10 copies of the 8 types of heads + random noise **Averages** Electron Microscopy: Analysis of 2D images Corso di Biocristallografia e Microscopia Elettronica rdezorzi@units.it

Image = signal + noise

Due to low dose, Signal-to-Noise ratio of electron microscopy images is low.

Sources of noise: supporting carbon film, stain, fluctuations of the source, inelastic scattered electrons, lack of homogeneity in camera response, charging of the sample, ...

Noise:

- Fixed pattern (e.g. noise of the camera): can be corrected by subtraction
- Stochastic (e.g. fluctuations of the source): can be corrected if the noise distribution is known

Noise whose effect is additive can be corrected by averaging. More complex corrections for non-additive noise.

Sampling theorem

(or Nyquist-Shannon or Whittaker-Shannon theorem)

A continuous function can be represented as a set of discrete measurements taken at regular intervals.

To describe a function f(x) with a maximum frequency B, the minimum frequency of the sampling has to be 2B.

Magnification: ratio between the dimension of the image of the object and the dimension of the object itself (e.g. 47000x)

Micrograph dimensions: number of pixels in each direction of the micrograph (e.g. 4k x 4k camera)

Pixel size: at a defined magnification, dimension of each detector pixel at the object level (e.g. 1.71 Å)

Object: convolution of different features

Nyquist limit: maximum frequency that can be observed considering the sampling frequency of the image

$$\nu_N = \frac{1}{2}\nu_{sampling} = \frac{1}{2} \cdot \frac{1}{px \ size}$$

Fourier transform of the object (power spectrum): decomposition of the different spatial frequencies of features forming the object

Signal-to-Noise Ratio (SNR):

variance of the signal divided by the variance of the noise

$$SNR = \frac{\int_{B} |O(\mathbf{s})|^{2} \cdot |H(\mathbf{s})|^{2} d\mathbf{s}}{\int_{B} |Noise(\mathbf{s})|^{2} d\mathbf{s}}$$

To improve contrast, **low-pass filtering** of the micrograph:
in the frequency space, convolution
of a Gaussian function with the
signal

Loss of signal at high frequency, but improved SNR at low frequencies.

1st task: boxing and masking of particles

Identify positions of the particles and cut them out of the image.

Application of a mask to the particle to remove noise outside particle boundary.

Mask with sharp borders introduces features at high resolution, due to sharpness of the mask border.

Optimal: Gaussian mask

Reduction of noise by averaging

Additive noise can be reduced by averaging multiple particles

$$I(\mathbf{r}) = O(\mathbf{r}) \otimes H(\mathbf{r}) + Noise(\mathbf{r})$$

Averaging: for each pixel (*i*) of the *N* images:

$$p_i = \frac{1}{N} \sum_{j=1}^{N} p_{ij}$$

The improvement of the SNR due to averaging is proportional to \sqrt{N} .

But images have to be aligned otherwise averaging produces blurring of the image features.

Raw images

Automated particle picking

When very large datasets of images are available (N > 1 million), automated particle picking is essential.

For automated particle picking, use of a template to recognize features of the particle in the micrograph.

To avoid pitfalls of automated particle picking, use as a template averages from alignment & classification on a smaller number of manually identified particles.

2nd task: alignment

Homogeneous images (same representation of the particle) have to be aligned before averaging.

E.g. negative staining images, with preferential orientation of the particle.

Alignment: search for transformations that bring each particle in register with reference $I'(r_i) = RI(r_i) + t$

For a 2D image, the rotation matrix is just one rotation angle (α), the translation vector has 2 components (t_x , t_y).

To obtain optimal α and t, minimize Euclidean distance between two images:

$$E_{12}(\alpha, \mathbf{t}) = \sum_{j}^{J} \left[I_{1}(\mathbf{r}_{j}) - I_{2}(\alpha \mathbf{r}_{j} + \mathbf{t}) \right]^{2}$$

$$= \sum_{j}^{J} I_{1}(\mathbf{r}_{j})^{2} + \sum_{j}^{J} I_{2}(\alpha \mathbf{r}_{j} + \mathbf{t})^{2} - 2 \underbrace{\sum_{j}^{J} I_{1}(\mathbf{r}_{j}) I_{2}(\alpha \mathbf{r}_{j} + \mathbf{t})}_{J}^{J}$$

Maximize crosscorrelation coefficient, after normalization

Invariant with respect to transformations

Image is discretized and interpolation is required.
Interpolation causes reduction of resolution.

Rotation-translation procedure

1. Rotation: Calculate autocorrelation function of each image (insensitive to translation) and compare them using cross-correlation

$$ACF_i(t) = \sum_{j}^{J} I_i(r_j) \cdot I_i^*(r_j - t)$$

$$CC_{12}(\alpha) = \sum_{k} ACF_1(\boldsymbol{t}_k) ACF_2(\boldsymbol{t}_k, \alpha)$$

2. Translation: Maximize cross-correlation function to obtain t

$$CC_{12}(t) = \frac{\sum_{j}^{J} [I_{1}(\mathbf{r}_{j}) - \langle I_{1} \rangle] [I_{2}(\alpha \mathbf{r}_{j} + t) - \langle I_{2} \rangle]}{\sum_{j}^{J} [I_{1}(\mathbf{r}_{j}) - \langle I_{1} \rangle]^{2} \sum_{j}^{J} [I_{2}(\alpha \mathbf{r}_{j} + t) - \langle I_{2} \rangle]^{2}}$$

Usually performed in the Fourier space: $\phi_{12}(t) = FT^{-1}\{FT[I_1(r)]FT[I_2(r+t)]^*\}$

Rotationtranslation procedure

Often performed through iterative algorithms

*Padding: to overcome reduction of the space due to interpolation and translation

Autocorrelation function is centrosymmetric: 180° ambiguity of rotation

To solve ambiguity, cross-correlation of the two possible solutions with the original image: the highest cross-correlation value yields the correct solution.

Heterogeneity

Heterogeneous images:

- cryo images showing different orientations of the particle
- conformationally heterogeneous negative staining particles
- presence of ligands or protein components in a fraction of the particles
- presence of contaminants

Classification is required in parallel with alignment.

Ca²⁺/calmodulin-dependent protein kinase II ~8000 particles

Multi-reference alignment: L references for N images.

In the first run, each image is assigned to the correct reference using cross-correlation function. Assignment may change while alignment is improved.

Reference-free alignment with the use of invariants.

Use of the Double Auto-Correlation Function (DACF) to avoid model bias. DACF is insensitive to both translation and rotation. Requires iterations.

3rd task: classification

Classification: Create homogeneous sets of images that can be averaged to improve SNR

Test case:

faces, with

- (a) different mouth (large/small),
- (b) eyes in opposite directions (left/right),
- (c) different shape
 (round/oval)

Tasks:

- (1) Identify how many different face types are present
- (2) assign each image to the right class

Principal Component Analysis (PCA)

For images of $N \times N$ pixel, each image is defined as a point (vector) in the hyperspace of N^2 dimensions:

$$I(px_1, px_2, px_3, \dots px_{NxN})$$

To compare images, calculate distance between points representing the images:

$$\overline{I_1 I_2} = \sqrt{\sum_{n}^{NxN} (px_{n,1} - px_{n,2})^2}$$

Similar images form clouds in the hyperspace (their vectors are close, have small distances)

Objective of PCA is to identify independent directions of maximum extension of the clouds by a least-squares minimization

For the test case, 3 independent directions of maximum extension are obtained from analysis (highest variability of the cloud), corresponding to the different conformations present in the population.

[Identifing the number of different conformations is often non trivial...]

Independent directions are compared:

In the 3-dimensional space of the 3 principal components, a total of 8 groups can be distinguished

8 different conformations, 8 classes

2D classification methods

Hard classification

Each image is assigned to a single class. Class might be changed during iterative refinement.

Fuzzy classification

For each image, a coefficient is determined for each class, representing the contribution of the classes to the image. Particularly useful when probability distributions are used in classification (Bayesian approach).

Supervised classification: Uses templates to classify images, i.e. assign each particle to a class (or to determine coefficients for fuzzy classification).

Used also for reference-based orientation determination in 3D reconstruction methods. Affected by model bias.

Unsupervised classification: No template is used; images are divided in groups according to statistical evaluation of their distance. Uses Principal Component Analysis.

No model bias!!

Hierarchical Ascendant Classification

Based on PCA, a dendrogram is obtained analyzing distances between averages of each group 1 (1 0 3

K-means Classification

Considering results of PCA, a number of classes K is set at the beginning of the classification

- Chose K random "seeds" (one for each class)
- 2) Each image is assigned to the class of the closest seed (in hyperspace)

K-means Classification

Considering results of PCA, a number of classes K is set at the beginning of the classification

- Chose K random "seeds" (one for each class)
- 2) Each image is assigned to the class of the closest seed (in hyperspace)
- 3) For each class, new seeds are calculated as **centers of gravity** of the whole class

K-means Classification

Considering results of PCA, a number of classes K is set at the beginning of the classification

- Chose K random "seeds" (one for each class)
- 2) Each image is assigned to the class of the closest seed (in hyperspace)
- 3) For each class, new seeds are calculated as centers of gravity of the whole class
- 4) Iterate until classification is stable (no more changes of images between classes)
- * This method has the tendency to yield spherical classes, while elongated classes are usually not identified

Negative staining

Conserved Oligomeric Golgi complex (COG): complex of 4 subunits (Cog1, Cog2, Cog3 and Cog4)

> Walz group (HMS - Boston) 2010

Cog1-4 sub-complex of COG

raw image (negative stain)

GFP-tagged subunit

Cryo EM

AMPA Receptor images (F20, 200kV, DDD camera)

electron beam

- 1. Particle picking
- 2. Normalization and CTF correction

3. Class averaging showing large conformational heterogeneity