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Ideal filters

• One of the most important applications of LTI systems is allowing the passage of certain frequency

components of the signal without any distortion while simultaneously blocking all other frequency

components.

• For this reason, LTI systems are also defined as ’filters.’

• The two terms, ’LTI system’ and ’filter,’ can be considered synonymous.

• Nowadays, the term ’filter’ is used not only for systems that are frequency-selective but also for all

systems that realize an appropriate weighting (a spectral shaping) of the signal spectrum:

Y (e jω) = H(e jω) ·X (e jω)

• Filters can be classified according to their frequency domain characteristics as

• lowpass filters,

• highpass filters,

• bandpass filters,

• bandstop filters.
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Ideal filters

• An ideal filter allows certain frequency components to pass unaltered while completely eliminating all

other frequency components.

• Therefore, an ideal filter exhibits a unit magnitude (or amplitude) response in the passband and a zero

response in the stopband.

• Additionally, an ideal filter must feature linear phase in the passband.
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Ideal filters

• Considering a signal {x(n)} with a spectrum entirely within the band ω1 ≤ |ω| ≤ ω2, let’s filter it with a

frequency response given by:

H(e jω) =

{
e−jωn0 ω1 ≤ |ω| ≤ ω2

0 otherwise

• In this case, the output signal has a spectrum given by:

Y (e jω) = H(e jω) ·X (e jω) = e−jωn0X (e jω).

• This implies that:

y(n) = x(n − n0).

• The output signal coincides with the input signal except for a delay of n0.

• Generally, a pure delay is tolerable and is not considered signal distortion.

• If the ideal filter has linear phase, the signal component in the passband is delayed without distortion.

• Thus, the ideal phase response is linear in the passband:

θ(ω) = −ωn0.

• In practice, we are contented with imposing − dθ

dω
to be constant in the passband, i.e., with imposing the

group delay to be constant in the passband.
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Phase delay and Group delay

• Let’s consider a LTI system with frequency response H(e jω), and let θ(ω) be its phase response,

H(e jω) = |H(e jω)| · e jθ(ω).

• For simplicity, let’s assume the system to be real, so that

|H(e jω)| = |H(e−jω)| and θ(ω) = −θ(−ω)

• If we consider a sinusoidal sequence with normalized angular frequency ω0 as system input:

x(n) = cos(ω0n) =
e jω0n + e−jω0n

2
,

the output of the system is

y(n) =
1

2
|H(e jω0)|e jθ(ω0)e jω0n +

1

2
|H(e−jω0)|e jθ(−ω0)e−jω0n =

=
1

2
|H(e jω0)|

(
e j(ω0n+θ(ω0)) + e−j(ω0n+θ(ω0))

)
= |H(e jω0)| cos[ω0n + θ(ω0)] =

= |H(e jω0)| cos
[
ω0

(
n +

θ(ω0)

ω0

)]
= |H(e jω0)| cos [ω0 (n − tp(ω0))]
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Phase delay and Group delay

y(n) = |H(e jω0)| cos
[
ω0

(
n +

θ(ω0)

ω0

)]
= |H(e jω0)| cos [ω0 (n − tp(ω0))]

• The system output is the same sinusoidal sequence delayed by

tp(ω0) = −θ(ω0)

ω0
.

• tp(ω) is referred to as the Phase Delay, representing the delay of a sinusoidal component as it passes

from the input to the output of the system.

• However, when we consider a signal composed of multiple frequency components (several sinusoids), each

component passing through the system experiences a different delay.

• In such cases, the delay introduced by the system on the signal is assessed using another parameter known

as the Group Delay, defined as:

tg (ω) = −dθ(ω)

dω
.
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Phase delay and Group delay

• It’s important to note that both tp(ω) and tg (ω) vary with frequency.

• Considering the following phase response diagram:

• The group delay tg (ω) corresponds to the opposite of the slope of θ(ω) in ω0.

• On the contrary, the phase delay tp(ω) corresponds to the opposite of the slope of the line connecting the

origin with the point (ω0, θ(ω0)).
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Phase delay and Group delay

• Why is the delay introduced by the system on the signal evaluated using the group delay tg (ω)?

• This choice is particularly relevant in Amplitude Modulation (AM) systems, where the group delay

represents the delay introduced on the modulated signal.

• In contrast, the phase delay corresponds to the delay of the modulating signal, i.e., the carrier.
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Phase delay and Group delay

• Let’s return to the continuous-time domain and consider a lowpass signal, a(t), with a passband

[−Ωc ,Ωc ].

• Now, let’s modulate this signal with a carrier having an angular frequency Ω0 ≫ Ωc . In other words, we

multiply the signal by a sinusoidal signal with an angular frequency Ω0:

xa(t) = a(t) · cos(Ω0t) = a(t) ·
[
e jΩ0t + e−jΩ0t

]
/2

Xa(jΩ) =
1

2
A (j(Ω− Ω0)) +

1

2
A (j(Ω + Ω0))

• The spectrum of the signal a(t) is translated to ±Ω0 and occupies the band ± [Ω0 − Ωc ,Ω0 +Ωc ] .
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Phase delay and Group delay

• Let us assume that the signal xa(t) passes through an LTI system with frequency response H(jΩ).

• Since Ωc ≪ Ω0, within the band [Ω0 − Ωc ,Ω0 +Ωc ], we can assume the amplitude response of the LTI

system to be constant (for simplicity, equal 1).

• Additionally, we can approximate the phase response with a linear response:

θ(Ω) ≃ θ(Ω0) +
dθ(Ω)

dΩ

∣∣∣
Ω=Ω0

(Ω− Ω0) =

= −tp(Ω0) ·Ω0 − tg (Ω0) · (Ω− Ω0)

• For Ω > 0, the output signal spectrum is:

Ya(jΩ) =
1

2
A (j(Ω− Ω0)) e

−jtp(Ω0)Ω0e−jtg (Ω0)(Ω−Ω0).

• For Ω < 0, the output signal spectrum is the conjugate symmetric of the spectrum for Ω > 0.

• It is easy to verify that the system output is given by:

ya(t) = a(t − tg ) cos[Ω0(t − tp)]

with tg = tg (Ω0) and tp = tp(Ω0).
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Phase delay and Group delay

ya(t) = a(t − tg ) cos[Ω0(t − tp)]

• In fact, a(t − tg ) has spectrum A(jΩ) · e−jtgΩ.

• When a(t − tg ) is multiplied by cos[Ω0(t − tp)] =
e jΩ0(t−tp) − e−jΩ0(t+tp)

2
,

two components with conjugate symmetry are generated: one is centered at Ω0, the other at −Ω0.

• Let’s consider the component for Ω > 0, originating from

1

2
a(t − tg )e

jΩ0(t−tp) =
1

2
a(t − tg )e

−jΩ0tpe jΩ0t

• Due to the linearity and frequency shift properties of the Continuous-Time Fourier Transform (CTFT),

the spectrum is:
1

2
A (j(Ω− Ω0)) e

−j(Ω−Ω0)tg e−jΩ0tp

which is the expression of Ya(jΩ) we has seen before.
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Ideal filters

• As discussed earlier, an ideal filter is characterized by a unit amplitude and linear phase in the passband,

or, at the very least, it must exhibit a constant group delay in the passband to ensure that all signal

components experience the same delay.

• Unfortunately, ideal filters are not realizable.

• To illustrate, consider the ideal lowpass filter with the frequency response:

HLP(e
jω) =

{
1 |ω| ≤ ωc

0 otherwise

• This filter has an impulse response:

hLP(n) =
sin(ωcn)

πn
−∞ < n < +∞

It’s essential to note that this filter is not causal and is, moreover, an unstable system because hLP(n) is

not absolutely summable.

A. Carini Digital Signal and Image Processing 14 / 85



Realizable filters

• To achieve stable and realizable filters, we relax the stringent conditions imposed by ideal filters.

• One key modification involves introducing a transition band between the passband and the stopband.

• This enables the magnitude response to gradually decay from its maximum value to zero.

• Additionally, the magnitude response is permitted to vary within specified bounds in both the passband

and the stopband.

• For instance, when designing a lowpass filter, a frequency mask that defines bounds for the frequency

response similar to the following is often considered:

• In practice, the following constraints

are taken into account for |H(e jω)|:{
1− ϵ < |H(e jω)| < 1 0 ≤ ω ≤ ωc

|H(e jω)| < η ωs ≤ ω ≤ π
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Zero-phase filters

• In many applications, it is crucial to design digital filters in a manner that introduces no phase distortion

to the input signal components in the passband.

• One effective approach to avoiding phase distortions is the implementation of a zero-phase filter,

characterized by a real positive frequency response.

• If we do not work in real-time and we process real sequences of finite duration, the zero-phase

filtering can be easily implemented if we drop the hypothesis of system causality:

• The input signal is processed with a filter H(z) having real coefficients; the output of this filter is

time-reversed and it is again filtered with the same filter H(z), whose output is folded again.
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Zero-phase filters

• Let us prove that this is a zero-phase system.

V (e jω) = H(e jω) ·X (e jω)

U(e jω) = V ∗(e jω)

W (e jω) = H(e jω) ·U(e jω)

Y (e jω) = W ∗(e jω) = H∗(e jω) ·U∗(e jω) = H∗(e jω) ·V (e jω) =

= H∗(e jω) ·H(e jω) ·X (e jω) = |H(e jω)|2 ·X (e jω)

• The system introduced above implements a filter with a frequency response |H(e jω)|2, which is positive

real, ensuring a zero-phase characteristic.
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Zero-phase filters

• To design a zero-phase filter with a given magnitude response A(e jω), one can design a filter with the

magnitude response
√

A(e jω), without imposing constraints on the phase. Subsequently, the technique

described earlier can be applied.

• However, a notable drawback of this approach is that real-time signal processing becomes impossible.

• The entire sequence must be recorded before the technique can be applied.

• For real-time processing systems, meeting our specifications while ensuring system causality often

involves accepting a certain delay introduced by the filter and considering a linear phase response.

• It is always possible to design linear phase FIR filters, whereas achieving linear phase IIR filters is

impossible.
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Linear phase FIR filters

• A causal FIR filter with real coefficients, having a length of N + 1, and a transfer function given by

H(z) =
N∑

n=0

h(n)z−n = h(0) + h(1)z−1 + . . .+ h(N)z−N ,

exhibits linear phase when the impulse response h(n) is symmetric,

h(n) = h(N − n) for 0 ≤ n ≤ N,

or is antisymmetric,

h(n) = −h(N − n) for 0 ≤ n ≤ N.

• Considering that the length can be either even or odd, we can categorize linear FIR filters with linear
phase into four classes:

• TYPE 1: h(n) is symmetric and has odd length,

• TYPE 2: h(n) is symmetric and has even length,

• TYPE 3: h(n) is antisymmetric and has odd length,

• TYPE 4: h(n) is antisymmetric and has even length.

• Let us analyze one by one these four classes.
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Linear phase FIR filters: type 1

• TYPE 1: h(n) is symmetric and has odd length. Thus, N is even.

• Let us consider for example N = 8.

H(z) = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + . . .+ h(7)z−7 + h(8)z−8

• The impulse response could be the following,

• Here, we have a symmetry axis for N
2
= 4.
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Linear phase FIR filters: type 1

• For the symmetry, it is h(0) = h(8), h(1) = h(7), h(2) = h(6), h(3) = h(5), and

H(z) = h(0)(1 + z−8) + h(1)(z−1 + z−7) + h(2)(z−2 + z−6) + h(3)(z−3 + z−5) + h(4)z−4

/
· z4 · z−4

= z−4 ·
[
h(0)(z4 + z−4) + h(1)(z3 + z−3) + h(2)(z2 + z−2) + h(3)(z1 + z−1) + h(4)

]
• The frequency response is given by

H(e jω) = e−jω4 · [2h(0) cos(4ω) + 2h(1) cos(3ω) + 2h(2) cos(2ω) + 2h(3) cos(ω) + h(4)]

where we have utilized the identity e jωn + e−jωn = 2 cos(ωn).

• Note that the expression within the square brackets is real and can take both positive and negative values.
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Linear phase FIR filters: type 1

• Consequently, the phase of the frequency response is linear, given by

θ(ω) = −4ω + β = −N

2
ω + β with β = 0 or π

and the group delay is constant:

tg = − dθ

dω
= 4 =

N

2
.

• In general, for FIR filters of Type 1, the frequency response is given by

H(e jω) = e−j N
2
ω ·H(ω),

H(ω) = h(
N

2
) + 2

N/2∑
n=1

h(
N

2
− n) cos(ωn).
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Linear phase FIR filters: type 2

• TYPE 2: h(n) is symmetric and has even length. Thus, N is odd.

• Let us consider the case where N = 7.

• Here, we have a symmetry axis at N/2 = 3.5:
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Linear phase FIR filters: type 2

• Let us proceed similarly to the previous case.

• For symmetry, we express H(z) as:

H(z) = h(0)(1 + z−7) + h(1)(z−1 + z−6) + h(2)(z−2 + z−5) + h(3)(z−3 + z−4)

/
· z7/2 · z−7/2

= z−7/2
[
h(0)(z7/2 + z−7/2) + h(1)(z5/2 + z−5/2) + h(2)(z3/2 + z−3/2) + h(3)(z1/2 + z−1/2)

]
.

H(e jω) = e−j 7
2
ω

[
2h(0) cos(

7

2
ω) + 2h(1) cos(

5

2
ω) + 2h(2) cos(

3

2
ω) + 2h(3) cos(

1

2
ω)

]
.

• Once again, the term within the square brackets is real, taking either positive or negative values.
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Linear phase FIR filters: type 2

• The phase is given by

θ(ω) = −7

2
ω + β = −N

2
ω + β with β = 0 or π

tg = −dθ(ω)

dω
=

N

2

• In general, it is

H(e jω) = e−jω N
2 ·H(ω)

H(ω) = 2

(N+1)/2∑
n=1

h(
N + 1

2
− n) cos[ω(n − 1

2
)]
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Linear phase FIR filters: type 3

• TYPE 3: h(n) is antisymmetric and has odd length. Thus, N is even.

• Here, we have an antisymmetry axis for N/2:

• Given h(N − n) = −h(n), for n = N
2
, it follows that h(

N

2
) = −h(

N

2
) = 0 .
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Linear phase FIR filters: type 3

• Let’s consider N = 8 and proceed similarly to the previous cases:

H(z) = h(0)(1− z−8) + h(1)(z−1 − z−7) + h(2)(z−2 − z−6) + h(3)(z−3 − z−5)

/
· z4 · z−4

= z−4
[
h(0)(z4 − z−4) + h(1)(z3 − z−3) + h(2)(z2 − z−2) + h(3)(z1 − z−1)

]
• Since e jωm − e−jωm = 2j sin(ωm) = 2e jπ/2 sin(ωm),

H(e jω) = 2e−j4ωe jπ/2 [h(0) sin(4ω) + h(1) sin(3ω) + h(2) sin(2ω) + h(3) sin(ω)] .
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Linear phase FIR filters: type 3

• The phase response is:

θ(ω) = −4ω +
π

2
+ β = −N

2
ω +

π

2
+ β with β = 0 or π

tg = −dθ(ω)

dω
=

N

2

• In general, it is

H(e jω) = e−j N
2
ωe jπ/2 ·H(ω)

H(ω) = 2

N/2∑
n=1

h(
N

2
− n) sin[ωn]
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Linear phase FIR filters: type 4

• TYPE 4: h(n) is antisymmetric and has even length. Thus, N is odd.

• We have an antisymmetry axis for N/2:
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Linear phase FIR filters: type 4

• Let’s proceed similarly to the previous cases, considering N = 7.

H(z) = h(0)(1− z−7) + h(1)(z−1 − z−6) + h(2)(z−2 − z−5) + h(3)(z−3 − z−4)

/
· z7/2 · z−7/2

= z−7/2
[
h(0)(z7/2 − z−7/2) + h(1)(z5/2 − z−5/2) + h(2)(z3/2 − z−3/2) + h(3)(z1/2 − z−1/2)

]
H(e jω) = e−j 7

2
ωe jπ/22

[
h(0) sin(

7

2
ω) + h(1) sin(

5

2
ω) + h(2) sin(

3

2
ω) + h(3) sin(

1

2
ω)

]
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Linear phase FIR filters: type 4

• Thus, the phase is

θ(ω) = −7

2
ω +

π

2
+ β = −N

2
ω +

π

2
+ β with β = 0 or π

tg = −dθ(ω)

dω
=

7

2
=

N

2

• In general, it is

H(e jω) = e−jω N
2 · e jπ/2 ·H(ω)

H(ω) = 2

(N+1)/2∑
n=1

h(
N + 1

2
− n) sin[ω(n − 1

2
)]

• Note that H(ω) can take on negative values for certain ω.

It represents the amplitude response, with the inclusion of a multiplicative term ±1.

Negative values of H(ω) are commonly observed especially in the stopband.
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Zeros’ position in linear FIR filters

• For the symmetric filters:

H(z) =
N∑

n=0

h(n)z−n =
N∑

n=0

h(N − n)z−n

By introducing the variable change m = N − n in the second equality, we get:

H(z) =
N∑

m=0

h(m)z−N+m = z−NH(z−1)

• Similarly, for the antisymmetric filters, we have

H(z) = −z−NH(z−1).

• A polynomial with constant coefficients that satisfies the condition H(z) = z−NH(z−1) is referred to as a

mirror image polynomial.

• Conversely, a polynomial with constant coefficients satisfying the condition H(z) = −z−NH(z−1) is

termed an antimirror image polynomial.
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Zeros’ position in linear FIR filters

H(z) = z−NH(z−1). H(z) = −z−NH(z−1).

• For these two properties, if z = ξ0 is a zero of H(z) (H(ξ0) = 0) then z = ξ−1
0 is also a zero of H(z).

• In other words, symmetric and antisymmetric FIR filters exhibit zeros with reciprocal symmetry, known

as mirror image symmetry with respect to the unit circle.

• Additionally, if the filter has real coefficients, the zeros also possess conjugate symmetry.

• If a filter has a pair of conjugate symmetric zeros in z = re±jθ, then, due to the mirror image symmetry

property of the zeros, it must also have a pair of zeros a z = r−1e±jθ:
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Zeros’ position in linear FIR filters

• For a zero on the unit circle z = e jθ, its reciprocal coincides with the conjugate.

Consequently, the filter can have pairs of zeros on the unit circle in e±jθ.

• For every real zero z = r , the filter must have also the reciprocal zero in z = r−1.

• Additionally, zeros in z = ±1 are reciprocal of themselves and may appear individually in the set of zeros

of H(z).
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Zeros’ position in linear FIR filters

• An FIR filter of Type 2 (h(n) symmetric and of even length, N odd) must have at least a zero at −1.

This is evident from the condition:

H(z) = z−NH(z−1)

H(−1) = (−1)−NH(−1) = −H(−1) = 0

• In Type 3 and 4 FIR filters, there must be at least one zero at z = +1 due to the antisymmetry condition:

H(z) = −z−NH(z−1)

H(1) = −1NH(1) = −H(1) = 0

• Type 3 FIR filters, which have an odd length and N even, must also have at least one zero at −1.

H(−1) = −(−1)NH(−1) = −H(−1) = 0

• All linear FIR filters with an odd length must have either no zero or an even number of zeros at +1 and

−1 (because N is even)

• All linear FIR filters with an even length must have an odd number of zeros at +1 and −1 (since N is

odd).
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Zeros’ position in linear FIR filters

• The four cases of linear FIR filters differ in the distribution of zeros at +1 and −1.

• Type 1: have no zero or an even number of zeros at +1 and −1 (N is even).

• Type 2: have no zero or an even number of zeros at +1 and an odd number of zeros at −1 (N odd).

• Type 3: have an odd number of zeros at +1 and an odd number of zeros at −1 (N even).

• Type 4: have an odd number of zeros at +1 and no zero or an even number of zeros at −1 (N odd).

• Filters of Type 3 and 4 must have an odd number of zeros at +1. This is because the factor associated

with a zero at +1 is (1− z−1) which imparts antisymmetry to the polynomial.

• Filters of Type 2 and 3 must have an odd number of zeros at −1 (associated with the factor (1 + z−1) )

to achieve the desired value of N – whether odd or even – ensuring the symmetry or antisymmetry of

the polynomial.
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Zeros’ position in linear FIR filters

• The zeros in the four cases are the following:

Type 1 Type 2

Type 3 Type 4

A. Carini Digital Signal and Image Processing 37 / 85



Zeros’ position in linear FIR filters

• Type 1 filters can be used to implement any kind of filters, including lowpass, highpass, passband, and

stopband filters.

• Type 2 filters have H(e jπ) = 0, making them suitable for implementing lowpass and passband filters but

not highpass or stopband filters.

• Type 3 filters with H(e jπ) = H(e j0) = 0 are unsuitable for lowpass, highpass, and stopband filters, but

they can be used for passband filters.

• Type 4 filters with H(e j0) = 0 cannot be used for implementing lowpass or stopband filters, but they are

suitable for highpass or passband filters.
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IIR filters and linear phase

• Let us consider the case of a causal IIR filter described by a finite difference equation:

H(z) =
b0 + b1z

−1 + b2z
−2 + . . .+ bMz−M

a0 + a1z−1 + a2z−2 + . . .+ aNz−N
=

B(z)

A(z)

• We have observed that in the case of FIR filters, the linear phase condition manifests as the mirror image

symmetry of the zeros.

• The same criterion could be applied to derive IIR filters with linear phase.

• If A(z) and B(z) are mirror image polynomials, then H(z) exhibits linear phase.

• Unfortunately, the zeros of A(z) are the poles of the system and, if the poles satisfy the mirror image

symmetry property, the system is unstable. This is because for every pole inside the unit circle, there

must be a pole outside the unit circle.

• IIR filter design cannot overlook the need to ensure filter stability.

• We shall content ourselves only with approximating linear phase in the filter passband.
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Geometric interpretation of frequency response computation

• Let us consider an IIR filter with a transfer function

H(z) =
b0 + b1z

−1 + . . .+ bMz−M

1 + a1z−1 + . . .+ aNz−N

where for simplicity we have set a0 = 1.

H(z) = b0 ·
(1− z1z

−1) · (1− z2z
−1) · . . . · (1− zMz−1)

(1− p1z−1) · (1− p2z−1) · . . . · (1− pNz−1)
=

= b0 · zN−M ·
(z − z1) · (z − z2) · . . . · (z − zM)

(z − p1) · (z − p2) · . . . · (z − pN)

where z1, . . . , zM are the system zeros and p1, . . . , pN are the system poles.

• The frequency response of the system is

H(e jω) = b0 · e jω(N−M) (e
jω − z1) · (e jω − z2) · . . . · (e jω − zM)

(e jω − p1) · (e jω − p2) · . . . · (e jω − pN)
.
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Geometric interpretation of frequency response computation

• The amplitude response and the phase response are given, respectively, by

|H(e jω)| = |b0| ·
|e jω − z1| · |e jω − z2| · . . . · |e jω − zM |
|e jω − p1| · |e jω − p2| · . . . · |e jω − pN |

,

argH(e jω) = arg b0 + ω(N −M) + arg(e jω − z1) + arg(e jω − z2) + . . .+ arg(e jω − zM)

− arg(e jω − p1)− arg(e jω − p2)− . . .− arg(e jω − pN).

• If we examine the frequency response we can notice that the typical factor is

(e jω − λ)

with λ = zi or λ = pi .

• If we interpret this factor on the complex plane

we have that:

e jω is a point on the unit circle,

λ is the zero or pole position,

e jω − λ is the vector from λ to e jω.
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Geometric interpretation of frequency response computation

• For ω that goes from 0 to 2π this vector varies in amplitude and phase. From the position of the two

points, we can immediately obtain its amplitude and phase behavior. |e jω − λ| has minimum value when

ω = arg λ, and has maximum value when ω = arg λ+ π.
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Geometric interpretation of frequency response computation

• The amplitude response |H(e jω)| is given by the product of the modulus of all vectors associated with the

zeros, divided by the modulus of all vectors related to the poles, multiplied by the modulus of b0.

• The phase response argH(e jω) is given by the phase of b0, plus ω(N −M), plus the phase of all vectors

associated with the zeros, minus the phase of all vectors associated with the poles.

• When designing a filter that should attenuate a certain frequency range, we shall locate the zeros close to

the unit circle around this frequency range.

• On the contrary, if we have to emphasize certain frequency components of the signal, we shall locate the

poles around this frequency range.
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Simple digital filters: Lowpass FIR filter

• The most simple lowpass filter is the filter that computes the average between samples. Let us consider

y(n) =
1

2
(x(n) + x(n − 1))

Y (z) =
1

2

(
X (z) + z−1X (z)

)
H0(z) =

1

2
(1 + z−1) =

1

2

z + 1

z

• This is an FIR filter with a zero at z = −1 and a pole at z = 0.

• The vector e jω − λ related to the pole has always unit amplitude. The vector related to the zero has

maximum amplitude for ω = 0 (with amplitude 2) and then its amplitude decreases to 0 as ω goes from 0

to π.

• The filter is symmetric, and thus its phase is linear.

H0(e
jω) =

1

2
(1 + e−jω) =

1

2
e−jω/2(e jω/2 + e−jω/2) = e−jω/2 · cos(

ω

2
).
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Simple digital filters: Lowpass FIR filter
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Simple digital filters: Lowpass FIR filter

• Of particular interest is the frequency ωc for which

|H0(e
jωc )| = 1√

2
|H0(e

jω)|MAX =
1√
2
|H0(e

j0)|

• Let us consider the gain in dB (i.e., the amplitude in dB):

G(ωc) = 20 log10 |H0(e
jωc )| = 20 log10 |H0(e

j0)| − 20 log10(
√
2) = 0− 3.0103 ≃ −3dB.

• Thus, the frequency ωc is called the 3dB cutoff frequency, because the gain has reduced by 3dB

compared with the maximum value.

• Imposing,

|H0(e
jωc )|2 = cos2

ωc

2
=

1

2

we obtain ωc = π
2
.

A. Carini Digital Signal and Image Processing 46 / 85



Simple digital filters: Highpass FIR filter

• The most simple highpass filter can be obtained by replacing z with −z in the previous transfer function:

H1(z) = H0(−z).

• If we consider the geometric interpretation of the frequency response, we can understand that with this

variable change H1(z) has for z = 1 (for ω = 0) the same behavior of H0(z) for z = −1 (for ω = π), and

H1(z) has for z = −1 (for ω = π) the same behavior of H0(z) for z = +1 (for ω = 0).

H1(z) =
1

2
(1− z−1)

H1(e
jω) = je−jω/2 sin(

ω

2
)
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Simple digital filters: higher-order FIR filters

• We can obtain FIR lowpass or highpass filters with a narrower passband by cascading a certain number of

these elementary filters.

• By considering the cascade of M lowpass filters H0(e
jω), the resulting frequency response is

H(e jω) = HM
0 (e jω) and the 3dB cutoff frequency is given for

|H(e jωc )| = |H0(e
jωc )|M =

1√
2

i.e., for

|H0(e
jωc )| = 2−1/(2M)

cos
(ωc

2

)
= 2−

1
2M

ωc = 2arccos
(
2−

1
2M

)
.
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Simple digital filters: IIR Lowpass filter

• A lowpass filter of the first order has a transfer function:

HLP(z) =
1− α

2

1 + z−1

1− αz−1
,

where |α| < 1 for the stability of the system.

• The filter has a zero at z = −1 and a pole at z = α.
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Simple digital filters: IIR Lowpass filter

• The maximum value and the minimum value of the frequency response are obtained for ω = 0 and ω = π,

respectively.

HLP(e
j0) = 1 HLP(e

jπ) = 0

|HLP(e
jω)|2 = (1− α)2

4
·

(1 + e jω)(1 + e−jω)

(1− αe jω)(1− αe−jω)
=

=
(1− α)2

4
·

1 + e jω + e−jω + 1

1− αe jω − αe−jω + α2
=

=
(1− α)2

2
·

1 + cos(ω)

1− 2α cos(ω) + α2

d|HLP(e
jω)|2

dω
=

(1− α)2

2
·
− sin(ω)

(
1 + α2 − 2α cos(ω)

)
− (1 + cos(ω)) (2α sin(ω))

(1− 2α cos(ω) + α2)2
=

=
(1− α)2

2
·

− sin(ω)(1 + α)2

(1− 2α cos(ω) + α2)2
.

• For 0 ≤ ω ≤ π the derivative is always negative and, thus, the amplitude response decreases

monotonically.
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Simple digital filters: IIR Lowpass filter

• The 3dB cutoff frequency is obtained for |HLP(e
jω)|2 = 1

2
.

(1− α)2

2
·

1 + cos(ωc)

1− 2α cos(ωc) + α2
=

1

2

cos(ωc) =
2α

1 + α2

• If we want a lowpass filter with an assigned cutoff frequency ωc , we have to solve the previous eq. for α.

• It can be proved that the only stable solution is

α =
1− sin(ωc)

cos(ωc)
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Simple digital filters: IIR Highpass filter

• An order 1 IIR highpass filter is given by

HHP(z) =
1− α

2

1− z−1

1 + αz−1

where it must be |α| < 1 for stability.

• This filter has been obtained from the previous lowpass filter by replacing z with −z :

HHP(z) = HLP(−z)

• The same properties of the previous filter hold, apart from a frequency shift of π in the frequency response:

HHP(e
jω) = HLP(e

j(ω+π)).
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Simple digital filters: IIR Bandpass filter

• A bandpass filter of the second order is given by the following transfer function:

HBP(z) =
1− α

2

1− z−2

1− β(1 + α)z−1 + αz−2

• The squared amplitude response is

|HBP(e
jω)|2 = (1− α)2 (1− cos(2ω))

2 [1 + β(1 + α)2 cos(ω) + 2α cos(2ω)]

which is 0 for ω = 0 and ω = π and assumes the maximum value 1 for ω = ω0, called center frequency for

the bandpass filter, where

cos(ω0) = β

ω0 = arccos(β)

• The frequencies ωc1 and ωc2 for which |HBP(e
jω)|2 = 1

2
are called 3dB cutoff frequencies and their

difference ωc2 − ωc1 is called 3dB bandwidth. It can be proved that

B3dB = ωc2 − ωc1 = arccos

(
2α

1 + α2

)
.

• Thus, β controls the center frequency, while α controls the bandwidth.
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Simple digital filters: IIR Bandpass filter
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Simple digital filters: IIR Bandstop filter

• An second order IIR bandstop filter is given by the following transfer function

HBP(z) =
1 + α

2

1− 2βz−1 + z−2

1− β(1 + α)z−1 + αz−2

• The amplitude response for different values of α and β is given by:

• This filter is also called a notch filter.

• The notch frequency and the stopband bandwidth are:

ω0 = arccos(β) BI3dB = arccos

(
2α

1 + α2

)
.
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Simple digital filters: Higher order IIR filters

• By cascading a certain number of filters like the ones we have just introduced, it is possible to obtain filters

with steeper rising and falling edges in the frequency domain, i.e., filters with smaller transition bands.

• For example, consider the cascade of K IIR lowpass filters:

HLP(z) =
1− α

2

1 + z−1

1− αz−1
,

for which we have seen cos(ωc) =
2α

1 + α2
.

• In the filter cascade, the resulting transfer function is

GLP(z) =

(
1− α

2

1 + z−1

1− αz−1

)K

|GLP(e
jω)|2 =

[
(1− α)2(1 + cos(ω))

2(1 + α2 − 2α cos(ω))

]K

• The 3dB cutoff frequency can be obtained by setting

|GLP(e
jω)|2 = 1

2
.

• By imposing a certain ωc and solving this equation for α, we obtain that the only stable solution is

α =
1 + (1− C) cos(ωc)− sin(ωc)

√
2C − C 2

1− C + cos(ωc)
with C = 2

K−1
K .
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Simple digital filters: Higher order IIR filters example

• Let us design a filter with 3dB cutoff frequency ωc = 0.4π.

• For K = 1, C = 1, it is α = 0.1584.

• For K = 4, C = 1.6818, it is α = −0.251.

A. Carini Digital Signal and Image Processing 57 / 85



Comb filters

• Comb filters have a periodic frequency response with a period of 2π
L
, where L is a positive integer.

• If H(z) is a transfer function with a single passband and/or stopband, a comb filter can be easily

generated by replacing each delay element with L delays, resulting in a transfer function G(z) = H(zL).

• If |H(e jω)| has a peak at ω = ωp, then |G(e jω)| has L peaks at ω =
ωp

L
+ 2π

L
k where 0 ≤ k ≤ L− 1, and

0 ≤ ω ≤ 2π.

• Similarly, if |H(e jω)| has a notch at ω = ω0, then |G(e jω)| has L notches at ω = ω0
L
+ 2π

L
k where

0 ≤ k ≤ L− 1, and 0 ≤ ω ≤ 2π.

• It is easy to understand the behavior of the frequency response G(e jω) from the frequency response

H(e jω) because

G(e jω) = H(e jωL).

By varying ω from 0 to 2π, e jω moves along the unit circle L times, and therefore, the frequency response

G(e jω) coincides with H(e jω) (which is periodic with period 2π), apart from a frequency axis scaling by a

factor of 1
L
.
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Comb filters

• For example, if we consider

H(z) =
1

2

(
1 + z−1

)
G(z) =

1

2

(
1 + z−L

)
and for L = 4, the magnitude response is
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Comb filters

• Similarly, if we consider

H(z) =
1

2

(
1− z−1

)
G(z) =

1

2

(
1− z−L

)
the magnitude response for L = 4 is
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All-pass filters

• By definition, a transfer function is called all-pass if the amplitude response is constant (i.e., one) for all

frequencies, that is, if

|A(e jω)| = 1 ∀ω

• An all-pass causal transfer function with real coefficients is given by

AM(z) =
dM + dM−1z

−1 + . . .+ d1z
−M+1 + d0z

−M

d0 + d1z−1 + . . .+ dM−1z−M+1 + dMz−M

• If we call the denominator polynomial DM(z),

DM(z) = d0 + d1z
−1 + . . .+ dM−1z

−M+1 + dMz−M

we have

AM(z) = z−M DM(z−1)

DM(z)
.
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All-pass filters

AM(z) = z−M DM(z−1)

DM(z)
.

• Note that the denominator polynomial is the mirror image polynomial of the numerator, and vice versa.

• If z = re jθ is a pole of the transfer function, then z = 1
r
e−jθ is a zero.

• Poles and zeros of an all-pass filter exhibit mirror-image symmetry in the z-plane.

• By assuming that A(z) is a stable transfer function, the poles must be inside the unit circle and the zeros

outside the unit circle.
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All-pass filters

• Let us prove that AM(z) = z−M DM(z−1)

DM(z)
is an all-pass transfer function.

• Consider

AM(z−1) = zM
DM(z)

DM(z−1)

AM(z) ·AM(z−1) = z−M DM(z−1)

DM(z)
· zM

DM(z)

DM(z−1)
= 1

• Then,

AM(e jω) ·AM(e−jω) = |AM(e jω)|2 = 1

Q.E.D.
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All-pass filters

• It is interesting to observe the phase behavior for 0 ≤ ω ≤ 2π.

• With the geometric interpretation of the phase response, as ω varies from 0 to 2π, the zeros cause phase

fluctuations, but the overall phase variation is 0.

• Conversely, each pole contributes a phase of −2π.

• Overall, the phase varies from 0 to −2πM, as ω varies between 0 and 2π.

• In other words, for ω varying between 0 and π, the phase varies from 0 to −πM.
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Minimum-phase and maximum-phase transfer functions

• Another useful classification of transfer functions is based on the behavior of the phase response.

• Let us consider the following two first-order transfer functions with real coefficients:

H1(z) =
z + b

z + a

H2(z) =
bz + 1

z + a

with |a| < 1 and |b| < 1.
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Minimum-phase and maximum-phase transfer functions

• Both transfer functions have a pole inside the unit circle at −a, indicating stability.

• On the other hand, the zero of H1(z) falls inside the unit circle (at z = −b), while the zero of H2(z) falls

outside the unit circle at z = − 1
b
.

• The two transfer functions have the same amplitude response because

H2(z) = H1(z) ·
bz + 1

z + b
= H1(z) ·A(z)

with A(z) all-pass. Thus,

H1(e
jω) ·H1(e

−jω) =
∣∣H1(e

jω)
∣∣2 = H2(e

jω) ·H2(e
−jω) =

∣∣H2(e
jω)

∣∣2
• But they have different phase responses.
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Minimum-phase and maximum-phase transfer functions
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Minimum-phase and maximum-phase transfer functions

arg
[
H1(e

jω)
]
= θ1(ω)) = arctan

sin(ω)

b + cos(ω)
− arctan

sin(ω)

a+ cos(ω)

arg
[
H2(e

jω)
]
= θ2(ω)) = arctan

b sin(ω)

1 + b cos(ω)
− arctan

sin(ω)

a+ cos(ω)

arg
[
H2(e

jω)
]
= arg

[
H1(e

jω)
]
+ arg

[
A(e jω)

]

• For ω ranging from 0 to π, we observe that H2(e
jω) undergoes a phase variation of −π, while H1(e

jω)

undergoes no phase variation, i.e., H2(e
jω) exhibits an excess phase variation compared to H1(e

jω).

• In general, for ω ranging from 0 to π, a causal and stable transfer function with all zeros outside the unit

circle experiences an excess phase variation compared to a causal and stable transfer function with the

same amplitude response but with all zeros inside the unit circle.

• Consequently, a transfer function with all zeros inside the unit circle is termed a minimum-phase transfer

function, while if all zeros lie outside the unit circle, it is termed a maximum-phase transfer function.
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Inverse system

• Two LTI systems with impulse response h1(n) and h2(n) are inverses of each other if

h1(n)⊛ h2(n) = δ(n),

i.e., if their convolution is the unit impulse function, indicating that the cascade of the two systems (in

any order) results in the identity system.

• Let us characterize the inverse system (or the inverse filter) in the frequency domain.

• By taking the Z-transform of both sides of the equality, we have

H1(z) ·H2(z) = 1,

which implies

H2(z) =
1

H1(z)

and if H1(z) is rational,

H1(z) =
N(z)

D(z)
=⇒ H2(z) =

D(z)

N(z)
,

• H2(z) is also rational, and the poles (zeros) of the inverse filter are the zeros (poles) of H1(z).

• Assuming the inverse system to be causal, it will be stable if and only if H1(z) is minimum-phase.
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Inverse system

• Note that by relinquishing the assumption of causality for the inverse filter, the inverse filter is not unique.

• For example, consider the causal system

H1(z) =

(
z − 1

4

) (
z + 1

5

)(
z + 1

8

) (
z − 1

7

)
with R.O.C.: |z | > 1

7
• The inverse filter has a transfer function

H2(z) =

(
z + 1

8

) (
z − 1

7

)(
z − 1

4

) (
z + 1

5

)
with three possible R.O.C.:

1. |z| <
1

5
,

2.
1

5
< |z| <

1

4
,

3. |z| >
1

4
.

• Each region of convergence corresponds to a different inverse system. Only the last R.O.C. corresponds to

a causal system.
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Deconvolution

• If a system has a known causal impulse response h(n) and it is excited by a causal input signal x(n), then,

from the knowledge of the output signal y(n) for n ≥ 0, we can estimate the input signal x(n) using a

recursive relation without the need to evaluate the inverse system.

• It is

y(n) =
n∑

m=0

h(m)x(n −m).

• Let us assume h(0) ̸= 0,

y(0) = h(0)x(0) =⇒ x(0) =
y(0)

h(0)

y(1) = h(0)x(1) + h(1)x(0) =⇒ x(1) =
y(1)− h(1)x(0)

h(0)

y(2) = h(0)x(2) + h(1)x(1) + h(2)x(0) =⇒ x(2) =
y(2)− h(1)x(1)− h(2)x(0)

h(0)

y(n) =
n∑

m=0

h(m)x(n −m) =⇒ x(n) =

y(n)−
n∑

m=1

h(m)x(n −m)

h(0)
.

This procedure, which estimates the input signal x(n) from the convolution sum, is called deconvolution.
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Amplitude equalizer and phase equalizer

• Given a system H(z), a filter G(z) whose amplitude response |G(e jω)| satisfies the following condition

|G(e jω)| = |H(e jω)|−1 ∀ω ∈ [ω1, ω2]

is called an amplitude equalizer for the system H(z) in band [ω1, ω2].
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Amplitude equalizer and phase equalizer

• Given a system H(z), a filter P(z) whose phase response argP(e jω) satisfies the following condition

argP(e jω) = − argH(e jω)− Kω ω ∈ [ω1, ω2],

with K ∈ R, is called a phase equalizer for the system H(z) in band [ω1, ω2].

(in this case K = 0)
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Stability test for IIR filters: the stability triangle

• For real coefficient IIR filters of second order, we can easily determine if the filter is stable from the

coefficients of the denominator.

• Consider the polynomial

D(z) = z2 + a1z + a2 = (z − z1)(z − z2)

z1,2 = −a1
2

±
√

a21 − 4a2
4

and thus

a2 = z1 · z2

a1 = −(z1 + z2)

• We can prove that the roots z1 and z2 fall inside the unit circle if and only if

|a2| < 1,

|a1| < 1 + a2.
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Stability test for IIR filters: the stability triangle

• If the zeros are complex conjugate the condition |a2| < 1 is necessary and sufficient for stability.

• If the zeros are real: a21 − 4a2 ≥ 0 and it is still necessary that |a2| < 1.

|z1,2|max =
|a1|
2

+

√
a21 − 4a2

4
,

from which, if |a2| < 1, the filter is stable if and only if |a1| < 1 + a2.

In fact, if

|a1|
2

+

√
a21 − 4a2

4
< 1

then √
a21 − 4a2

4
< 1− |a1|

2

a21 − 4a2
4

< 1− |a1|+
a21
4

−a2 < 1− |a1|

|a1| < 1 + a2.

Conversely, if |a1| < 1 + a2 then

|z1,2|max <
1 + a2

2
+

√
(1 + a2)2 − 4a2

4
= 1
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Stability test for IIR filters: the stability triangle

• On the plane a1, a2, the region of points for which the filter is stable is a triangle,

called the stability triangle.
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Stability test for IIR filters: Schur-Cohn stability test

• The Schur-Cohn stability test can be applied to polynomials of any order.

• Let us consider:

DM(z) =
M∑
i=0

diz
−i = 1 + d1z

−1 + . . .+ dMz−M

with d0 = 1 for simplicity.

• Let us take the mirror image polynomial,

D̃M(z) = z−MDM(z−1) = z−M
M∑
i=0

diz
i =

= dM + dM−1z
−1 + . . .+ d1z

−M+1 + z−M ,

and let us build the all-pass filter

AM(z) =
D̃M(z)

DM(z)

• If DM(z) =
M∏
i=1

(
1− λiz

−1
)
, with λi the filter poles, then dM =

M∏
i=1

λi (−1)M .

• Thus, if we call KM = dM , a necessary condition for the all-pass filter stability is that

|KM | < 1.
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Stability test for IIR filters: Schur-Cohn stability test

• Let us assume |KM | < 1 and let us build the all-pass filter

AM−1(z) = z ·
[
AM(z)− KM

1− KMAM(z)

]
= z ·

D̃M(z)− dMDM(z)

DM(z)− dMD̃M(z)
=

= z ·
(dM − dM · 1) + (dM−1 − dMd1)z

−1 + . . .+ (1− d2
M)z−M

(1− d2
M) + (d1 − dMdM−1)z−1 + . . .+ (dM − dM · 1)z−M

=

=
(dM−1 − dMd1) + . . .+ (1− d2

M)z−M+1

(1− d2
M) + (d1 − dMdM−1)z−1 + . . .+ (dM−1 − dMd1)z−M+1

.

• It can be proved that the all-pass filter AM(z) is BIBO stable if and only if |KM | < 1 and AM−1(z) is

BIBO stable.
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Schur-Cohn stability test: proof

• The proof is based on the fact that if the real-coefficients all-pass filter AM(z) is stable then:

|AM(z)| = 1 for |z | = 1,

|AM(z)| < 1 for |z | > 1,

|AM(z)| > 1 for |z | < 1.

• We have already seen that the condition |KM | < 1 is necessary for the stability.

• In the hypothesis that |KM | < 1 and that AM(z) is stable, let us prove that AM−1(z) is stable.

• If λ0 is a pole of AM−1(z) then λ0 is a root of the equation

DM(z)− KMD̃M(z) = 0

i.e., AM(λ0) =
D̃M(λ0)

DM(λ0)
=

1

KM
.

• Since |KM | < 1, |AM(λ0)| > 1, and λ0 must fall inside the unit circle because of the stability of AM(z).
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Schur-Cohn stability test: proof

• Let us prove that AM(z) is stable when |KM | < 1 and AM−1(z) is stable.

• But if λ0 is a pole of AM(z), DM(λ0) = 0,

AM−1(λ0) = −λ0
D̃M(λ0)

KMD̃M(λ0)
= − λ0

KM

• Since |KM | < 1,

∣∣∣∣ 1λ0
·AM−1(λ0)

∣∣∣∣ > 1, and

|AM−1(λ0)| > |λ0|

• If for absurd we assume |λ0| > 1, we also have |AM−1(λ0)| > 1, which contradicts the hypothesis of

stability of AM−1(z).

• Thus, it must be |λ0| < 1. Q.E.D.
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Schur-Cohn stability test: continued

• The test procedure can be repeated.

• Let us consider:

AM−1(z) =
d ′
M−1 + d ′

M−2z
−1 + . . .+ d ′

1z
−M+2 + z−M+1

1 + d ′
1z

−1 + . . .+ d ′
M−1z

−M+1

with

d ′
i =

di − dMdM−i

1− d2
M

=
di − KMdM−i

1− K 2
M

Let us set KM−1 = d ′
M−1 and build

AM−2(z) = z ·
AM−1(z)− KM−1

1− KM−1AM−1(z)

the filter AM(z) is stable if and only if |KM | < 1, |KM−1| < 1, and AM−2(z) is stable.

• By iterating this procedure M − 1 times, given the coefficients KM , KM−1, . . . , K1 associated with the

all-pass filters AM(z), AM−1(z), . . . , A1(z), the all-pass filter AM(z) is stable (and the polynomial DM(z)

has all its roots inside the unit circle) if and only if

|Ki | < 1 ∀i .
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Schur-Cohn stability test: exercise

• Let’s ascertain whether the polynomial D4(z),

D4(z) = 1 +
1

3
z−1 − 2

15
z−2 − 1

3
z−3 +

1

3
z−4,

has roots inside the unit circle.

• We apply the Schur-Cohn stability test.

• To apply the method it suffices to remember that the denominator of AM−1(z) is given by

AM−1(z) = [DM(z)− KMD̃M(z)]/(1− K 2
M) .

• K4 =
1

3
, and 1− K 2

4 = 1− 1
9
= 8

9
.

D3(z) = [D4(z)− K4D̃4(z)]/(1− K 2
4 ) =

=

[
1 +

1

3
z−1 − 2

15
z−2 − 1

3
z−3 +

1

3
z−4 − 1

3

(
1

3
− 1

3
z−1 − 2

15
z−2 +

1

3
z−3 + z−4

)]
/
8

9

=

[(
1− 1

9

)
+

(
1

3
+

1

9

)
z−1 +

(
− 2

15
+

2

45

)
z−2 +

(
−1

3
− 1

9

)
z−3 +

(
1

3
− 1

3

)
z−4

]
/
8

9

= 1 +
1

2
z−1 − 1

10
z−2 − 1

2
z−3.
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Schur-Cohn stability test: exercise

• K3 = −1

2
, 1− K 2

3 =
3

4

D2(z) = [D3(z)− K3D̃3(z)]/(1− K 2
3 ) =

=

[
1 +

1

2
z−1 − 1

10
z−2 − 1

2
z−3 +

1

2

(
−1

2
− 1

10
z−1 +

1

2
z−2 + z−3

)]
/
3

4

=

[(
1− 1

4

)
+

(
1

2
− 1

20

)
z−1 +

(
− 1

10
+

1

4

)
z−2 +

(
−1

2
+

1

2

)
z−3

]
/34

=

[
3

4
+

9

20
z−1 +

3

20
z−2

]
/34

= 1 +
3

5
z−1 +

1

5
z−2.
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Schur-Cohn stability test: exercise

• K2 =
1

5
, 1− K 2

2 =
24

25

D1(z) = [D2(z)− K2D̃2(z)]/(1− K 2
2 ) =

=

[
1 +

3

5
z−1 +

1

5
z−2 − 1

5

(
1

5
+

3

5
z−1 + z−2

)]
/
24

25

=

[(
1− 1

25

)
+

(
3

5
− 3

25

)
z−1 +

(
1

5
− 1

5

)
z−2

]
/
24

25

=

[
24

25
+

12

25
z−1

]
/
24

25
.

= 1 +
1

2
z−1.

• Since K1, K2, K3, and K4 have absolute value less than 1, the polynomial has roots inside the unit circle.
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