an example is shown in Fig. (4).

The model has three states, a pair of pairwise-emission

state
1P and context-sensitive state

1C , and one single-

emission state
1S . In this example, the state pair ),( 11 CP uses

a stack, and the two states work together to model the

symbol correlations that are induced by the symmetry of the

sequence. Initially, the csHMM enters the pairwise-emission

1Although different types of memories (stacks, queues, etc.) can be used with

csHMMs, it is convenient to use stacks for modeling RNAs.
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state
1P and emits one or more symbols. The symbols

emitted at
1P are stored in the stack. When we enter 1C , we

first retrieve a symbol from the top of the stack. Based on

this symbol, the emission probabilities of
1C are adjusted

such that it emits an identical symbol with probability 1.

Transition probabilities of
1C are adjusted such that it makes

a transition to itself until the stack becomes empty. Once the

stack becomes empty, the csHMM terminates. In this way,

the csHMM shown in Fig. (4) generates only palindromes

that take one of the following forms

)(= 1221 lengthevenxxxxxx NNe ……x

).(= 12121 lengthoddxxxxxxx NNNo ……
+

x

The underlying state sequences for
ex and

ox will be

,== 111111111
������������������������

…………

statesNstatesN

o

statesNstatesN

e CCSPPandCCPP yy

respectively. Note that the single-emission state
1S is only

used to generate the symbol located in the center of a

palindrome with odd length, since this symbol is not

correlated to any other symbols.

This example clearly shows how we can represent

pairwise correlations using a csHMM. When modeling

RNAs with conserved base-pairs, we can arrange
nP and

nC

based on the positions of the base-pairs, and adjust the

emission probabilities at
nC such that they emit the bases

that are complementary to the bases emitted at the

corresponding
nP . By adjusting the context-sensitive

emission probabilities )=,=,|( njniij CyPyxxe , we can

model any kind of base-pairs including non-canonical pairs.

Considering that the widely used stochastic context-free

grammars can model only nested base-pairs, hence no

pseudoknots, the increased modeling capability and the ease

of representing any kind of base-paired structures are

important advantages of context-sensitive HMMs [9, 61].

5.2. Profile Context-Sensitive HMMs

Suppose we have a multiple alignment of relevant RNA

sequences. How can we build a probabilistic model to

represent the RNA profile, or the important features in the

given RNA alignment? Due to the conservation of secondary

structure, multiple RNA alignments often display column-

wise correlations. When modeling an RNA profile, it is

important to reflect these correlations in the model, along

with the conserved sequence information. The profile

context-sensitive HMM (profile-csHMM) provides a

convenient probabilistic framework that can be used for this

purpose [9, 65]. Profile-csHMMs are a subclass of context-

sensitive HMMs, whose structure is similar to that of profile-

HMMs. As it is relatively simple to construct a profile-HMM

from a protein or DNA sequence alignment, it is rather

straightforward to build a profile-csHMM based on a

multiple RNA alignment with structural annotation.

Like conventional profile-HMMs, profile-csHMMs also

repetitively use match states
kM , insert states

kI , and delete

states
kD to model symbol matches, symbol insertions, and

symbol deletions, respectively. The main difference between

a profile-HMM and a profile-csHMM is that the profile-

csHMM can have three different types of match states. As

we have seen in Sec. 5.1, context-sensitive HMMs use three

different types of states, where the single-emission states
nS

are used to represent the symbols that are not directly

correlated to other symbols, while the pairwise-emission

states
nP and the context-sensitive states

nC are used

together to describe pairwise symbol correlations. In a

profile-csHMM, each
kM can choose from these three types

of states. Therefore, we can have single-emission match

states, pairwise-emission match states, and context-sensitive

match states. Single-emission match states are used to

represent the columns that are not involved in base-pairing.

The pairwise correlations between columns, induced by

conserved base-pairs, can be represented by using pairwise-

emission match states and the corresponding context-

sensitive match states.

As an example, let us assume that we want to construct a

profile-csHMM for the alignment shown in Fig. (5a). Since

the alignment has five columns, we need five match states to

represent the sequence profile. There exist two base-pairs in

the consensus RNA structure, where the bases in the first

column form base-pairs with those in the fourth column, and

the bases in the second column form base-pairs with those in

the fifth column. In order to describe the correlation between

the first and the fourth columns, we use a pairwise-emission

state for the first match state
1M and the corresponding

context-sensitive state for the fourth match state
4M .

Similarly, we use a pairwise-emission state for
2M and the

corresponding context-sensitive state for
5M . We use a

single-emission state for the third match state
3M , since the

third column is not involved in base-pairing. By

interconnecting the five match states
521 ,,, MMM … , we

Fig. (4). A context-sensitive HMM that generates only symmetric
sequences, or palindromes.
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Fig. (5). Constructing a profile-csHMM from a multiple RNA sequence alignment. (a) Example of an RNA sequence alignment. The

consensus RNA structure has two base-pairs. (b) An ungapped csHMM constructed from the given alignment. (c) The final profile-csHMM

that can handle symbol matches, insertions, and deletions.

obtain an ungapped csHMM for the given alignment, as

shown in Fig. (5b). Finally, we add insert states
kI and

delete states
kD to the ungapped model to obtain the final

profile-csHMM. Since the inserted bases are not correlated

to other bases, we use a single-emission state for each
kI . As

in profile-HMMs, the delete states
kD are non-emitting

states, and they are simply used to interconnect the

neighboring states.

As illustrated in this example, profile-csHMMs provide a

convenient tool of modeling RNA profiles. Profile-csHMMs

can represent any kind of base-pairs by appropriately

arranging the pairwise-emission match states and the

context-sensitive match states. Due to the increased

descriptive capability, algorithms for traditional HMMs (e.g.,

the Viterbi algorithm) cannot be directly used for profile-

csHMMs. However, we can generalize these algorithms so

that they can be used with profile-csHMMs. For example,

the sequential component adjoining (SCA) algorithm [9],

which is a generalization of the Viterbi algorithm, provides a

systematic way of finding the optimal state sequence in a

profile-csHMM.

5.3. Hidden Markov Models in RNA Sequence Analysis

Profile-csHMMs can be used for finding structural

alignment of RNAs and performing RNA similarity searches

[9, 66]. In [9], the profile-csHMM has been used to find the

optimal alignment between a folded RNA (and RNA with a

known secondary structure) and an unfolded RNA (an RNA

whose folding structure is not known). To find the structural

alignment between the two RNAs, we first construct a

profile-csHMM to represent the folded RNA. The

parameters of the profile-csHMM is chosen according to the

scoring scheme proposed in [67]. Based on this model, we

use the SCA algorithm to find the optimal state sequence that

maximizes the observation probability of the unfolded RNA

sequence. The optimal alignment between the two RNAs can

be unambiguously determined from the predicted state

sequence. Furthermore, we can infer the secondary structure

of the unfolded RNA based on the alignment. Theoretically,

the profile-csHMM based RNA structural alignment method

can handle any kind of pseudoknots. The current

implementation of the algorithm [9] can align any RNAs in

the Rivas&Eddy class [68] that includes most of the known

RNAs [69]. We may use this structural alignment approach

for building RNA similarity search tools.
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One practical problem that frequently arises in RNA

sequence analysis is the high computational complexity. As

RNA alignment algorithms have to deal with complicated

base-pair correlations, they require significantly more

computations compared to sequence-based alignment

algorithms. For example, the Cocke-Younger-Kasami (CYK)

algorithm [3], which is the SCFG analogue of the Viterbi

algorithm for HMMs, has a complexity of )( 3LO , where L

is the length of the RNA to be aligned. Considering that the

computational complexity of the Viterbi algorithm increases

only linearly with the sequence length, this is a significant

increase. The complexity of a simultaneous RNA folding

(structure prediction) and alignment algorithm [70] is even

higher, and they need )( 3NLO computations for aligning N

RNAs of length L . These algorithms do not consider

pseudoknots, and if we allow pseudoknots, the complexity

will increase further. The high computational cost often

limits the utility of many RNA sequence analysis algorithms,

especially when the RNA of interest is long.

To overcome this problem, various heuristics have been
developed to expedite RNA alignment and RNA search
algorithms. For example, profile-HMM based prescreening
filters [11, 71] have been proposed to improve the speed of
RNA searches based on covariance models (CMs).
Covariance models can be viewed as profile-SCFGs that
have a special structure useful for modeling RNA families
[3, 63]. In this prescreening approach [11, 71], we first
construct a profile-HMM based on the CM that is to be used
in the homology search. Note that the resulting profile-HMM
conveys only the consensus sequence information of the
RNA family represented by the given CM. This profile-
HMM is then used to prescreen the genome database to filter
out the sequences that are not likely to be annotated as
homologues by this CM. The complex CM is run only on the
remaining sequences, thereby reducing the average
computational cost. It has been demonstrated that using
profile-HMM prescreening filters can make the search
hundreds of times faster at no (or only a slight) loss of
accuracy. A similar approach can be used to speed up
profile-csHMM based RNA searches [72].

There also exist a number of methods to improve the
speed of simultaneous RNA folding and alignment
algorithms [10, 73]. For example, Consan implements a
constrained version of the pairwise RNA structure prediction
and alignment algorithm based on pair stochastic context-
free grammars (pair-SCFGs) [73]. It assumes the knowledge
of a few confidently aligned base position, called `pins',
which are fixed during the alignment process to reduce the
overall complexity. These pins are chosen based on the
posterior alignment probabilities that are computed using a
pair-HMM. A recent version of another pairwise folding and
alignment algorithm called Dynalign [10] also employs
alignment constraints to improve its efficiency. Dynalign
also uses a pair-HMM to compute the posterior alignment
and insertion probabilities, which are added to obtain the so-
called co-incidence probabilities. We estimate the set of
alignable base positions by thresholding the co-incidence
probabilities, and this set is subsequently used to constrain
the pairwise RNA alignment. It has been shown that

employing these alignment constraints can significantly
reduce the computational and memory requirements without
degrading the structure prediction accuracy [10, 73].

6. CONCLUDING REMARKS

Hidden Markov models have become one of the most
widely used tools in biological sequence analysis. In this
paper, we reviewed several different types of HMMs and
their applications in molecular biology. It has to be noted
that this review is by no means exhaustive, and that there
still exist many other types of HMMs and an even larger
number of sequence analysis problems that have benefited
from HMMs. Hidden Markov models provide a sound
mathematical framework for modeling and analyzing
biological sequences, and we expect that their importance in
molecular biology as well as the range of their applications
will grow only further.
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