% E04_5.m 28apr17 12apr22 % inverse filters and recursive deconvolution clear all; close all; % ze = [.9*exp(j*.1*pi), .9*exp(-j*.1*pi), -.4]'; % minimum phase, invertible % ze = [.9*exp(j*.1*pi), .9*exp(-j*.1*pi), -.97]'; % risky... ze = [.9*exp(j*.1*pi), .9*exp(-j*.1*pi), -1.41]'; % noninvertible %ze = [1*exp(j*.1*pi), 1*exp(-j*.1*pi), 0]'; % [inv.syst is a sort of oscillator] % ze = [1*exp(j*.55*pi), 1*exp(-j*.55*pi), 0]'; % [...even at a different freq.] % [oscillates only if triggered by added input noise] po = [.7+j*.6, .7-j*.6, 0]'; [b,a] = zp2tf(ze,po,1); % alpha=.8; b=[1-alpha]; a=[1, -alpha]; % simple IIR lowpass filter % e.g. a temperature transducer having finite thermal capacity % inv. filter is an FIR, h = {1, -alpha}/(1-alpha) % b = ones(1,7)/7; a = 1; % moving average filter (noninvertible) % fvtool(b,a); fvtool(a,b); return; %%%%%%%%%%%%%%%%%%%%%%%%%%%% figure(5); zplane(ze,po) n = [0:1999]; x = sin(.1*pi*n) + cos(.77*pi*n) + randn(size(n))*1; w = filter(b,a,x); % (.1*pi) component is strongly attenuated % w(53) = w(53) + .1; % w = w + randn(size(n))*.01; % distortion includes noise: w = h*x + n % b = round(b*1e3) /1e3; a = round(a*1e3) /1e3; % imprecise model y = filter(a,b,w); % y=x if inverse system is stable %%%%%%%%%%%% note this script masks that y is a DELAYED version of x figure(1); subplot(411); plot(n,x); axis([0,length(n)-1,-2,2]); subplot(412); plot(n,w); axis([0,length(n)-1,-2,2]); subplot(413); plot(n,y); axis([0,length(n)-1,-2,2]); subplot(414); plot(n,y-x); figure(2); subplot(311); X = abs(fft(x,256)); plot(X(1:129)); subplot(312); W = abs(fft(w,256)); plot(W(1:129)); subplot(313); Y = abs(fft(y,256)); plot(Y(1:129)); return; %% recursive deconvolution [x,fs] = audioread('chimes.wav'); %fs = fs / 2; x = x(:,1)'; % left channel L = fs*4; % L <= length(chimes)=13921; x = x(1:L); x = x / max(x); % amplify to get max=1 X = fft(x,16384); figure(11); plot(abs(X(1:8193))); %soundsc(x,fs); pause(3); ze = [.9*exp(j*.1*pi), .9*exp(-j*.1*pi), -.99]'; % minimum phase % ze = [.9*exp(j*.1*pi), .9*exp(-j*.1*pi), -1.01]'; % noninvertible po = [.7+j*.7, .7-j*.7, 0]'; [b,a] = zp2tf(ze,po,1); b = [1 zeros(1,2500) -1]/2; a = 1; % fvtool(a,b); return; % do not try to find the poles! h = impz(b,a,L)'; % figure(22); plot(h); return; w = conv(h,x); % note: length(w)=L+L-1 % w = w + randn(size(w))*.03; % noise added: w = h*x + n W = fft(w,16384); figure(22); plot(abs(W(1:8193))); soundsc(w,fs); pause(2.5); % h = round(h*1e2)/1e2; % rounding error in coeff. estimate (try 1e2 - 1e5) y = zeros(size(x)); y(1) = w(1) / h(1); for k=2:L y(k) = ( w(k) - fliplr(h(2:k)) * y(1:k-1)' ) / h(1); % if (k==5000); y(k) = round(y(k)*10)/10; end; % rounding in the recursion % if (k>2000); y(k) = round(y(k)*10)/10; end; end; figure(33); subplot(311); plot(x); ylabel('x'); subplot(312); plot(w(1:L)); ylabel('w(1:L)'); subplot(313); plot(y-x); ylabel('error'); soundsc(y,fs); % note: the Matlab command % [y,r] = deconv(w,h); % calculates % y = filter(w,h,[1 zeros(1,L-1)]); % (which is formally identical to rec. deconv.) and % r = w-conv(h,y); % the remainder