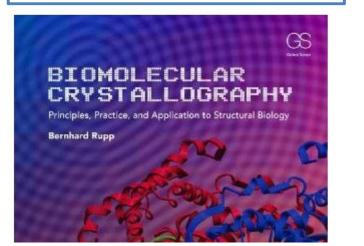

Corso di Biocristallografia e Microscopia Elettronica Introduction: Why structural studies?

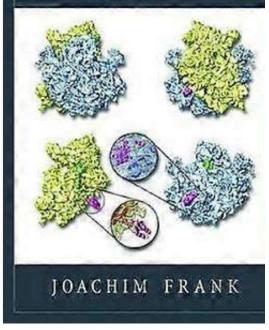

Timetable of the lectures

- Monday 11-12 Room A9
- **Tuesday 15-17** Room A9
- Wednesday 9-11 Room A9

Bernhard Rupp

Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology

Garland Science


Books

Joachim Frank

Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State

Oxford University Press

Three-Dimensional Electron Microscopy of Macromolecular Assemblies

Contents

Introduction

- Structure function relationships
- Elements of protein structure
- Visualization software and databanks of protein structures

Protein samples for structural studies

- Recombinant proteins
- Expression and purification
- Evaluation of sample quality and purity
- Analysis of conformational stability

Biocrystallography

- Crystallization of proteins
- Symmetry in crystals
- Non-crystallographic symmetries
- Basic concepts of diffraction physics
- Instruments
- Diffraction data collection techniques
- Phase problem in crystallography
- Refinement of the structural model
- Validation

Transmission electron microscopy

- Basic concepts of optics for TEM
- Instruments
- Single particle techniques
- Image analysis
- 3D reconstruction from images
- Validation
- Electron crystallography

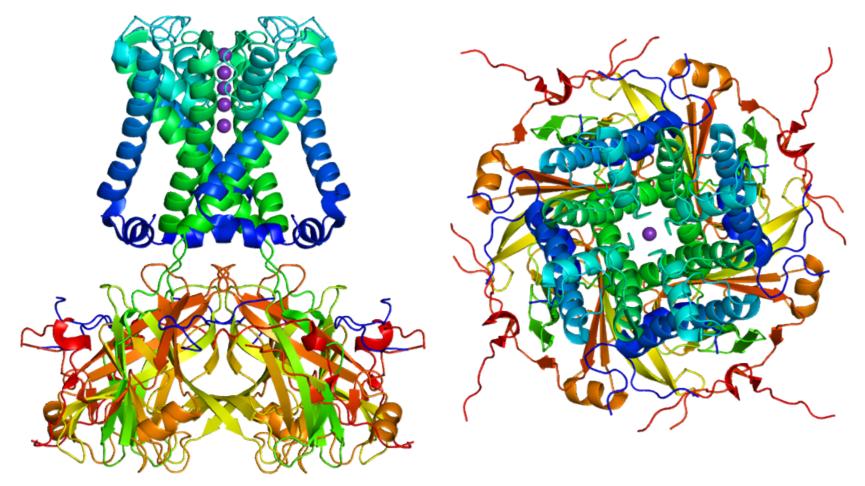
Practicals

- Crystallization of a protein sample
- Sample preparation for data collection
- Data collection at the Elettra Synchrotron
- Data analysis, structure solution and refinement

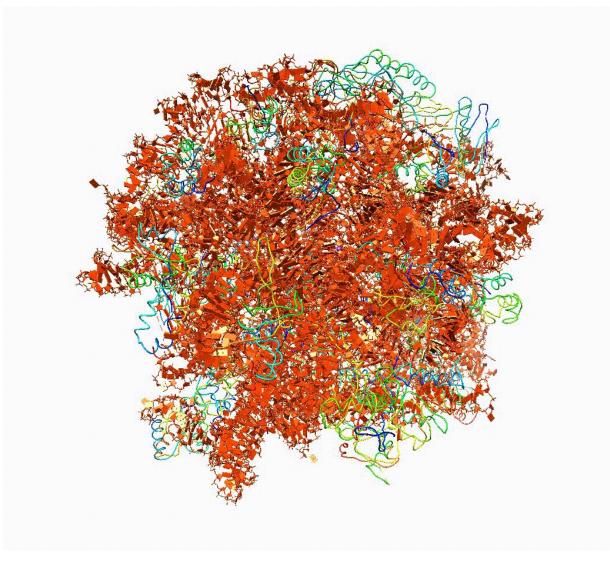
Objectives of the course

Knowledge of:

- Basic elements of 3D structure of proteins
- Main characteristics of crystals and crystallization techniques
- Physical basis of X-ray diffraction
- X-ray data collection techniques, structural determination and refinement
- Techniques of structural determination by electron microscopy
- Electron microscopy data analysis, up to structure validation

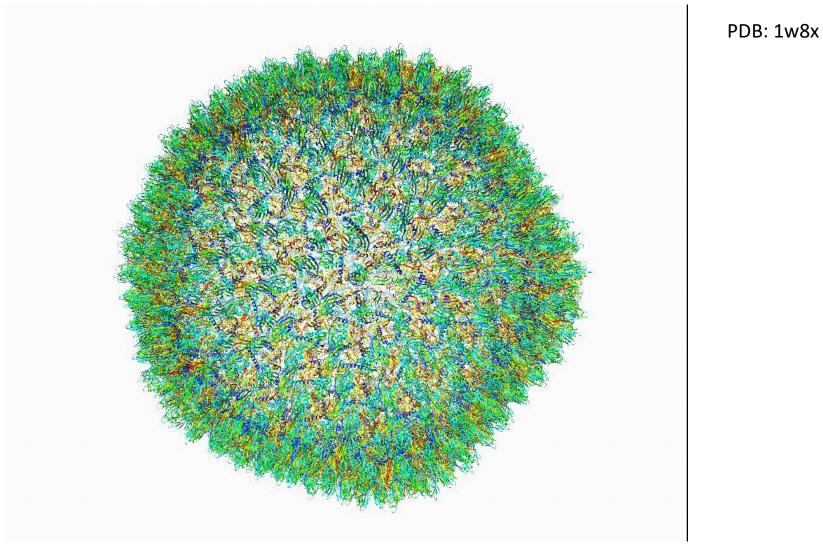

Apply knowledge to:

- Describe the 3D structure of a protein
- Plan a X-ray diffraction or electron microscopy experiment, from expression to structure
- Highlight main reasons to chose a structural biology technique over the others
- Recognize crucial factors that can improve/hamper a structural biology experiment
- Identify significant information that can be obtained from a protein structure
- Evaluate quality and reliability of a protein structure obtained through crystallography or EM

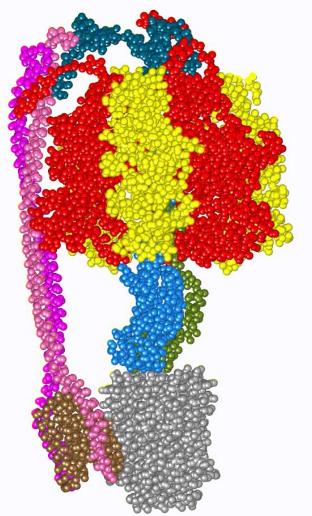

Communicate:

- Read and understand a structural biology paper, discussing critical aspects
- Obtain useful information from the available online databases of protein structures
- Present a structural biology study, highlighting useful information obtained from structures
- Obtain images of a protein structure to describe its main features
- Highlight structure-function relationships

• Mechanisms of biologically relevant proteins and complexes: e.g. Potassium channel

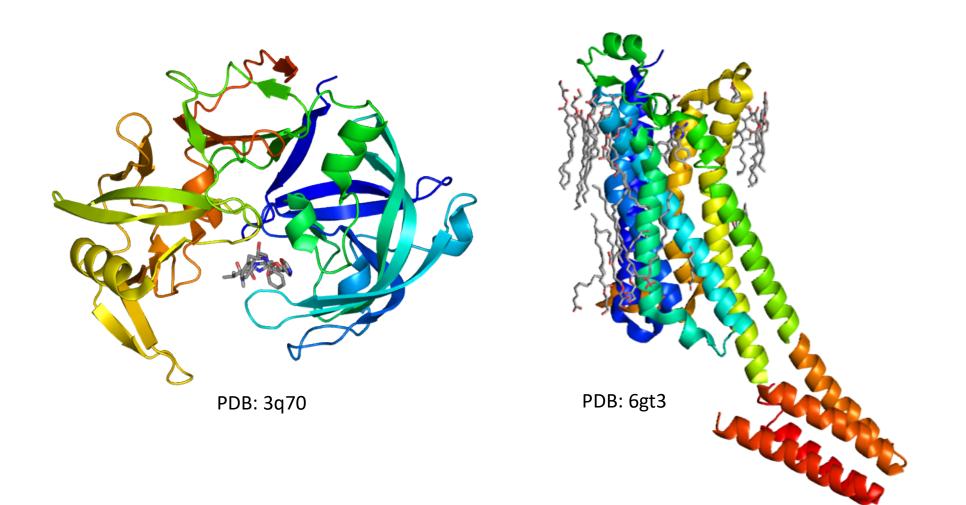


• Mechanisms of biologically relevant proteins and complexes: e.g. ribosome



PDB: 1ffk

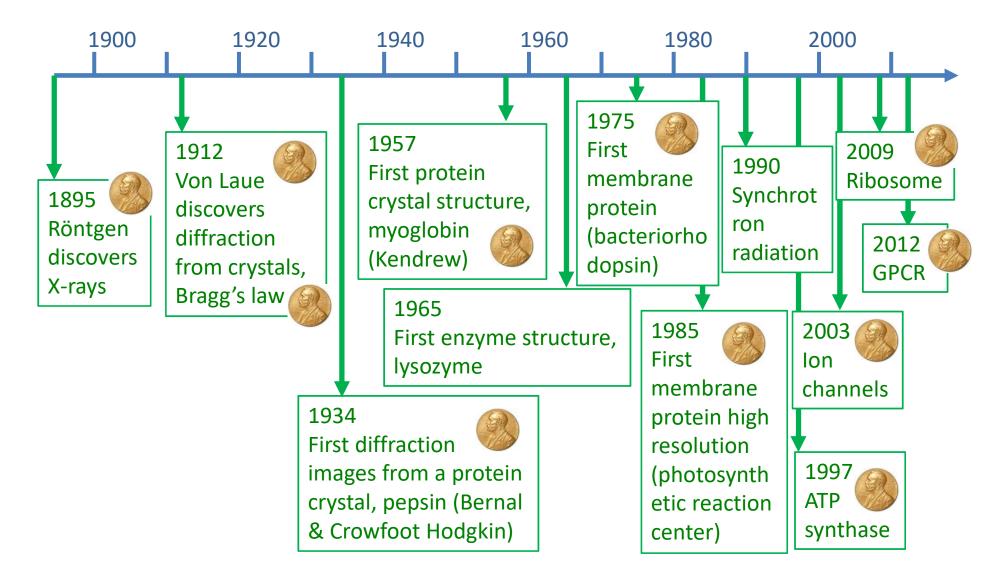
 Mechanisms of biologically relevant proteins and complexes: e.g. virus



• Mechanisms of biologically relevant proteins and complexes: e.g. ATP-synthase

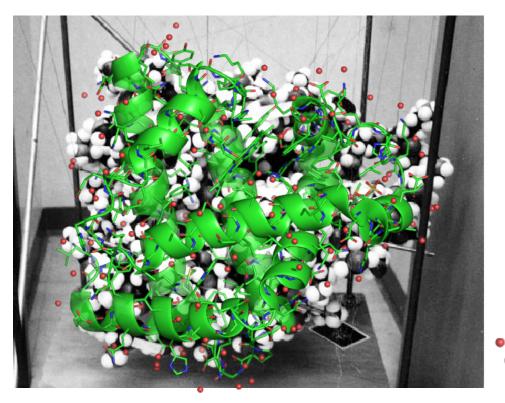
PDB: 5are, 5fil, 5fij, 5fik, 5ara, 5ari, 5arh

• Drug design: e.g. HIV protease inhibitors, GPCR receptors



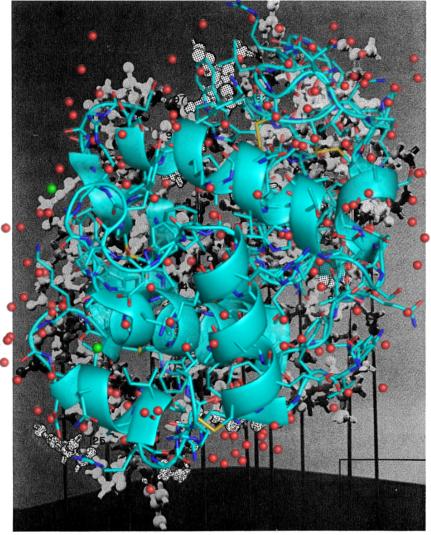
Structural biology: techniques

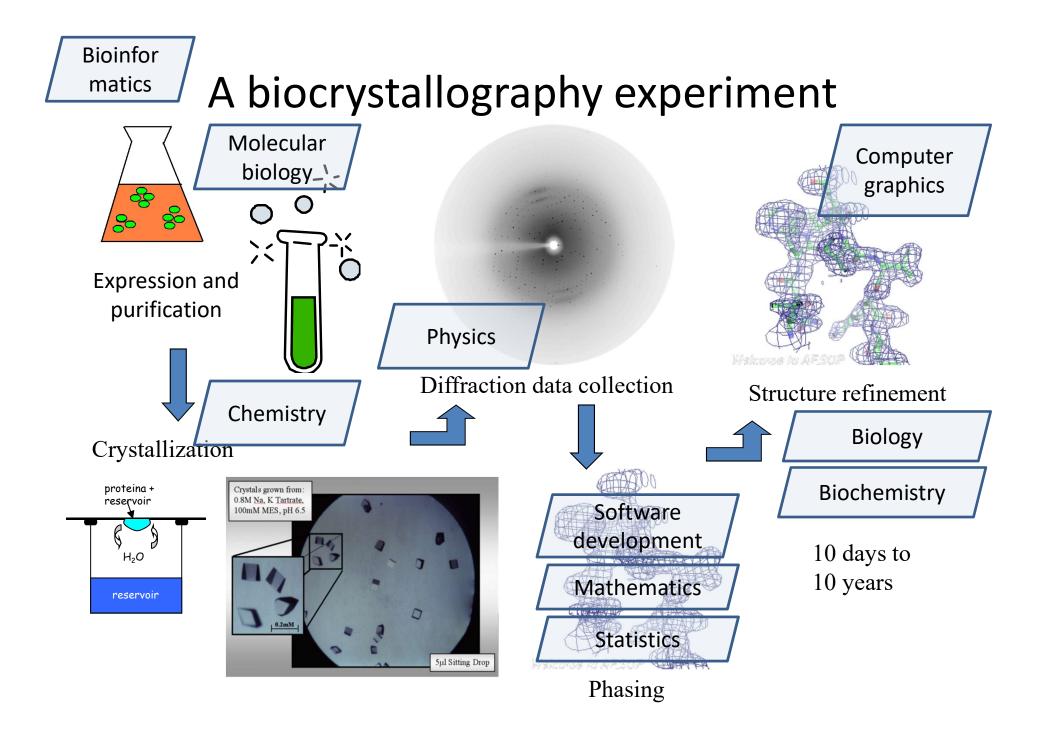
	X-ray crystallography	NMR	Electron Microscopy
Protein size	No limitation	< 80 KDa	> 70 kDa
Resolution	Atomic	Atomic	< 2 Å
First structure	1957	1985	Low res: 1975 Medium res:1990 High res: 2015
Dynamics	No	Yes	(Yes)
Main bottlenecks	Crystallization	lsotope enrichment	Image analysis, model validation

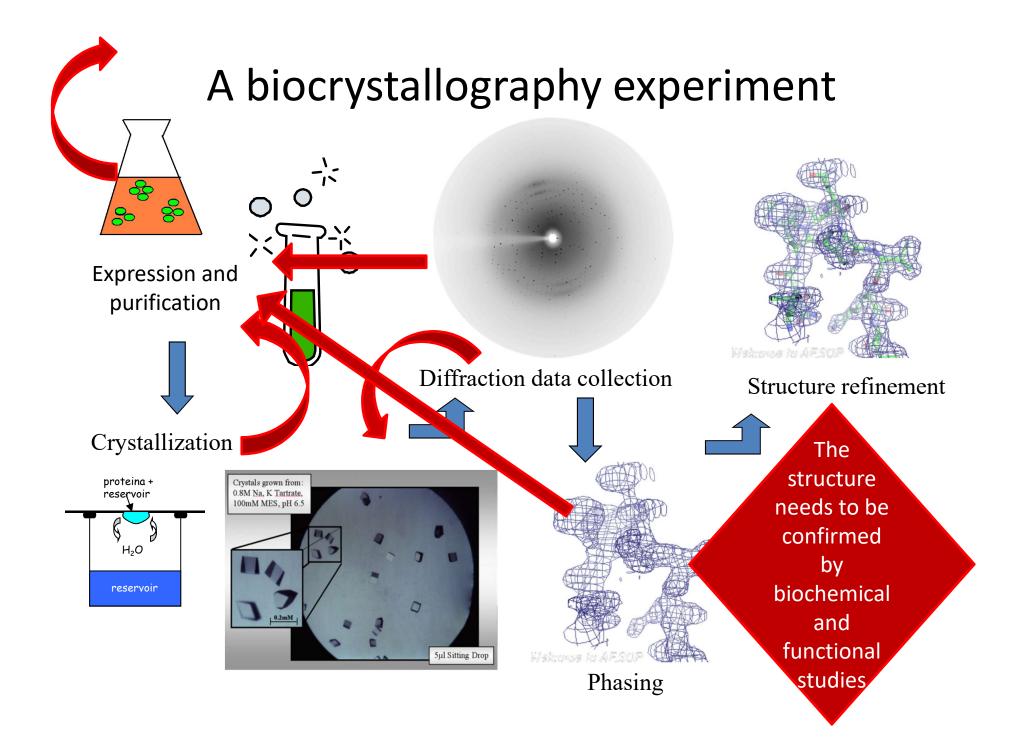

Different structural biology techniques give complementary results!!

Biocrystallography

First protein structures determined by X-ray crystallography


• Myoglobin from sperm whale





PDB: 1lyz

• Lysozyme from chicken egg whites

Databank resources: PDB (www.rcsb.org)

RCSB PDB Deposit - Search -Visualize -Analyze -Download -Learn 👻 More -

Experimental Data & Validation

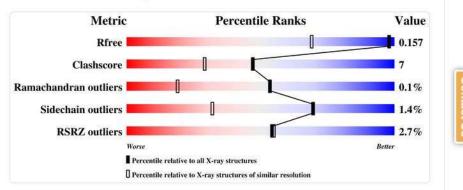
Experimental Data

Resolution: 1.16 Å

R-Value Free: 0.157

R-Value Work: 0.138

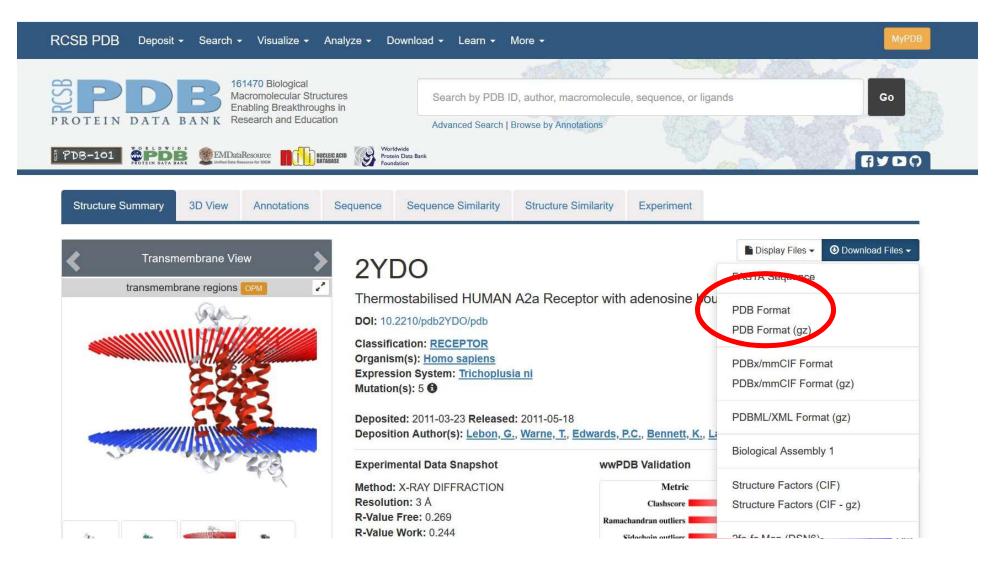
Space Group: | 4


Method: X-RAY DIFFRACTION Unit Cell: Length (Å) Angle (°) a = 124.872 $\alpha = 90.00$ b = 124.872 $\beta = 90.00$ c = 175.683y = 90.00

Software Package:

Software Name	Purpose
MOLREP	phasing
HKL-2000	data reduction
PHENIX	refinement
HKL-2000	data scaling

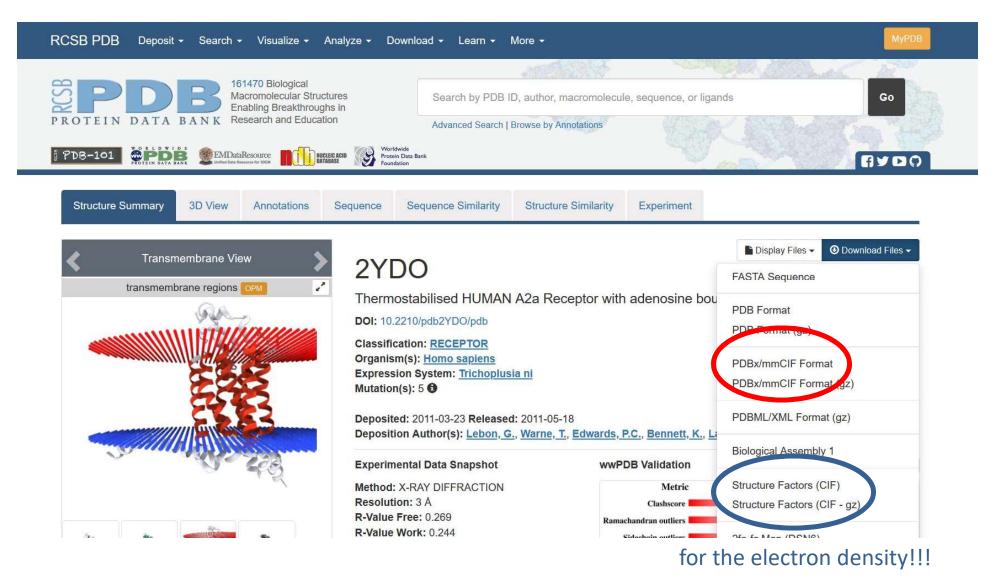
Structure Validation


View Full Validation Report or Ramachandran Plots

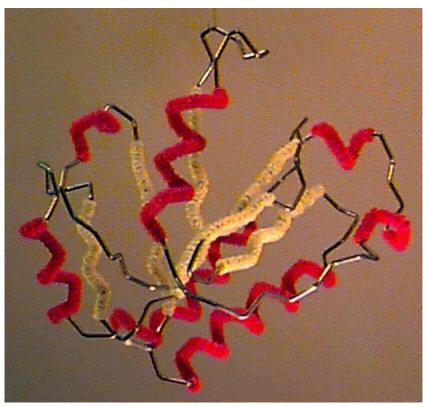
View more in-depth experimental data

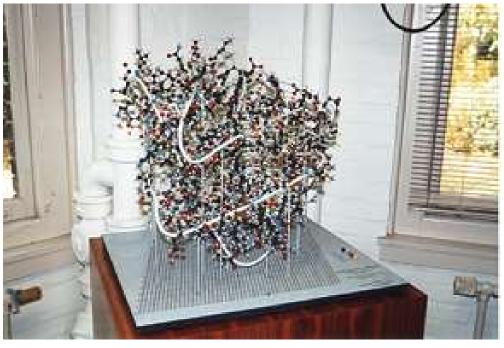
Databank resources: EMDB (www.ebi.ac.uk/pdbe/emdb/)

	ein Data Bar Structure to Biology		поре	Examples: hemoglobin, BRCA1_	HUMAN Advanced search
EMDB >	EMD-0632			Single particle reconstruction 2.7Å resolution	Quick links
Rotavirus A-VF	23 (RVA-VP3)			Map released:	# EMD-0632 overview
ource organism: R				2020-03-11	 Function and Biology Experiments and Validation
itted atomic mode			To be published		 View Downloads Volume viewer Volume slicer Visual analysis
Function and I	Biology	Details	Experimental Info	ormation 🔂 Details	
Sample name: VP3			Resolution:	2.7Å	Related entries
Ligand: Proteins:	GUANOSINE-5'-MONO VP3, Protein VP3	PHOSPHATE	Resolution method: Applied symmetry:	FSC 0.143 CUT-OFF D2	Q By authors
Froteins.			Reconstruction softwa		Q By sample Q By organism


/ 2ydo.	odb - Blocco note di Windows — 🔲	×
Construction of the second	fica Formato Visualizza ?	
HEADER	RECEPTOR 23-MAR-11 2VDO	▲ ∧
TITLE	THERMOSTABILISED HUMAN A2A RECEPTOR WITH ADENOSINE BOUND	
COMPND	MOL_ID: 1;	
COMPND	2 MOLECULE: ADENOSINE RECEPTOR A2A;	
COMPND	3 CHAIN: A;	
COMPND	4 FRAGMENT: RESIDUES 1-317;	
COMPND	5 SYNONYM: THERMOSTABILISED HUMAN A2A RECEPTOR;	Information
COMPND	6 ENGINEERED: YES;	intornation
COMPND	7 MUTATION: YES	about the
SOURCE	MOL_ID: 1;	
SOURCE	2 ORGANISM_SCIENTIFIC: HOMO SAPIENS;	protein
SOURCE	3 ORGANISM_COMMON: HUMAN;	
SOURCE	4 ORGANISM_TAXID: 9606;	
SOURCE	5 TISSUE: BRAIN;	
SOURCE	6 EXPRESSION_SYSTEM: TRICHOPLUSIA NI;	
SOURCE	7 EXPRESSION_SYSTEM_COMMON: CABBAGE LOOPER;	
SOURCE	8 EXPRESSION_SYSTEM_TAXID: 7111;	
SOURCE	<pre>9 EXPRESSION_SYSTEM_CELL_LINE: HIGH FIVE;</pre>	
SOURCE	10 EXPRESSION_SYSTEM_VECTOR_TYPE: BACULOVIRUS;	
SOURCE	11 EXPRESSION_SYSTEM_PLASMID: PBACPAK8	
KEYWDS	RECEPTOR, G PROTEIN COUPLED RECEPTOR, SEVEN-HELIX RECEPTOR, AGONIST	-
KEYWDS	2 BOUND FORM, THERMOSTABILISING POINT MUTATIONS, GPCR, 7TM RECEPTOR	
EVDDTA	V DAV DIEEDACTION	•
AUTHOR	G.LEBON, T.WARNE, P.C.EDWARDS, K.BENNETT, C.J.LANGMEAD, A.G.W.LESLIE,	
AUTHOR	2 C.G.TATE	
REVDAT	4 03-APR-19 2YDO 1 SOURCE	Information
REVDAT	3 22-JUN-11 2YDO 1 JRNL	about the
REVDAT	2 01-JUN-11 2YDO 1 REMARK MASTER	about the
REVDAT	1 18-MAY-11 2YDO 0	publication
JRNL	AUTH G.LEBON, T. WARNE, P.C. EDWARDS, K. BENNETT, C.J. LANGMEAD,	
JRNL	AUTH 2 A.G.W.LESLIE,C.G.TATE	
JRNL	TITL AGONIST-BOUND ADENOSINE A(2A) RECEPTOR STRUCTURES REVEAL	
JRNL	TITL 2 COMMON FEATURES OF GPCR ACTIVATION.	
TONI	DEE NATIDE N 474 E21 2011	

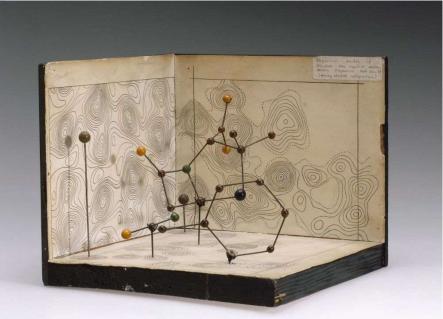
File Mod	ifica	Formato Visualizza ?				
REMARK	200					
REMARK	200	EXPERIMENTAL DETAILS				
				X-RAY DIFFRACTION		
REMARK	200	DATE OF DATA COLLECTION	:	09-DEC-10		
REMARK	200	TEMPERATURE (KELVIN)	:	100		
REMARK				7.6		
REMARK	200	NUMBER OF CRYSTALS USED	•	2		Info
REMARK						
REMARK	200	SYNCHROTRON (Y/N)	:	Y		abo
REMARK	200	RADIATION SOURCE BEAMLINE X-RAY GENERATOR MODEL	:	DIAMOND		
REMARK	200	BEAMLINE	:	124		crys
REMARK	200	X-RAY GENERATOR MODEL	:	NULL		phi
REMARK	200	MONOCHROMATIC OR LAUE (M/L)	:	M		
REMARK	200	WAVELENGTH OR RANGE (A)	:	0.9778		exp
REMARK	200	MONOCHROMATOR	•	NULL		· ·
REMARK	200	OPTICS	:	NULL	a.	
REMARK	200					
REMARK	200	DETECTOR TYPE DETECTOR MANUFACTURER	:	PIXEL		
REMARK	200	DETECTOR MANUFACTURER	•	DECTRIS PILATUS 6M		
		INTENSITY-INTEGRATION SOFTWARE				
		DATA SCALING SOFTWARE	:	SCALA		
REMARK						
		NUMBER OF UNIQUE REFLECTIONS				
		RESOLUTION RANGE HIGH (A)				
		RESOLUTION RANGE LOW (A)				
		REJECTION CRITERIA (SIGMA(I))	·	0.000		
REMARK						
		OVERALL.				
REMARK	200	COMPLETENESS FOR RANGE (%)	1	93.9		
REMARK	200	DATA REDUNDANCY	·	2.600		
REMARK	200	DATA REDUNDANCY R MERGE (I) R SYM (I)	•	0.10000		
		A 1/2				
REMARK	200	<i sigma(i)=""> FOR THE DATA SET</i>		1.1000		


Information about the crystallogra phic experiment


/// 2ydo.p	odb - Bl	оссо г	note di	Wind	dows					. <u></u> :		×	
File Modif	f <mark>ica</mark> Fo	rmato	Visua	alizza	?								
SITE	3 A	C1 1	1 HO	H A2	2016	HOH A2017	HOH A2	918				~	
SITE	1 A	C2	1 TY	RA	179								
SITE	1 A	C3	5 GL	YA	142	TRP A 143	ASN A	144 ASN	A 145				Unit cell
CTTC	2 1	0.0050		1010-11-205.	140							-	Onit cen
CRYST1	76.	465	98	.869	9 7	79.516 90.0	0 93.49	90.00	C 1 2 1	4			and
ONIOX1		1.00	0000	- 0			0	-0.00000				-	
ORIGX2		0.00			.0000			0.00000					symmetry
ORIGX3		0.00			.0000			0.00000					
SCALE1		0.01			.0000			0.00000					
SCALE2		0.00			.0101			0.00000					
SCALE2	-	0.00			0000		raze at mintrecours	0.0000			500		
ATOM	1	Ν	SER		6	-28.148	4.590	-7.800	1.00113.33		Ν		List of atoms
ATOM	2	CA	SER		6	-26.785	4.701	-7.207	1.00115.91		С		
ATOM	-	С	SER		6	-26.419	6.159	-6.970	1.00114.54		С		with:
ATOM	4	0	SER		6	-26.103	6.886	-7.915	1.00110.10		0		
ATOM	- 1	CB	SER		6	-25.744	4.037	-8.113	1.00116.34		С		1. Atom name
ATOM	e	OG	SER		6	-26.087	2.689	-8.379	1.00121.40		0)	2. Residue
ATOM	7	N	SER		/	-26.458	6.572		1.00116.37		N		2. Residue
ATOM	8	CA	SER		7	-26.153	7.952	-5.306	1.00112.95		С		type and
ATOM	9	C	SER		7	-24.758	8.391	-5.751	1.00109.79		C		· · ·
ATOM	10	0	SER		7	-24.497	9.586	-5.902	1.00104.20		0		number
ATOM	11	CB	SER		7	-26.313	8.125	-3.794	1.00113.79		С		3. Chain
ATOM	12	OG N	SER		7	-25.474	7.228	-3.088	1.00117.64		0		5. Chain
ATOM	13	Hallow'	VAL VAL		8	-23.879	7.409	-5.959	1.00108.84		N C		4. Cartesian
ATOM	14 15	CA C	VAL		8	-22.535	8.258	-6.501	1.00108.75		c		
ATOM ATOM	16	0	VAL		8	-22.822	9.207	-7.895 -8.205	1.00110.01 1.00105.91		0		coordinates
ATOM	17	СВ	VAL		8	-21.895	6.295	-6.599	1.00108.46		c		5. Occupancy
ATOM	18		VAL		8	-20.240	6.568	-6.638	1.00107.74		c		5. Occupancy
ATOM	19		VAL		8	-22.087	5.355	-5.443	1.00105.56		c		6. Thermal
ATOM	20	N	TYR		9	-22.087	7.717	-8.719	1.00108.80		N		
ATOM	20	CA	TYR		9	-23.812	8.252		1.00102.10		C		factor
ATOM	22	C	TYR		9	-24.618	9.551	-9.966	1.00 98.51		c		7. Atom type
ATOM	23	0	TYR		9	-24.331		-10.688	1.00 94.86		0		7. Atom type
	25	U	TIK	~	-	24.551	10.500	10.000	1.00 24.00		U		

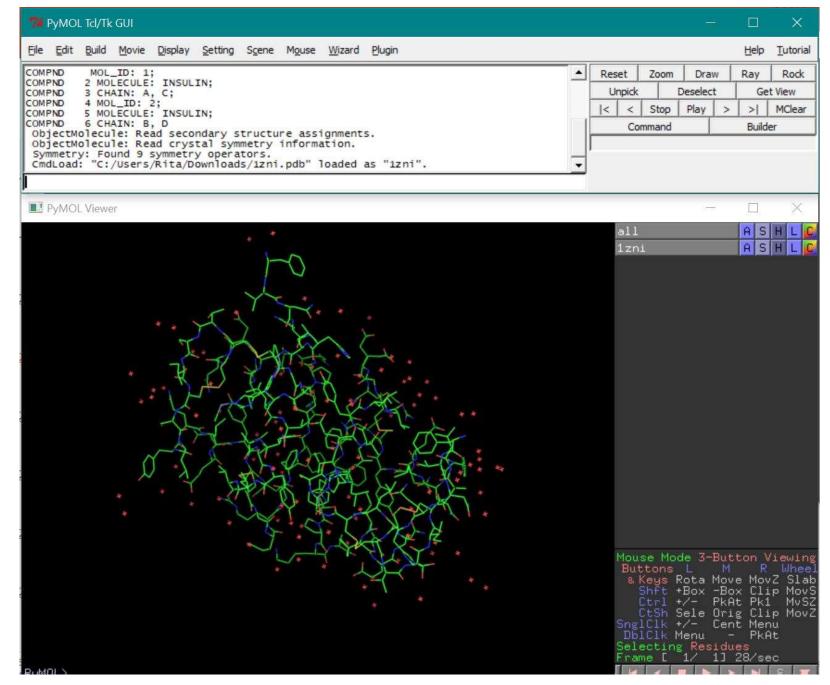
Structure atomic coordinates: mmCIF file

Graphical software: in the old days...



Graphical software: in the old days...

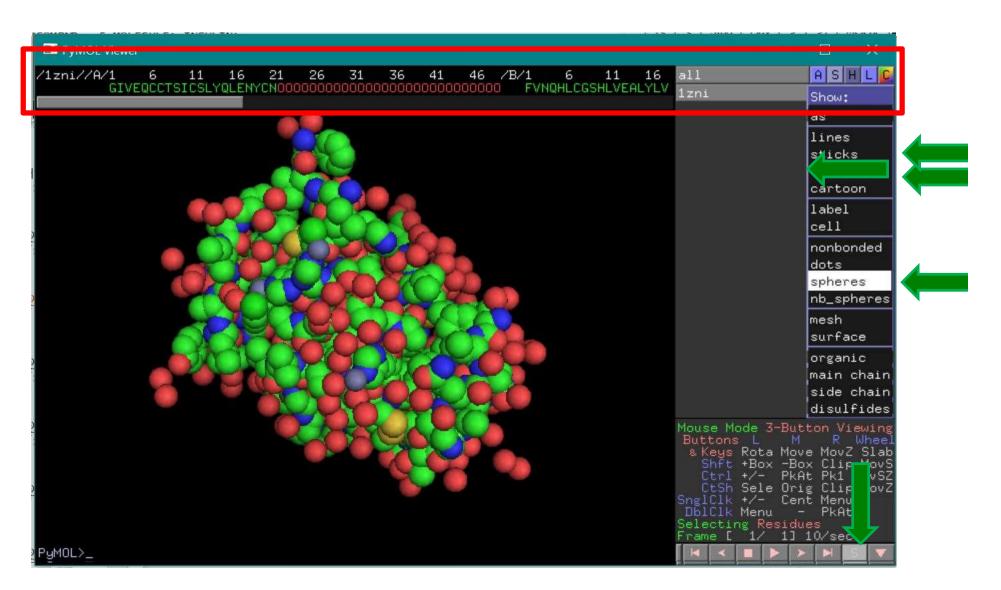
Graphical software: in the old days...


Graphical software:... today

Graphical software: Pymol 1. Download: https://pymol.org/2/

PyMOL by Schrödinger			SCREENSHOTS PRODUCT	S SUPPORT CONTACT
	Apertura di PyMOL-2.3.4_0-Windows-x86	_64.exe ×		
	È stato scelto di aprire: ■ PyMOL-2.3.4_0-Windows-x86_64 tipo: Binary File (303 MB) da: https://pymol.org Salvare questo file? ■ HIGHIK YOU FOF GOWH → Learn more about	Salva file Annulla	× 3	
Wind	ows Windows	macOS	Linux	

2. Open and load pdb file



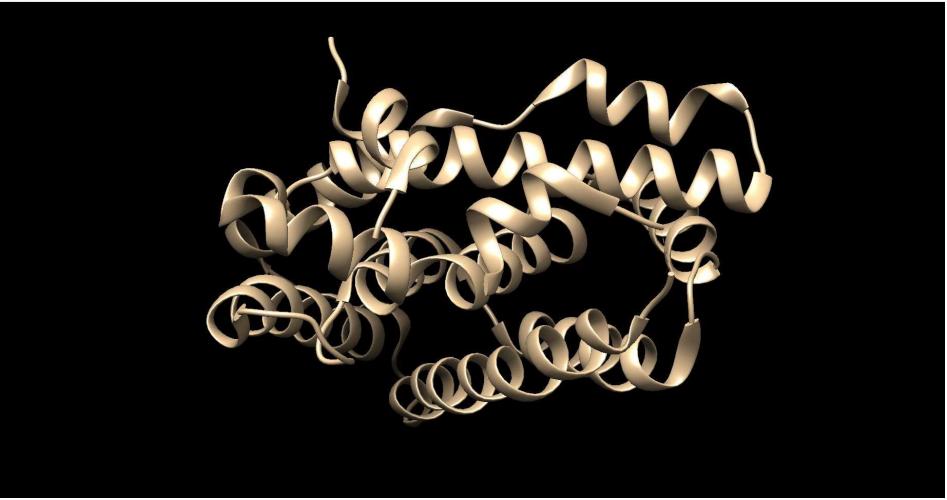
3. Menu options

74 PyMOL Td/Tk GUI	- 🗆 X
<u>File Edit Build Movie Display Setting Scene Mouse Wizard Plugin</u>	<u>H</u> elp <u>T</u> utorial
COMPND MOL_ID: 1; COMPND 2 MOLECULE: INSULIN; COMPND 3 CHAIN: A, C; COMPND 4 MOL_ID: 2; COMPND 5 MOLECULE: INSULIN; COMPND 6 CHAIN: B, D ObjectMolecule: Read secondary structure assignments. ObjectMolecule: Read crystal symmetry information. Symmetry: Found 9 symmetry operators. CmdLoad: "C:/Users/Rita/Downloads/1zni.pdb" loaded as "1zni".	▲ Reset Zoom Draw Ray Rock Unpick Deselect Get View < < Stop Play > MClear Command Builder
PyMOL Viewer	- 🗆 X
	all ASHLC 1zni Color: by element by chain by ss spectrum auto reds greens hum yellows magentas cyans oranges tints grays
	Mouse Mode 3-Button Viewing Buttons L M R Wheel & Keys Rota Move MovZ Slab Shft +Box -Box Clip MovS Ctrl +/- PkAt Pk1 MvSZ CtSh Sele Orig Clip MovZ SnglClk +/- Cent Menu DblClk Menu - PkAt Selecting Residues Frame [1/ 1] 8/sec

Visualization options:

spheres

Graphical software: UCSF Chimera


1. Download:www.cgl.ucsf.edu/chimera/

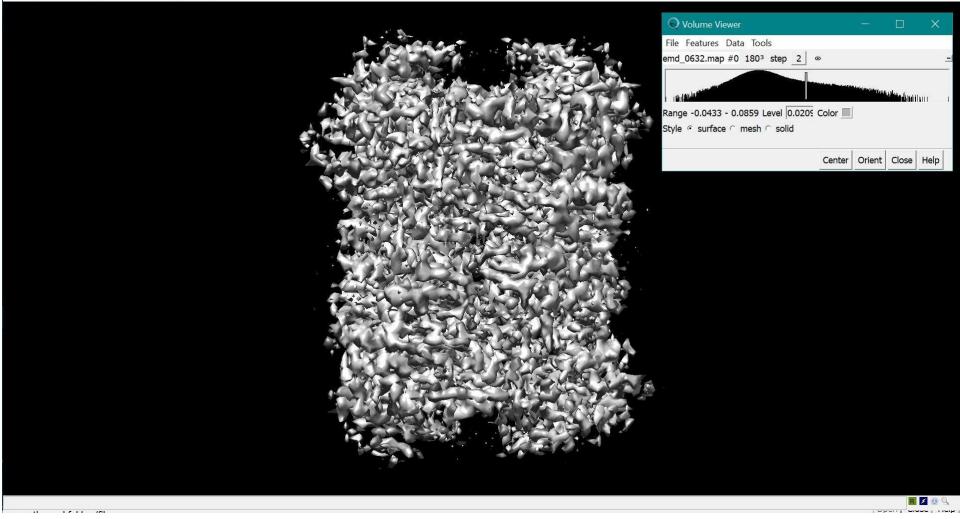
REVE					14 TOAETTOL DAGANG TANK UK 123 TANANG ETATAK UK about projects pe	ople publications
Quick Links Documentation			Modeling System r a		resources ——— vis	it us search
Getting Started User's Guide Command Index Tutorials and Videos Guide to Volume Data Kelease Note		ot Releases orted Releases	 <u>Licensing Information</u> <u>Experimental Chimera Features</u> 	 <u>Graphics Driv</u> <u>Benchmark F</u> <u>Chimera Sou</u> <u>Cygwin Sour</u> 	Results rce Code	
Download What's New in Daily Builds May 10 Control Daily Builds Calleries Image Gallery Animation Gallery Publications	See the re	recent changes, use	EASES of new features and other information. the <u>snapshot</u> and <u>daily</u> builds; they are less	tested but usually	reliable.	
Related Databases and		Platform	Installer, Size, and Checksum	Date	Notes	
<u>Software</u> <u>Citing Chimera</u> <u>Contact Us</u>	Microso	ft Windows 64-bit	chimera-1.14-win64.exe Size: 152229635 bytes MD5: a3eddc25f84e55c4c49ff6f6f6f7643b	Nov 13, 2019	Instructions Documentation Runs on Windows 7 or later.	
	Mac OS	S X 64-bit	chimera-1.14-mac64.dmg Size: 135741903 bytes MD5: c763aa87af928ae6dc7d39a8f6bf92d5	Nov 13, 2019	Instructions Documentation Runs on Mac OS X 10.10 or later.	

2. Open and load pdb file

UCSF Chimera

File Select Actions Presets Tools Favorites Help

Load a map file (electron density!) (www.ebi.ac.uk/pdbe/emdb/)

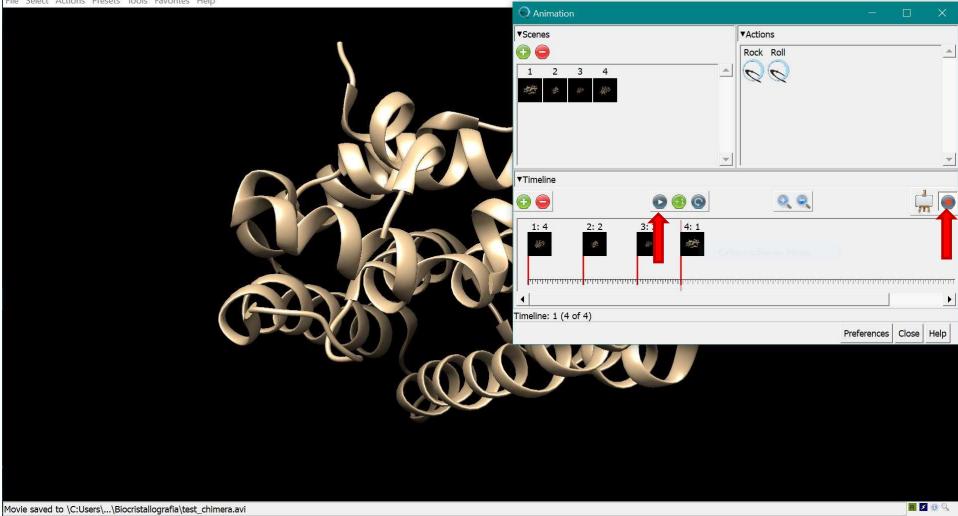

EMBL-EBI					Services Research Training About us
	in Data Ba	nk in Eu	lrope	Examples: hemoglobin, BRCA1_HUN	MAN Advanced search
				Cingle particle reconstruction	🗣 Feedback
EMDB > E	EMD-0632			Single particle reconstruction 2.7Å resolution	Quick links
Rotavirus A-VP3	tavirus A [28875]			Map released: 2020-03-11	 ♣ EMD-0632 overview 𝒞 Function and Biology 𝒞 Experiments and Validation
Fitted atomic model: 3Dbionotes: available			To be published		 ♥ View ★ Downloads Map (gz) Experimental metadata (xml) Bundle (tar.gz)
Function and B	iology	Details	Experimental Info	ormation Details	Bundle (zip) Volume viewer
Sample name: Ligand: Proteins:	VP3 GUANOSINE-5'-MON VP3, Protein VP3		Resolution: Resolution method: Applied symmetry: Reconstruction softwa Microscope: Detector:	2.7Å FSC 0.143 CUT-OFF D2	 Volume slicer Visual analysis Related entries

3. Load a map file (electron density!)

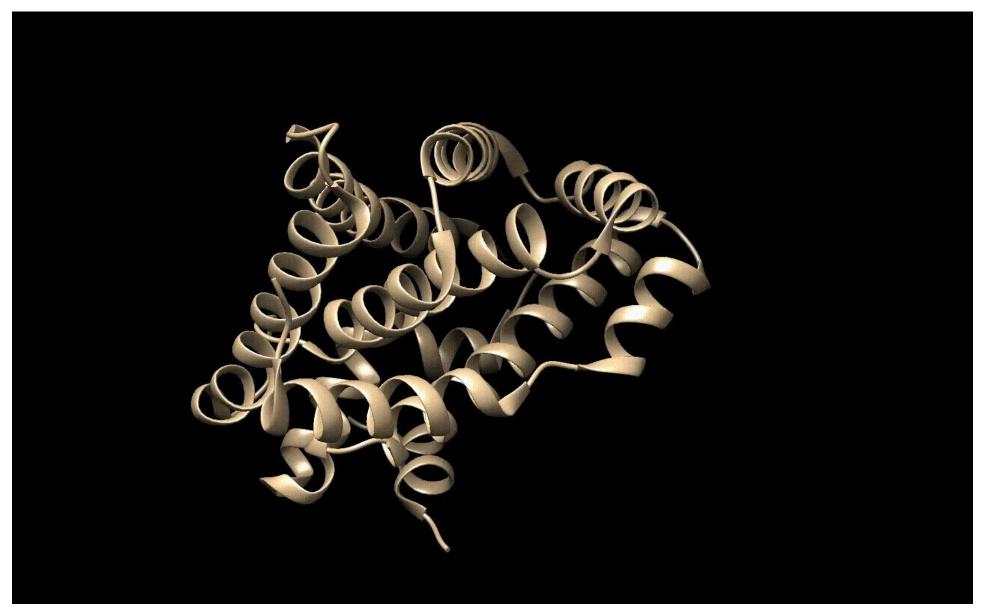
Q UCSF Chimera

File Select Actions Presets Tools Favorites Help

- 0 X



99.Animation!


Q UCSF Chimera

File Select Actions Presets Tools Favorites Help

- 0 X

99.Animation!

