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• The parasitics effects introduced by the wires display a scaling behavior that 
differs from the active devices such as transistors, and tend to gain in 
importance as device dimensions are reduced and circuit speed is increased.

• In fact, they start to dominate some of the relevant metrics of digital integrated 
circuits such as speed, energy-consumption, and reliability.

• This situation is aggravated by the fact that improvements in technology make 
the production of ever-larger die sizes economically feasible, which results in an 
increase in the average length of an interconnect wire and in the associated 
parasitic effects.



A First Glance
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• State-of-the-art processes offer multiple layers of Aluminum, and at least one 
layer of polysilicon. 

• Even the heavily doped n+ or p+ layers, typically used for the realization of 
source and drain regions, can be employed for wiring purposes.

• The wiring of today’s integrated circuits forms a complex geometry that 
introduces capacitive, resistive, and inductive parasitics. 

• All three have multiple effects on the circuit behavior:
1. An increase in propagation delay, or, equivalently, a drop in performance.
2. An impact on the energy dissipation and the power distribution.
3. An introduction of extra noise sources, which affects the reliability of the 
circuit.
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• Analyzing the behavior of this schematic, which only models a small part of the 
circuit, is slow and cumbersome. 

• Fortunately, substantial simplifications can often be made:
• Inductive effects can be ignored if the resistance of the wire is substantial 

— this is for instance the case for long Aluminum wires with a small cross-
section — or if the rise and fall times of the applied signals are slow.

• When the wires are short, the cross-section of the wire is large, or the 
interconnect material used has a low resistivity, a capacitance-only model 
can be used (see next figure).

• Finally, when the separation between neighboring wires is large, or when 
the wires only run together for a short distance, inter-wire capacitance can 
be ignored, and all the parasitic capacitance can be modeled as 
capacitance to ground.
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Electrical Wire Models
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• These parasitic elements have an impact on the electrical behavior of the 
circuit and influence its delay, power dissipation, and reliability. 

• To study these effects requires the introduction of electrical models that 
estimate and approximate the real behavior of the wire as a function of its 
parameters.

• These models vary from very simple to very complex depending upon the 
effects that are being studied and the required accuracy.



The Ideal Wire
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• In schematics, wires occur as simple lines with no attached parameters or 
parasitics.

• These wires have no impact on the electrical behavior of the circuit. 
• A voltage change at one end of the wire propagates immediately to its other ends, 

even if those are some distance away.
• Hence, it may be assumed that the same voltage is present at every segment of the 

wire at the every point in time, and that the whole wire is an equipotential region.
• While this ideal-wire model is simplistic, it has its value, especially in the early 

phases of the design process, or when studying small circuit components such as 
gates and the wires tend to be very short and their parasitics ignorable.



The Lumped Model
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• The circuit parasitics of a wire are distributed along its length and are not lumped 
into a single position. 

• Yet, when only a single parasitic component is dominant, when the interaction 
between the components is small, or when looking at only one aspect of the circuit 
behavior, it is often useful to lump the different fractions into a single circuit 
element.

• As long as the resistive component of the wire is small and the switching 
frequencies are in the low to medium range, it is meaningful to consider only the 
capacitive component of the wire, and to lump the distributed capacitance into a 
single capacitor.



The Lumped Model
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• In this model the wire still represents an equipotential region, and that the wire 
itself does not introduce any delay. 

• The only impact on performance is introduced by the loading effect of the 
capacitor on the driving gate.



The Lumped Model
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• A driver with a source resistance of 10 kΩ is used to drive a 10 cm long, 1 um wide.
• The total lumped capacitance for this wire equals 11 pF.

• When applying a step input (with Vin going from 0 to V):



The Lumped RC model
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• On-chip metal wires of over a few mm length have a significant resistance. 
• The equipotential assumption, presented in the lumped-capacitor model, is no 

longer adequate, and a resistive-capacitive model has to be adopted.
• A first approach lumps the total wire resistance of each wire segment into one 

single R and similarly combines the global capacitance into a single capacitor C. 
• This simple model, called the lumped RC model is pessimistic and inaccurate for 

long interconnect wires (more adequately represented by a distributed rc-model).
• We will see it for the following reasons:

• The distributed rc-model is complex and no closed form solutions exist.
• A common practice in the study of the transient behavior of complex 

transistor-wire networks is to reduce the circuit to an RC network.



Elmore delay formula
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• Consider:

• This circuit is called an RC tree and has the following properties:
• the network has a single input node 
• all the capacitors are between a node and the ground
• the network does not contain any resistive loops

𝜏𝑖 = 𝐶1𝑅1 + 𝐶2𝑅1 + 𝐶3(𝑅1+ 𝑅3)+ 𝐶4(𝑅1+ 𝑅3)

+𝐶𝑖(𝑅1+ 𝑅3 + 𝑅𝑖)



Elmore delay formula
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• The total resistance along a  path is called the path resistance Rii.

• The shared path resistance Rik represents the resistance shared among the paths 
from the root node s to nodes k and i:

• Assume now that each of the N nodes of the network is initially discharged to GND, 
and that a step input is applied at node s at time t = 0. 

• The Elmore delay at node i is then given by the following expression:



Elmore delay formula
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• This network is often encountered in digital circuits, and also it represents an 
approximative model of a resistive-capacitive wire. 

• The Elmore delay is:



Time-Constant of Resistive-Capacitive Wire
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• The model presented in the previous Figure can be used as an approximation of a 
resistive-capacitive wire.

• The wire with a total length of L is partitioned into N identical segments, each with 
a length of L/N.

• The resistance and capacitance of each segment are hence given by rL/N and cL/N, 
respectively.

• Using the Elmore formula, we can compute the dominant time-constant of the wire

• with R = rL and C = cL the total lumped resistance and capacitance of the wire.
• For 𝑁 → +∞, this model asymptotically approaches the distributed rc line:



Time-Constant of Resistive-Capacitive Wire
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• The equation leads to two important conclusions:

• The delay of a wire is a quadratic function of its length! 
• Doubling the length of the wire quadruples its delay.

• The delay of the distributed rc-line is one half of the delay that would have 
been predicted by the lumped RC model.
• This confirms that the lumped model presents a pessimistic view on the 

delay of resistive wire.



The Distributed rc Line
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The Distributed rc Line
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• The voltage at node i of this network can be determined by solving the following 
set of partial differential equations:

• For ∆𝐿 → 0, it becomes the well-known diffusion equation:

• No closed-form solution exists for this equation, but approximative expressions can 
be derived:



The distributed rc Line
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Design Rules of Thumb
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• An important question to answer when analyzing an interconnect network: 
• whether the effects of RC delays should be considered, or 
• whether we can get away with a simpler lumped capacitive model.

• rc delays should only be considered when tpRC >> tpgate of the driving gate

• rc delays should only be considered when the rise (fall) time at the line input is 
smaller than RC, the rise (fall) time of the line.

• with R and C the total resistance and capacitance of the wire.



The Transmission Line
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• When the switching speeds of the circuits become sufficiently fast, and the wire 
has low resistance, the inductance of the wire starts to dominate the delay 
behavior, and transmission line effects must be considered. 

• This is more precisely the case when the rise and fall times of the signal become 
comparable to the time of flight of the signal waveform across the line.



Transmission Line Model
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• The transmission line has the prime property that a signal propagates over the 
interconnection medium as a wave. 

• This is in contrast to the distributed rc model, where the signal diffuses from the 
source to the destination.



Transmission Line Model
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• Consider the point x at time t:

• Assuming that the leakage conductance g equals 0, we get the wave propagation 
equation:



The Lossless Transmission Line
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• Let us first assume the resistance of the line is small, a lossless transmission line
• We get the ideal wave equation: 

• A step input propagates along the line with speed

• Even though the values of both l and c depend on the geometric shape of the wire, 
their product is a constant and is only a function of the surrounding media.

• The propagation delay per unit wire length (tp) is the inverse of the speed:



The Lossless Transmission Line
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• Let us now analyze how a wave propagates along a lossless transmission line. 
• Suppose that a voltage step V has been applied at the input and has propagated to 

point x of the line.



The Lossless Transmission Line
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• All currents are equal to 0 at the right side of x, while the voltage over the line 
equals V at the left side. 

• An additional capacitance cdx must be charged for the wave to propagate over an 
additional distance dx. 

• This requires the following current:

• since the propagation speed of the signal dx/dt equals v .
• This means that the signal sees the remainder of the line as a real impedance,



The Lossless Transmission Line
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• This impedance, called the characteristic impedance of the line, is a function of the 
dielectric medium and the geometry of the conducting wire and isolator, and is 
independent of the length of the wire and the frequency.

• Typical values of the characteristic impedance of wires in semiconductor circuits 
range from 10 to 200 Ω.



Termination
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• The behavior of the transmission line is strongly influenced by the termination of 
the line.

• The termination determines how much of the wave is reflected upon arrival at the 
wire end. 

• This is expressed by the reflection coefficient 𝜌 that determines the relationship 
between the voltages and currents of the incident and reflected waveforms,

• R is the value of the termination resistance.
• The total voltages and currents at the termination end are the sum of incident and 

reflected waveforms



Termination
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• Consider first the case where the wire is open at the destination end, or 𝑍𝐿 = ∞, 
and 𝜌𝐿 = 1.

• Three possible scenarios are sketched
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Capacitive Termination
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• Loads in MOS digital circuits tend to be of a capacitive nature.
• Z0 determines the current that can be supplied to charge capacitive load CL.
• From the load’s point of the view, the line behaves as a resistance with value Z0.
• The transient response at the capacitor node displays a time constant Z0CL.



The Lossy Transmission Line
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• The response of a lossy RLC line to a unit step combines wave propagation with a 
diffusive component.

• The step still propagates as a wave but the amplitude is attenuated along the line:

• The farther it is from the source, the more the response resembles the behavior of 
a distributed RC line.

• In fact, the resistive effect becomes dominant, and the line behaves as a distributed 
RC line when R (= rL, the total resistance of the line) >> 2 Z0.



Design Rules of Thumb
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• When it is appropriate to consider transmission line effects?

• Transmission line effects should be considered when the rise or fall time of the 
input signal (tr , tf) is smaller than the time-of-flight of the transmission line (tflight).

• Transmission line effects should only be considered when the total resistance of 
the wire is limited:

• The transmission line is considered lossless when the total resistance is 
substantially smaller than the characteristic impedance, or
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