X-ray Diffraction experiment

Biocrystallography and Electron Microscopy

rdezorzi@units.it

X-ray diffractometer

Essential components:

۲

X-ray source in the 5-25

Additional components:

- Cryocooler
- Optical microscope for centering
- Fluorescence detector
- Automated sample changer
- ...

Rotating anode tube

X-ray tubes

Material of the anode (target) characterizes the wavelength of the emitted radiation.

Intensity of the radiation depends on ΔV applied. Maximum intensity depends on efficiency of cooling system.

Bremsstrahlung radiation:

due to deceleration of incident electrons in the target metal (e.g. copper).

Characteristic radiation:

corresponding to electronic transitions, with wavelength characteristic of target metal.

Rotating anode

Advantages: • High br

- High brilliance
- Tunable source
- Small beam divergence

- White beam
- Polarization

Optics

Monochromator / filters

- Filters (for traditional sources): foil of metal preceeding the anode metal
- Monochromators: single or double crystal, e.g. Si(111), Ge

Focusing mirrors / collimator

Be windows

Shutters

Slits

160 -

140+

internsty (arbitrary units)

100+

40 -

20 -

0.5

0.0

0.2

0.4

0.6

1.0

Wavelength (A)

0.8

1.2

1A

1.6

e.g. Ni foil for

a Cu anode

Kat

Without Filter

With Fille

2.0

1.8

2.2

MB

Goniostat

Single axis (ϕ): rotatation around a single axis, perpendicular to the incident beam

<u>4-circles goniometer</u>: 3 axes of rotation of the crystal and an additional rotational axis of the detector

Image plate:

- (1) X-ray captured by phosphorescent material
- (2) Stimulated emission of visible light

Unrecorded Imaging Plate

He-Ne Laser Beam Scanning Excitation light (633nm) Luminescence (400nm) Visible Light Plate is ready for use again. Erasing

Detectors

Characteristics:

- Quantum efficiency
- Dynamic range
- Spatial resolution

Photographic films

Charged Coupled Device (CCD):

- (1) X-ray converted in visible light
- (2) Excitation of CCD chip

- Maximum dynamic range
- Excellent Point Spread Function (PSF)
- High Detector Quantum Efficency (DQE)
- No dark-current and readout noise
- Readout time <6.7ms
- Allows to collect fine-φ-sliced data

Cryocrystallography

Crystal freezing:

- reduces radiation damage
- reduces thermal vibration
- reduces conformational disorder
- enhances signal-to-noise ratio

1. Crystal mounted on the goniometer with a loop on a magnetic base and flash frozen under a stream of nitrogen gas at ≈100K.

Hampton Magnetic

2. Crystal pre-frozen in liquid nitrogen and kept in dewar. On the beamline, mounting with the automated system

Crystal centering

Crystal should be in the beam path during all data collection (rotation). And ideally beam size should not excede crystal size to reduce background.

1. Manual centering: center crystal in 2 directions, 90° apart

Automatic centering (@beamlines):
 or 3- click procedures

3. Centering with gridding (@microfocus beamlines)

Ideal for centering of small, hard to distinguish crystals, but requires very small beam compared to crystal size.

Microfocus beamlines

Beamlines with beamsize of 1-20 μ m:

- Ideal for small crystals
- Low background scattering from solvent/loop
- High Signal-to-Noise Ratio (SNR)
- Possible selection of well diffracting region in larger crystals & helical data collection strategy
- "Grid-scan" for crystals difficult to visualize
- In-situ diffraction

Beamlines: ID13 & ID23-2 @ESRF ID24 @Diamond 23ID-B & D @APS 24ID-E @APS BL32XU @SPring8 X06SA @SLS PX2 @Soleil

Requirements:

- High brilliance photon source (ondulator)
- Highly stable beam (Top-up mode)
- Thermally stable optics & endstation
- No vibrations on optics
- High precision goniometer

Problems:

- Higher radiation damage on crystals (overcome by helical data collection strategy)
- Usually requires screening for small crystals

X-ray diffraction experiment workflow

X-ray diffraction experiment

- 1. Select <u>wavelength</u> (i.e. dimension of Ewald sphere...).
- 2. Mount crystal on diffractometer. Center.
- 3. Check crystal quality by taking diffraction images at $\varphi = 0^{\circ}$ and at $\varphi = 90^{\circ}$ (check anisotropy)
 - -> is it salt? Is it a single crystal?
 - -> from initial images evaluate **resolution limit** and <u>crystal-to-detector distance</u>: *smaller distance for high resolution, but check sovrapposition of spots in the diffraction pattern. Larger unit cells have small reciprocal space cells, and very close diffraction spots.*
 - -> evaluate <u>exposure time</u>: longer exposure allows to collect stronger high resolution reflections, but check overloads in the low resolution spots; longer exposure causes more radiation damage.
 - -> check presence of ice rings

Low resolution data are important for phasing!

- 3. Collect further images to determine **unit cell parameters**, symmetry and crystal orientation (\approx 10 images, $\Delta \phi = 1^{\circ}$ /image)
 - -> evaluate **mosaicity** of the crystal (software): larger reciprocal lattice nodes in diffraction conditions for more than one image

4. Indexing: analyze images to identify

- (a) crystal orientation,
- (b) unit cell parameters,
- (c) symmetry (Laue group),
- (d) and assign to each reflection the Miller indexed of
 - the family of planes

using knowledge of

- (1) wavelength,
- (2) crystal-to-detector distance
- (3) beam position

Choice of the unit cell:

- (i) Highest symmetry
- (ii) Smallest cell

Indexing

(Indexing with Mosflm) Mosflm finds the diffracted spots.

Indexing

(Indexing with Mosflm)Mosflm finds the diffracted spots.From the diffracted spots, a list of possible unit cells is obtained.Mosaicity is estimated.

The highest symmetry with low penalty is selected.

Solution	Lat.	Pen.	a	b	с	α	β	Y	σ(x,y)	Nref	δ beam	1
🗄 🚺 1 (ref)	aP	0	58.6	58.6	62.1	90.0	118.1	120.0	0.10	250	0.49 (0.	1)
🗄 🚺 2 (ref)	aP	0	58.7	58.6	62.1	61.8	61.8	59.9	0.10	246	0.49 (0.	1)
🗄 🚺 3 (ref)	mC	1	101.6	58.6	62.1	90.0	123.0	90.0	0.11	250	0.47 (0.	2)
🗄 🚺 4 (ref)	mC	1	101.6	58.6	62.1	90.0	123.0	90.0	0.11	250	0.47 (0.	2)
🗄 🚺 5 (ref)	mC	2	101.4	58.6	62.1	90.0	123.0	90.0	0.09	245	0.48 (0.	2)
🗄 🚺 6 (ref)	mC	2	101.4	58.6	62.1	90.0	123.0	90.0	0.09	245	0.48 (0.	2)
🗄 🚺 7 (ref)	hR	4	58.6	58.6	156.4	90.0	90.0	120.0	0.12	255	0.48 (0.	3)
🗄 🚺 8 (reg)	mC	59	101.4	58.6	62.0	90.0	122.9	90.0	-	-	-	
🗄 🚺 9 (reg)	mC	59	101.4	58.6	62.0	90.0	122.9	90.0	-	-	-	
🗄 🚺 10 (reg)	hR	Atte	ntion	Unit col	lwith	90.0	90.0	120.0				
⊞ <mark>11 (rea)</mark>	mC:	Alle		Unit cer		90.0	133.3	90.0	-		- ,	1
attices: Show		α =	$\beta = \gamma =$	90° ma	y still					Start	beam search	Show
Spacegroup: h3	▼ Pri	o	be mo	noclinic	!							
Mosaicity:	0.80 Es	timate										

Indexing

(Indexing with Mosflm)Mosflm finds the diffracted spots.From the diffracted spots, a list of possible unit cells is obtained.Mosaicity is estimated.

The highest symmetry with low penalty is selected.

Expected diffraction spots are compared to experimental spots.

Full reflections (from nodes of the reciprocal lattice that have been completely crossed the Ewald sphere in this image)
 Partial reflections (nodes that partially crossed the Ewald sphere)
 Reflections in the Lorentz exclusion region (nodes in reflection conditions for very long time due to their proximity to the rotation axis)

5. Data collection **strategy**: data collection has to cover all asymmetric unit in the reciprocal space ($\underline{\phi}_{start}$ - $\underline{\phi}_{end}$ depend on symmetry...). If anomalous signal needs to be collected, reciprocal asymmetric unit is NOT centrosymmetric.

Use maximum precaution: if in doubt, consider lowest symmetry and collect more images.

Software that optimize strategy for data collection identify the best way to collect the highest amount of unique data (not related by symmetry or Friedel) in the first images and suggest an optimal φ interval to increase **completeness**.

Identify the best $\underline{\Delta \phi}$ to avoid overlap.

Small $\Delta \varphi$ (e.g. 0.1°) may be useful to integrate the spots in 3D: evaluate the shape of nodes in the _____ reciprocal space as they cross the Ewald sphere, by analyzing together subsequent images. In this case, all reflection appear as partials.

<u>Strategy</u>: wavelength, exposure time, crystal-to-detector distance, $\Delta \phi$ rotation angle per image, overall range of ϕ

Ideally, completeness higher than 90%

Fine slicing

Higher reactivity: metal ions > disulfide bonds > -COOH groups > -OH groups > S-CH₃ groups

Radiation damage

Caused by interaction of X-ray with protein present in the crystal: secondary electrons generated by Xray radiation create radicals, break bonds, oxidize species, up to major rearrangements of proteins in the crystal lattice.

Results: loss of resolution, increase in B-factors, increase in mosaicity, increase in unit cell volume.

Initial image

Final image

Vector (or helical) data collection

Only for microfocus beamlines

tch Sample Screening Raster Scan Collect	Analysis Users Log	
Traction Vector Strategy Multi Crystal Strategy	Collect Pause Current position Gonio = 449.999 Detector = 1.50e+03 Atten. = 49.876 Beanstop = 30.000 Resolution Predictor 7,36 10,37 Filename Angle En Fil	ctive) elete Reset tor Raster Site Setup nset saved nset saved up
Zoom 10.00 10.00 Start Cancel Step size = 2 µm Vector length = 172 µm	Image: Content of the sector of the secto	2 3 4 5 5 6 7 8 9 9 10 11 1, 2 5 10 11

Data collection strategy for radiation sensitive crystals.

The user defines two points (start & end) and the data collection is performed while crystal is automatically translated between them.

At each frame, fresh sample moves into the beam, allowing longer exposure times per image and significantly reducing radiation damage.

Ideal for rod shaped crystals.

Better B-factors profile and better statistics.

GM/CA CAT @APS

Twinning

Growth defect on crystals: presence of multiple crystal lattices in different domains within the same crystal.

In merohedral and pseudomerohedral twinning, the twin law is a symmetry operation of the lattice and <u>reflections by different domains overlap</u> <u>perfectly</u>, often simulating higher symmetry.

Structures from twinned crystals can be solved if twinning law is known.

Analysis of cumulative distribution of intensities suggests presence of twinning.

Integration

To measure intensities of each spot:

- Analysis of the spot profile,
- adjusting for spot shape and anisotropy
- From single pixel intensity, fitting of a 2D curve
- Background subtraction

With newer software, 3D integration of fine slicing data collection: integration over subsequent images. Final goal of integration: obtain a list of *hkl* reflections with corresponding intensities, *I*, and errors, *σ*(*I*).

1	9	-27	6.50	31.60
-1	-9	-27	13.90	24.10
1	-9	-27	32.00	25.70
-1	9	-27	-10.30	22.60
1	10	0	106.49	21.00
-1	-10	0	107.99	44.50
1	-10	0	132.99	38.90
-1	10	0	139.89	21.80

Systematic absences and space group

Space group determination based on **systematic absences** (i.e. reflections whose intensity is zero due to translational symmetry elements present in the lattice). Owing to experimental errors, intensity of these reflections is actually very low/close to zero. E.g. Data collection with Laue group 4/mmm.

Expected reflection conditions from International Tables for Crystallography

ş		1	. Cł	neck	pre	ese	nce	Laue class				1. 2 ₁ screw axis along b							
		0	fre	eflect	tior	ns (DkO	4/ <i>m</i>	4/m 4/mmm (
Reflection condition with $k = 2n + 1$					Point group	Point group					26			_					
hkl	hk0	0k1	hhl	00/	0 <i>k</i> 0	hh0	symbol	4	4	4/m	422	4	mm.	1	ā2m ām2	4/mmm			
	62			627			P	P4 (75)	P4 (81)	P4/m (83)	P422 (89)	P	4 <i>mm</i> (99)	1	Pā2m (111)	P4/mmm (123)			
					k		P-21-				P4212 (90	0	2	0	1241.84	30.44	1		
				1			P42	P42 (77)		$P4_2/m$ (84)	P4222 (93	0	3	0	-0.0686	0.2267	1		
				1	k		$P4_{2}2_{1}-$	SADARA MANARA		COLUMN OF STREET	P42212 (94	0	4	0	12.287	0.409	1		
				l = 4n			P41	${P4_1(76) \\ P4_1(76)}$	5		$\begin{cases} P4_{1}22 \ (9) \\ P4_{1}22 \ (9) \end{cases}$	0	5	0	0.1013	0.3251	1		
								(P43 (78))			$(P4_{3}22)(9)$	0	6	0	238.64	3.51	1		
				l = 4n	k		$P4_12_1 -$				$\begin{cases} P4_{1}2_{1}2 \\ P4_{3}2_{1}2 \end{cases}$	0	7	0	0.1717	0.4471	1		
			l	1			P = -c					0	8	0	61.349	1.171	1		
		<i>i</i>	l	1	k L		$P = 2_1 c$					0	9	0	-0.9486	0.5171	1		
		k	1	1	k.		P = bc					0	10	0	556.26	8.04	1		
		1	es	1			P - c -					0	11	0	-0.7931	0.6374	1		
		1	1	1			P = cc					0	12	0	184.42	3.75	-1		
		k + l	134	1	k		P - n					0	13	0	-2.055	1.056	1		
		<i>k</i> +1	L	1	k		P = nc			DA ((05)		0	14	0	99.319	1.616	1		
	n+k h+k			1	k		Pn = - $P4_2/n_{-} = -$			P4/n (85) $P4_2/n$ (86)		0	15	0	-3.781	0.923	1		
	h+k		1	1	k		Pn - c					0	16	0	788.01	7.14	1		

TETRAGONAL, Laue classes 4/m and 4/mmm

Systematic absences and space group

Space group determination based on **systematic absences** (i.e. reflections whose intensity is zero due to translational symmetry elements present in the lattice). Owing to experimental errors, intensity of these reflections is actually very low/close to zero. E.g. Data collection with Laue group 4/mmm.

Expected reflection conditions from International Tables for Crystallography

2. Check presence Laue class												1. 2_1 screw axis along b							
	of reflections OOI							4/m 4/mmm (4/ <i>mmm</i> (2. 4_1 or 4_3 screw axis along c							
Reflection condition with $k = 2n + 1$						Point group	Point group												
hkl	hk0	0kl	hhl	00/	0k0	hh0	symbol	4	4	4/ <i>m</i>	422	0	0	6	-0.0783	0.3331	1		
					10 1		P	P4 (75)	P4 (81)	P4/m (83)	P422 (8	0	0	7	1.0234	0.3993	1		
												0	0	8	1720.30	34.47	1		
					k		$P - 2_1 -$			AU7 - 110 - 110	P4212 (0	0	9	1.7896	1.4854	1		
				1			<i>P</i> 4 ₂	P4 ₂ (77)		$P4_2/m~(84)$	P4222 (0	0	10	-0.0409	0.4136	1		
				1	k		$P4_{2}2_{1}-$				P4 ₂ 2 ₁ 2	0	0	11	0.6631	0.4547	1		
				l = 4n			P41	${P4_1(76)}$	Ť		$\begin{cases} P4_{1}22 \\ P4_{2}22 \end{cases}$	0	0	12	1076.91	21.66	1		
								(1 +3 (10))			(P4,2,1	0	0	13	1.2668	0.6038	1		
				l = 4n	k		$P4_12_1 =$				${P4_{3}2_{12}$	0	0	14	0.3309	0.5556	1		
			t	1			P = -c					0	0	15	0.1202	0.5820	1		
		377	l	I	k		$P = 2_1 c$					0	0	16	514.85	0.6679	1		
		k			k		P - b -					0	0	17	0.0707	0.6673	1		
		k	6		k		P = bc					0	0	18	-0.7296	0.6856	1		
		1	\mathbf{r}	1			P = c =					0	0	19	-0.3101	0.7151	1		
		k+l	1.4	1	k		P = n =					0	0	20	190.92	0.7951	1		
		k+l	t	1	k		P = nc					0	0	21	0.6292	0.7126	1		
	h + k				k		Pn			P4/n (85)		0	0	22	0.0268	0.7811	1		
	h + k			1	k		$P4_2/n$			$P4_2/n$ (86)		0	0	23	0.0680	0.7936	1		
	h + k		1	1	k .		Pn = c		-	3		9	9	24	26 634	1 132	1		

TETRAGONAL, Laue classes 4/m and 4/mmm

TETRAGONAL, Laue classes 4/m and 4/mmm

1	_					2	Laue class						
		1	2	screv	v ax	is along h				4/mmm (4/m 2/	m 2/m)		
Reflection	2.	4 ₁	or	4_3 sc	rew	axis alon	g c oup	1		in and the second se			
hkl		E.	T	E	N 21			4	4/m	422	4mm	42m 4m2	4/mmm
						P	P4 (75)	P4 (81)	P4/m (83)	P422 (89)	P4mm (99)	P42m (111)	P4/mmm (123)
						Laboration II						P4m2 (115)	
					k	$P - 2_1 -$	15 10		W 55 55	P42 ₁ 2 (90)		$P42_1m(113)$	
				1		P42	P4 ₂ (77)		$P4_2/m$ (84)	P4 ₂ 22 (93)			
				1	k	$P4_{2}2_{1}-$				P4 ₂ 2 ₁ 2 (94)			
				l = 4n		P41	${P4_1 (76) \\ P4_3 (78)}^{\dagger}$			$ {P4_{1}22 (91) P4_{3}22 (95)} ^{\dagger}$			
				l = 4n	k	P4121-				${P4_{1}2_{1}2(92) \\ P4_{3}2_{1}2(96)}^{\dagger}$			
			1	1		P = -c				(P42mc (105)	P42c (112)	P42/mmc (131)
			1	1	k	$P = 2_1 c$						$P\bar{4}2_1c$ (114)	
		k	100		k	P = b =	r _	•••			bm (100)	P4b2 (117)	P4/mbm (127)
		k	1	1	k	P = bc	Poss	ible	space	groups:	bc (106)	(12 - 12	P42/mbc (135)
		1		1		P - c -				0	cm (101)	P4c2 (116)	P42/mcm (132)
		1	1	1		P - cc	P	4.2.	2 or P4	4.2.2	cc (103)	2 M	P4/mcc (124)
		k+l		1	k	P - n -		1-1		3-1-	2nm (102)	P4n2 (118)	P42/mnm (136)
		k+l	t	1	k	P - nc					P4nc (104)		P4/mnc (128)
	h + k				k	Pn = -			P4/n (85)				P4/nmm (129)
	h + k			1	k	$P4_2/n$			$P4_2/n$ (86)				2011-0030 00000 0000000000000000000000000
	h + k		1	1	k	Pn = c							P42/nmc (137)

It is not possible, however, to distinguish between some space groups, such as enantiomorphic space groups. In this case, both possible space groups should be tested in the following phasing step...

Scaling and merging

Scaling: Diffraction data can be used only if intensities are on the same scale, but multiple phenomena affect experimental intensities (intensity of incident beam, crystal volume crossed by X-ray beam, radiation damage, scattering of buffer/loop...)

This is a fundamental step of data processing!

Merging: Redundant observations of the same reflections are merged together. In addition, according to space group, symmetry related reflections are averaged together (often weigthing the average with experimental errors of each reflection). Friedel pairs are also merged.

If anomalous signal is required for phasing, Bijvoet mates are merged, but Friedel pairs are not.

Final goal: the list of *hkl* reflections is on the same scale and not redundant.

Evaluation of data quality

Signal-to-noise ratio, in crystallography this indication is given by the average of intensities over their respective errors:

$$\langle |I|/\sigma(I)\rangle = \frac{1}{N} \sum_{h} \frac{|I_{h}|}{\sigma(I_{h})}$$

with *N* number of all reflections in the dataset, or in a specific resolution shell.

Completeness: how many reflections within the unique wedge of the reciprocal space have been collected? Completeness can be evaluated for each resolution shell (each containing an equal number of reflections).

> Random missing reflections cause noise, but are not problematic. Systematically missing reflections can cause distorsions and hamper phasing.

Redundancy: average number of equivalent reflections for each unique (merged) reflection.

A higher redundancy can improve data quality and reduce errors.

Evaluation of data quality

R-values, evaluate the agreement between multiple measurements of the same intensity:

$$R_{merge} = \frac{\sum_{\boldsymbol{h}} \sum_{i=1}^{N} \left| I_{\boldsymbol{h},i} - \overline{I_{\boldsymbol{h}}} \right|}{\sum_{\boldsymbol{h}} \sum_{i=1}^{N} I_{\boldsymbol{h},i}}$$

But... increasing redundancy increases R_{merge} due to random experimental errors...

with N number of equivalent reflections.

This parameter can be calculated for each resolution shell. For higher resolution shells, R-values are usually higher.

Redundancy independent R-value:

Precision indicating R-value:

$$R_{rim} = \frac{\sum_{h} \sqrt{\frac{N}{N-1}} \sum_{i=1}^{N} |I_{h,i} - \overline{I_{h}}|}{\sum_{h} \sum_{i=1}^{N} I_{h,i}}$$
Always larger than R_{merge} .

$$R_{pim} = \frac{\sum_{h} \sqrt{\frac{1}{N-1}} \sum_{i=1}^{N} \left| I_{h,i} - \overline{I_{h}} \right|}{\sum_{h} \sum_{i=1}^{N} I_{h,i}}$$

Decreases increasing redundancy.

Correlation coefficients, between random half datasets

$$CC_{1/2} = \frac{\sum_{i=1}^{N} [(x_i - \bar{x})(y_i - \bar{y})]}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

Ideally equal to 1, but data are significant even if $CC_{1/2}$ is lower.

Resolution

What is the resolution cutoff of the data? How far are data significant?

There is no general rule, but data are usually considered significant up to the resolution shell with a value

$$\langle |I|/\sigma(I)\rangle > 2.0$$

If the statistical distribution of intensitites is correct and the estimation of errors $(\sigma(I))$ is reliable, this value should correspond to $R_{merge} \approx 40\%$ in the same resolution shell.

However, new studies suggest that significant information is present in the diffraction intensities also beyond the resolution cutoff obtained using the previous threshold. It has been suggested to use the correlation coefficient $CC_{1/2}$ instead.

The suggested threshold varies according to authors, but a conservative criterion would suggest that $CC_{1/2} > 0.15$ in the last meaningful resolution shell.

Table of data collection statistics

source included)

number of unique reflections are included)

Serial Femtosecond Crystallography (SFX)

Fast acquisition of diffraction patterns

Fast injection of microand nano-crystals

X-ray Free Electron Laser (XFEL): High intensity of X-ray, more than synchrotron radiation, in pulses

LCLS@Stanford SACLA@SPring8 XFEL@Hamburg

High intensity of radiation causes significant radiation damage to (micro)crystals.

Short pulses (< 50 fs) are too fast to allow radiation damage to be visible.

Diffraction before destruction:

Collect one diffraction pattern before crystal is destroyed by X-ray beam.

X-ray emitted by electrons interact with the electrons and modulate their velocity, creating periodically distributed electron bunches and periodic bunches of emitted radiation.

Period of bunches of radiation: 0.1 psec

SFX: data collection

Diffraction before destruction:

X-ray 1.0-6.0 Å pulse = 50 fs spot size = 1.5 μm 3.5·10¹⁰ ph/pulse

crystals 1-10 μm 25 MGy/crystals

detector pixel array res. 1.5-2 Å

data collection ≈8000 pattern/min

Up to 5 million patterns recorded, of which ≈ 4% with diffraction < 1% indexed

SFX: data analysis

Orientation of the crystal, mosaicity, unit cell parameters have to be calculated for each frame/crystal.

Fluctuations due to X-ray source (energy, pulse, intensity) and crystals (size, quality).

Monte Carlo methods.

In <u>oscillation mode</u> (traditional X-ray crystallography), spots represent the **integrated diffraction intensity** from a node of the reciprocal lattice that enters and exits the Ewald sphere.

In <u>SFX</u>, a single frame yields a **partial intensity**. High values of multiplicity are required to plot and integrate the full spot intensity.

Photosystem II – Structure by SFX

SLAC@Stanford Structures of the S_1 state (5Å resolution) and of the the S_3 state (5.5Å resolution)

References

- <u>Pilatus detector</u>: Broennimann Ch. *et al.*, "The PILATUS 1M detector.", J Synchrotron Radiat.
 2006, 13(Pt 2):120-30; Kraft P. *et al.*, "Performance of single-photon-counting PILATUS detector modules.", J Synchrotron Radiat. 2009, 16(Pt 3):368-75.
- <u>Microfocus beamlines</u>: Smith J.L. *et al.*, "Micro-crystallography comes of age.", Curr Opin Struct Biol. 2012, 22(5):602-12; Axford D. *et al.*, "In situ macromolecular crystallography using microbeams.", Acta Crystallogr D Biol Crystallogr. 2012, 68(Pt 5):592-600; Aishima J. *et al.*, "High-speed crystal detection and characterization using a fast-readout detector.", Acta Crystallogr D Biol Crystallogr. 2010, 66(Pt 9):1032-5; Warren A.J. *et al.*, "Exploiting Microbeams for Membrane Protein Structure Determination.", Adv Exp Med Biol. 2016, 922:105-117.
- <u>Automation at beamlines</u>: Nurizzo D. *et al.*, "RoboDiff: combining a sample changer and goniometer for highly automated macromolecular crystallography experiments.", Acta Crystallogr D Struct Biol Crystallogr. 2016, 72(Pt 8):966-75.
- <u>SFX</u>: Neutze R *et al.*, "Membrane protein structural biology using X-ray free electron lasers.", **Curr Opin Struct Biol. 2015**, *33*:115-25; Liu W. *et al.*, "Femtosecond crystallography of membrane proteins in the lipidic cubic phase .", **Philos Trans R Soc Lond B Biol Sci. 2014**, *369* (*1647*): 20130314.
- Evaluation of data quality: Evans P.R. and Murshudov G.N., "How good are my data and what is the resolution?", Acta Crystallogr D Biol Crystallogr. 2013, 69:1204-1219; Karplus P.A. and Diederichs K., "Linking crystallographic model and data quality", Science 2012, 336(6084): 1030-1033; Karplus P.A. and Diederichs K., "Assessing and maximizing data quality in macromolecular crystallography", Curr Opin Struct Biol. 2015, 34: 60-68.