694 FLOATING-POINT NUMBERS APP. B

B.2 IEEE FLOATING-POINT STANDARD 754

Until about 1980, each computer manufacturer had its own floating-point for-
mat. Needless to say, all were different. Worse yet, some of them actually did
arithmetic incorrectly because floating-point arithmetic has some subtleties not
obvious to the average hardware designer.



SEC. B.2 IEEE FLOATING-POINT STANDARD 754 695

Example 1: Exponentiation to the base 2
52 o4 56 58 510 512 514 4-16

| TITITITT

Unnormalized: 0 1010100 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 =220(1x2" 2+ 1x2 % 1x27®
N e "

16y _
Sign Excess 64 Fractionis 1 x 27124+ 1 x 2713 +1x277) =432
+ exponentis 12 P 27
84 -64 =20

To normalize, shift the fraction left 11 bits and subtract 11 from the exponent.

Normalized: 0 1001001 1 1 011 000000000O00O0O0=22"(1x2"+1x2%1x2"
e LR A

Sign Excess 64 Fractionis 1 x 27 +1x 272 +1x27%) =432
+ exponent is #H 2t ptx2®
73-64=9

Example 2: Exponentiation to the base 16

Unnormalized: 0 1000101 0000 0000 0001 1011 =165(1><16'3+Bx16'4):432
S - v /
Sign Excess 64 Fractionis 1 x 16 + Bx 167
+ exponentis
69-64=5

To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent.

Normalized: 0 1000011 0001 1011 0000 0000 =16°(1x16""+Bx167) =432
Mt N e v
Sign Excess 64 Fractionis 1 x 167" + B x 1672
+ exponentis
67 -64=3

Figure B-3. Examples of normalized floating-point numbers.

To rectify this situation, in the late 1970s IEEE set up a committee to stand-
ardize floating-point arithmetic. The goal was not only to permit floating-point
data to be exchanged among different computers but also to provide hardware
designers with a model known to be correct. The resulting work led to IEEE
Standard 754 (IEEE, 1985). Most CPUs these days (including the Intel, SPARC,
and JVM ones studied in this book) have floating-point instructions that conform
to the IEEE floating-point standard. Unlike many standards, which tend to be
wishy-washy compromises that please no one, this one is not bad, in large part
because it was primarily the work of one person, Berkeley math professor Wil-
liam Kahan. The standard will be described in the remainder of this section.

The standard defines three formats: single precision (32 bits), double preci-
sion (64 bits), and extended precision (80 bits). The extended-precision format is
intended to reduce roundoff errors. It is used primarily inside floating-point arith-
metic units, so we will not discuss it further. Both the single- and double-
precision formats use radix 2 for fractions and excess notation for exponents. The
formats are shown in Fig. B-4.

Both formats start with a sign bit for the number as a whole, 0 being positive
and 1 being negative. Next comes the exponent, using excess 127 for single



696 FLOATING-POINT NUMBERS APP. B

Bits 1 8 23

Fraction

A %
Sign Exponent

(@)

Bits 1 11 52
Exponent Fraction
™ sign
g

(b)

Figure B-4. [EEE floating-point formats. (a) Single precision. (b) Double precision.

precision and excess 1023 for double precision. The minimum (0) and maximum
(255 and 2047) exponents are not used for normalized numbers; they have special
uses described below. Finally, we have the fractions, 23 and 52 bits, respectively.
A normalized fraction begins with a binary point, followed by a 1 bit, and
then the rest of the fraction. Following a practice started on the PDP-11, the
authors of the standard realized that the leading 1 bit in the fraction does not have
to be stored, since it can just be assumed to be present. Consequently, the stan-
dard defines the fraction in a slightly different way than usual. It consists of an
implied 1 bit, an implied binary point, and then either 23 or 52 arbitrary bits. If all
23 or 52 fraction bits are 0s, the fraction has the numerical value 1.0; if all of them
are ls, the fraction is numerically slightly less than 2.0. To avoid confusion with
a conventional fraction, the combination of the implied 1, the implied binary
point, and the 23 or 52 explicit bits is called a significand instead of a fraction or
mantissa. All normalized numbers have a significand, s, in the range 1 <s < 2.



