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Understanding crystal order is important to 
maximize the information that can be 
extracted from crystallographic data. 

Sharp edges and plane faces
Regular crystal habit depends on the internal 
long-range order of the crystal structure.

Diffraction properties of crystals depend on 
their internal order: X-ray interaction with the 
ordered molecules forming the crystal. 

Combination of the requirements for:
long-range order

and 
symmetry elements in the crystal

=
230 space groups for crystals, 

But only 65 allowed for protein crystals  
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Point group symmetry elements
Point group symmetry elements are invariant points of transformations able 
to relate a point (x,y,z) to another point (x’,y’,z’).

Inversion center: Mirror plane:

During each of this transformations, a generic point of coordinates (x,y,z) is transformed 
in a symmetric point, with coordinates (x’,y’,z’), by a matrix operator:

Inversion center, i:

x’ = i x

i = 

Rotation axis, e.g. 4 along z:

x’ = A x

A = 

Mirror plane, e.g. in yz:

x’ = m x

m = 

Rotation axis:



Rotation axes
A rotation operation n (or of order n) describes a rotation of each point of 
360°/n around the rotation axis:

1 Rotation of 360°
(identity!)

2 Rotation of 180° 3 Rotation of 120°

4 Rotation of 90° 5 Rotation of 72° 6 Rotation of 60°
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And more:

7 8

10 12

5NBZ

3B8O

2YHP

6SH4

When symmetry 
elements are 
present, they 

involve more than 
one protein chain: 

proteins are 
ASYMMETRIC!



Translational periodicity: lattice and unit cell
Crystals are formed by repeated units along the three directions, but to 
simplify the problem we can start to describe lattice in the 2D case

How to cover a floor with tiles??

Due to the requirement for translational periodicity, lattices can have only the 
following rotational symmetries:

1, 2, 3, 4 and 6 

In 2D, the lattice is 
formed by a repeted 
unit, translated in 2 

directions:

a

b g
O

The repetitive unit is called 
unit cell. The lattice is 

defined by an origin of the 
translations and the unit cell 
parameters (or dimensions):

(in 2D) a, b and g



Even when symmetry elements include a 3-fold axis or a 6-fold axis, unit cell 
can be described as a parallelogram:

In 3D:
Unit cell parameters:

a, b, c and a, b, g



Crystal families and crystal systems

Crystal 
family

Crystal 
system Unit cell dimensions Minimal symmetry 

elements

Triclinic Triclinic a, b, c, a, b, g none

Monoclinic Monoclinic a, b, c, b
(a, g=90°)

2

Orthorhom
bic

Orthorhom
bic

a, b, c
(a=b=g=90°)

three perpendicular 
2 axes

Tetragonal Tetragonal a, c
(b=a, a=b=g=90°)

4

Hexagonal
Trigonal

a, c
(b=a, a=b=90°, g=120°)

3

Hexagonal 6

Cubic Cubic a
(b=a, c=a, a=b=g=90°)

four 3 axes along 
diagonal directions



Primitive and centered lattices
Primitive lattices have nodal points (nodes) at the vertices of the unit cell. 

But further translations are possible in the unit cell, forming centered lattices, 
with additional nodes:

Primitive
lattice Face(s) centered

lattices

Face centered Body 
centered

lattice

Base centered

A primitive lattice can always describe the structure, but in presence of specific 
elements of symmetry it can be useful to describe the lattice as centered.



Crystal families + centering = 14 Bravais lattices

Face 
centered, F

Body 
centered, I

Base 
centered, C

Triclinic lattice

Primitive, P

Monoclinic lattice

Primitive, P

Primitive, P

Orthorhombic lattice

Face centered, F Body centered, IPrimitive, P

Cubic lattice

Base centered, C Body centered, IPrimitive, P

Tetragonal lattice

Hexagonal lattice

Primitive, P Rhombohedral, R

t = (½, ½, 0)
t1 = (0, ½, ½) 
t2 = (½, 0, ½)
t3 = (½, ½, 0)

t1 = (0, ½, ½) 
t2 = (½, 0, ½)
t3 = (½, ½, 0)

t = (½, ½, 0)

t = (½, ½, ½)

t = (½, ½, ½)

t = (½, ½, ½)

t1 = (⅔, ⅓, ⅓) 
t2 = (⅓, ⅔, ⅔) 



Case in point: monoclinic C2 lattice

5RE9

ac plane

ab plane

bc plane

Monoclinic: 
a, b, c

a=g=90°, b



Rotation + translation = screw axis
Besides the point group symmetry elements, additional symmetry elements are 
possible in crystal cells: 

Screw axis Nm

Rotation of 360°/N
Translation of m/N

of the unit cell

• screw axis = rotation + translation • glide planes = mirror + translation

120° rotation

translation 

31

Screw axis 31

Rotation of 360°/3
Translation of 1/3 of the unit cell

6R8H



Rotation + translation = screw axis

120° rotation

translation 

31

Screw axis 31

Rotation of 360°/3
Translation of 1/3 of the unit cell

6R8H

Screw axis 32

Rotation of 360°/3
Translation of 2/3 of the unit cell

120° rotation

translation 

32



Symmetry operations
Symmetry operations are represented with specific figures when perpendicular 
to the plane, or arrows when parallel to the plane of the figure:

2-fold axis

21 screw axis

3-fold axis

31 screw axis

32 screw axis

4-fold axis

41 screw axis
42 screw axis
43 screw axis

6-fold axis

61 screw axis
62 screw axis
63 screw axis
64 screw axis
65 screw axis

Rototranslations 
in opposite 
directions!

Rototranslations 
in opposite 
directions!

Rotation axes

Rototranslation 
axes



Intermolecular contacts and crystal packing

Crystals are held together by 
intermolecular contacts, that 
determine their packing:

Crystal packing must be 
evaluated:

1) to evaluate the effect of 
crystal contacts on 
protein conformation

2) to obtain biologically 
active unit (for 
symmetry related 
oligomers)

Different origin choices are possible (while unit cell dimensions are the same!) 
for a lattice with no additional symmetry.

6V14

Triclinic: 
a, b, c
a, b, g



Choice of the origin
The choice of the origin depends on the symmetry of 
the crystal lattice. 

Case in point: lattice with 2-fold axis along b
(monoclinic lattice)

ac plane

5KO3

ab plane

bc plane

Monoclinic: 
a, b, c

a=g=90°, b



Choice of the origin
Case in point: lattice with 4-fold axis along c (tetragonal lattice)

ab plane

5DOE

ac and bc planes

4-fold axes
2-fold axes

Tetragonal: 
a=b, c

a=b=g=90°



Each symmetry operation can be represented by:
(1) a square matrix S and (2) a translation vector t

that transform a generic point x with coordinates (x,y,z) in its symmetric x’
with coordinates (x’,y’,z’): ᇱ

ଵଵ ଵଶ ଵଷ

ଶଵ ଶଶ ଶଷ

ଷଵ ଷଶ ଷଷ

+
௫

௬

௭

Fractional coordinates

The coordinate system of this equation, however, is not the orthogonal 
system in which we describe the atomic structure with distances in Å (i.e. in 
the pdb file).

The matrices S and vectors t are defined in the coordinate system of each 
specific lattice, i.e. having the x,y,z directions along the translational vectors 
that define the lattice. In addition, this coordinate system has fractional 
coordinates, that are calculated as fractions of the unit cell parameters in 
each direction.

Example: the coordinate system of a monoclinic lattice has 2 directions (x and 
z) that are not perpendicular, but form an angle equal to b.



Transformation: 4-fold axis along c direction of a tetragonal lattice 

+

Transformation: 21 screw axis along the b direction

+ ଵ
ଶ


