BINARY NUMBERS

The arithmetic used by computers differs in some ways from the arithmetic
used by people. The most important difference is that computers perform opera-
tions on numbers whose precision is finite and fixed. Another difference is that
most computers use the binary rather than the decimal system for representing
numbers. These topics are the subject of this appendix.

A.1 FINITE-PRECISION NUMBERS

While doing arithmetic, one usually gives little thought to the question of how
many deczmal digits it takes to represent a number. Physicists can calculate that
there are 107 electrons in the universe without being bothered by the fact that it
requires 79 decimal digits to write that number out in full. Someone calculating
the value of a function with pencil and paper who needs the answer to six signifi-
cant digits simply keeps intermediate results to seven, or eight, or however many
are' needed. The problem of the paper not being wide enough for seven-digit
numbers never arises.

With computers, matters are quite different. On most computers, the amount
of memory available for storing a number is fixed at the time that the computer is
designed. With a certain amount of effort, the programmer can represent numbers
two, or three, or even many times larger than this fixed amount, but doing so does
not change the nature of this difficulty. The finite nature of the computer forces

679

680 BINARY NUMBERS APP. A

us to deal only with numbers that can be represented in a fixed number of digits.
We call such numbers finite-precision numbers.

In order to study properties of finite-precision numbers, let us examine the set
of positive integers representable by three decimal digits, with no decimal point
and no sign. This set has exactly 1000 members: 000, 001, 002, 003, ..., 999.
With this restriction, it is impossible to express certain kinds of numbers, such as

Numbers larger than 999.
Negative numbers.
Fractions.

Irrational numbers.

U

Complex numbers.

One important property of arithmetic on the set of all integers is closure with
respect to the operations of addition, subtraction, and multiplication. In other
words, for every pair of integers i and j, i +j, i — j, and i X j are also integers.
The set of integers is not closed with respect to division, because there exist
values of i and j for which /] is not expressible as an integer (e.g., 7/2 and 1/0).

Finite-precision numbers ate not closed with respect to any of these four basic
operations, as shown below, using three-digit decimal numbers as an example:

600 + 600 = 1200 (too large)

003 -005=-2 (negative)
050 x 050 = 2500 (too large)
007/002=3.5 (not an integer)

The violations can be divided into two mutually exclusive classes: operations
whose result is larger than the largest number in the set (overflow etror) or
smaller than the smallest number in the set (underflow error), and operations
whose result is neither too large nor too small but is simply not a member of the
set. Of the four violations above, the first three are examples of the former, and
the fourth is an example of the latter.

Because computers have finite memories and therefore must of necessity per-
form arithmetic on finite-precision numbers, the results of certain calculations will
be, from the point of view of classical mathematics, just plain wrong. A calculat-
ing device that gives the wrong answer cven though it is in perfect working condi-
tion may appear strange at first, but the error is a logical consequence of its finite
nature. Some computers have special hardware that detects overflow errors.

The algebra of finite-precision numbers is different from normal algebra. As
an example, consider the associative law:

a+b-c)={a+b)-c

Let us evaluate both sides for a = 700, b =400, ¢ =300. To compute the left-
hand side, first calculate (b —¢), which is 100, and then add this amount to 4,

SEC. A1 FINITE-PRECISION NUMBERS 681

yielding 800. To compute the right-hand side, first calculate (g + b), which gives
an overflow in the finite arithmetic of three-digit integers. The result may depend
on the machine being used but it will not be 1100. Subtracting 300 from some
number other than 1100 will not yield 800. The associative law does not hold.
The order of operations is important.

As another example, consider the distributive law

axXb-cl=axb~-axc

Let us evaluate both sides for @ =35, b =210, ¢ =195, The left-hand side is
5 x 15, which yields 75. The right-hand side is not 75 because a X b overflows.

Judging from these examples, one might concludé: that although computers
are general-purpose devices, their finite nature renders them especially unsuitable
for doing arithmetic. This conclusion is, of course, not true, but it does serve to
illustrate the importance of understanding how computers work and what limita-
tions they have.

A.2 RADIX NUMBER SYSTEMS

An ordinary decimal number with which everyone is familiar consists of a
string of decimal digits and, possibly, a decimal point. The general form and its
usual interpretation are shown in Fig. A-1. The choice of 10 as the base for
exponentiation, called the radix, is made because we are using decimal, or base
10, numbers. When dealing with computers, it is frequently convenient to use
radices other than 10. The most important radices are 2, 8, and 16. The number
systems based on these radices are called binary, octal, and hexadecimal, res-
pectively.

100's 10's 1's A's Ot's 001's
place place place place place place
dy . do dy dy . d_ d.p ds U

n
Number=3% dix10'
==k

Figure A-1. The general form of a decimal number.

A radix k number system requires k different symbols to represent the digits 0
to k — 1. Decimal numbers are built up from the 10 decimal digits

682 BINARY NUMBERS AFP. A

0123456789

[n contrast, binary numbers do not use these ten digits. They are all constructed
exclusively from the two binary digits

01
Octal numbers are built up from the eight octal digits
01234567

For hexadecimal numbers, 16 digits are needed. Thus six new symbols are
required. It is conventional to use the uppercase letiers A through F for the SI%
digits following 9. Hexadecimal numbers are then built up from the digits

0123456789ABCDEF

The expression “binary digit” meaning a 1 or a 0 is usually referred to as a
bit. Figure A-2 shows the decimal number 2001 expressed in binary, octal,
decimal, and hexadecimal form. The number 7B9 is obviously hexadecimal,
because the symbol B can only occur in hexadecimal numbers. However, the
number 111 might be in any of the four pumber systems discussed. To avoid
ambiguity, people use a subscript of 2, 8, 10, or 16 to indicate the radix when it is
not obvious from the context.

Binary 1 1 1 1 1 0 1 0 0 0 1

1x2’°+1><29+1><23+1><27+1><25+0x25+1><24+0><23+0x22+0><2‘+1>r£'.“
1024 + 512 +256 +128 +64 +0 +16 +0 +0 +0 +1

QOctal 3 7 2 1

Ix83+7 x82 +2x8' +1x8°
1536 + 448 + 16 +1

Decimal 2 0 0 1
2 %10% + 0 x102 + 0 x 10" + 1 x10°
2000 + 0O +Q +1

Hexadecimal 7 D 1

7 %162+ 13 %161+ 1 x16°
1792 + 208 +1

Figure A-2. The number 2001 in binary, octal, and hexadecimal.

As an example of binary, octal, decimal, and hexadecimal notation, consider
Fig. A-3, which shows a collection of nonnegative integers expressed in each of
these four different sysiems. Perhaps some archacologist thousands of years from
now will discover this table and regard it as the Rosetta Stone to late twenticth
century and early twenty-first century number systems.

SEC. A3 CONVERSION FROM ONE RADIX TO ANOTHER 683

Decimal Binary Octal | Hex
0 0 0 0

1 1 1 1

2 10 2 2
3 1 3 3
4 100 3 3
5 101 5 5

6 110 6 6

7 1M 7 7
8 1000 | 10| -8

9 1001 1 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 | - 20 10
20 10100 24 14
30 11110 | 36 1E
40 101000 50 | 28
50 110010 62 | a2
60 114100 | 74 | 3¢
70 1000110 | 106 | 46
80 1010000 | 120 | 50
90 1011010 | 132 | 5A
100 11001000 | 144 | 84
1000 | 1111101000 | 1750 | 3E8
2989 | 101110101101 | 5655 | BAD

Figure A-3. Decimal numbers and their binary,

equivalents,

octal, and hexadecimal

A.3 CONVERSION FROM ONE RADIX TO ANOTHER

Conversion between octal or hexadecimal numbers and binary numbers is
casy. To convert a binary number to octal, divide it into groups of 3 bits, with the
3 bits immediately to the left (or right) of the decimal point (often called a binary
point) forming one group, the 3 bits immediately to their left, another group, and
so on. Each group of 3 bits can be directly converted to a single octal digit, 0 to 7,
according to the conversion given in the first lines of Fig. A-3. It may be neces-
sary to add one or two leading or trailing zeros to fill out a group to 3 full bits.
Conversion from octal to binary is equally trivial. Each octal digit is simply
replaced by the equivalent 3-bit binary number, Conversion from hexadecimal to

684 BINARY NUMBERS APP. A

binary is essentially the same as octal-to-binary except that each hexadecimal
digit corresponds to a group of 4 bits instead of 3 bits. Figure A-4 gives some
examples of conversions.

Example 1
Hexadecimal 1 g 4 § . B 6
Pt S s e W N i RS NN N—
Binary 0001100101001000,101101100
Mt Mt gt St et e o
QOctal 1 4 5 1 0 . 5 5 4
Example 2
Hexadecimal 7 B A 3 . B C 4.
B e e T e e B e Gt
Binary 0111101110100011.10111100010Q0
St e oy e et Ad g e
Octal 7 5 6 4 3 .5 7 0 4

Figure A-4, Examples of octal-to-binary and hexadecimal-tce-binary conversion.

Conversion of decimal numbers to binary can be done in two different ways.
The first method follows directly from the definition of binary numbers. The larg-
est power of 2 smaller than the number is subtracted from the number. The pro-
cess is then repeated on the difference. Once the number has been decomposed
into powers of 2, the binary number can be assembled with 1s in the bit positions
corresponding to powers of 2 used in the decomposition, and Os elsewhere.

The other method (for integers only) consists of dividing the number by 2.
The quotient is written directly beneath the original number and the remainder, 0
or 1, is written next to the quotient. The quotient is then considered and the pro-
cess repeated until the number 0 has been reached. The result of this process will
be two columns of numbers, the quotients and the remainders. The binary number
can now be read directly from the remainder column starting at the bottom. Fig-
ure A-5 gives an example of decimal-to-binary conversion.

Binary integers can also be converted to decimal in two ways. One method
consists of summing up the powers of 2 corresponding to the 1 bits in the number.
For example,

10510=2*+22+2 =16 +4+2=22

In the other method, the binary number is written vertically, one bit per line, with
the leftmost bit on the bottom. The bottom line is called line 1, the one above it
line 2, and so on. The decimal number will be built up in a parallel column next
to the binary number. Begin by writing a 1 on line 1. The entry on line n consists
of two times the entry on line # — 1 plus the bit on line n (either 0 or 1). The entry
on the top line is the answer. Figure A-6 gives an example of this method of
binary to decimal conversion.

SEC. A3 CONVERSION FROM ONE RADIX TO ANOTHER 685

Quotients Remainders

1492
746 0 ~
373 0 —
186 1 ~

93 0—'"-—--——-“-—\)

46 T '

23 O

11 T

5 T

2 1

1 0

0 1

W rvvﬂfr“

10111010100 =14092,

Figure A-5. Couversion of the decimal number 1492 (o binary by successive
halving, starting at the top and working downward. For example, 93 divided by
2 yields a quotient of 46 and a remainder of 1, written on the line below it,

Decimal-to-octal and decimal-to-hexadecimal conversion can be accom-
plished either by first converting to binary and then to the desired system or by
subtracting powers of 8 or 16.

A.4 NEGATIVE BINARY NUMBERS

Four different systems for representing negative numbers have been used in
digital computers at one time or another in history. The first one is called signed
magnitude. In this system the Ieftmost bit is the sign bit (0 is + and 1 is ~) and
the remaining bits hold the absolute magnitude of the number.

The second system, called one’s complement, also has a sign bit with 0 used
for plus and 1 for minus. To negate a number, replace each 1 by a 0 and each 0
by a 1. This holds for the sign bit as well. One’s complement is obsolete.

The third system, called two’s complement, also has a sign bit that is O for
plus and 1 for minus. Negating a number is a two-step process. First, each 1 is

686 BINARY NUMBERS APP. A

1 01 ¢t 1t 0 1 1 0 1 1 1

L—>1+2x1499=2999 -« Resuit
1+2x749=1499
1+2%x374=749
0+2x187 =374

K —— 1 +2x93=187
. —1+2x46=93
N —0+2x23=246
. > 1+2x11:)3
e 1 +2x5=11
o —1+2%2=
\ - 0+2x1=
. 1+2x0="1 - Start here

Figure A-6. Conversion of the binary number 101110110111 to deciimal by suc-
cessive doubling, starting at the bottom. Each line is formed by doubling the one
below it and adding the corresponding bit. For example, 749 is twice 374 plus
the 1 bit on the same line as 749.

replaced by a 0 and each 0 by a 1, just as in one’s complement. Second, 1 is
added to the result. Binary addition is the same as decimal addition except that a
carry is generated if the sum is greater than 1 rather than greater than 9. For
example, converting 6 to two’s complement is done in fwo steps:

00000110 (+6)
11111001 (—6 in one’s complement)
11111010 (-6 in two’s complement)

If a carry occurs from the leftmost bit, it is thrown away. -

The fourth system, which for m-bit numbers is called excess 2m-1 represents
a number by storing it as the sum of itself and 2™~} For example, for 8-bit
numbers, m = 8, the system is called excess 128 and a number is stored as its true
value plus 128. Therefore, —3 becomes -3 + 128 = 125, and -3 is represented by
the 8-bit binary number for 125 (01111101). The numbers from —128 to +127
map onto O to 255, all of which are expressible as an 8-bit positive integer.
Interestingly enough, this system is identical to two’s complement with the sign
bit reversed. Figure A-7 gives examples of negative numbers in all four systems.

Both signed magnitude and one’s complement have two representations for
zero: a plus zero, and a minus zero. This situation is undesirable. The two’s com-
plement system does not have this problem because the two’s complement of plus

SEC. A4 NEGATIVE BINARY NUMBERS 687
N N -N -N -N N

decimal binary signed mag. 1's compl. 2'scompl. | excess 128

1 00000001 10000001 11111110 11111111 01111111

2 00000010 10000010 11111101 11111110 011111190

3 00000011 10000611 11111100 11111101 01111101

4 00000100 10000100 11111011 11111100 01111100

5 00000101 10000101 11111010 11111011 01111011

] 00000110 10000110 11111001 || 11111010 81111010

7 0000G111 10000111 11111000 1 11111001 01111001

8 00001000 10001000 11110111 11111000 01111000

9 00001001 10001001 11110110 11110111 01110141

10 00001010 10001010 11110101 11110110 01110110

20 00010100 10610100 11101011 11101100 01101100

30 00011110 10011110 11100001 11100010 01100010

40 00101000 10101000 11010111 11011000 01011000

50 00110010 10110010 11001101 11001110 01001110

60 00111100 10111100 11000011 11000100 01000100

70 01000110 11000110 10111001 10111010 00111010

80 01010000 11010000 10101111 10110000 00110000

90 01011010 11011010 10100101 10100110 00100110

100 01100100 11100100 10011011 10011100 00011100

127 01111111 11111111 10000000 10000001 00000001

128 Nonexistent Nonexistent Nonexistent 10000000 00000000

Figure A-7. Negative 8-bit numbers in four systems.

zero is also plus zero. The two’s complement system does, however, have a dif-
ferent singularity. The bit pattern consisting of a 1 followed by all Os is its own
complement. The result is to make the range of positive and negative numbers
unsymmetric; there is one negative number with no positive counterpart.

The reason for these problems is not hard to find: we want an encoding sys-
tem with two properties:

1. Only one representation for zero.

2. Exactly as many positive numbers as negative numbers.

The problem is that any set of numbers with as many positive as negative numbers
and only one zero has an odd number of members, whereas m bits allow an even
number of bit patterns. There will always be either one bit pattern too many or
one bit pattern too few, no matter what representation is chosen. This extra bit

688 BINARY NUMBERS APP. A

pattern can be used for —0 or for a large negative number, or for something else,
but no matter what it is used for it will always be a nuisance.

A.5 BINARY ARITHMETIC

The addition table for binary numbers is given in Fig. A-8.

Addend 0 0 1 1
Augend +0 + +0 4
Sum o 1 17 0
Carry 0 o 0 1

Figure A-8. The addition table in binary.

Two binary numbers can be added, starting at the rightmost bit and adding the
corresponding bits in the addend and the augend. If a carry is generated, it is car-
ried one position to the left, just as in decimal arithmetic. In one’s complement
arithmetic, a carry generated by the addition of the leftmost bits is added to the
rightmost bit. This process is called an end-around carry. In two’s complement
arithmetic, a carry generated by the addition of the leftmost bits is merely thrown
away. Examples of binary arithmetic are shown in Fig. A-9.

Decimal 1's complement 2's complement
10 00001010 00001010
+ (~8) 11111100 1111110
+7 1 00000110 1 00000111
carry 1 discarded
00000111

Figure A-9. Addition in one’s complement and two’s complement.

If the addend and the augend are of opposite signs, overflow error cannot
occur. If they are of the same sign and the result is of the opposite sign, overflow
error has occurred and the answer is wrong. In both one’s and two’s complement
arithmetic, overflow occurs if and only if the carry into the sign bit differs from
the carry out of the sign bit. Most computers preserve the carry out of the sign bit,
but the carry into the sign bit is not visible from the answer. For this reason, a

special overflow bit is usually provided.

APP. A PROBLEMS 689

L
2,
3.

PROBLEMS

Convert the following numbers to binary: 1984, 4000, 8192.
What is 1001101001 (binary) in decimal? In octal? Tn hexadecimal?

Which of the following are valid hexadecimal numbers? BED, CAB, DEAD,
DECADE, ACCEDED, BAG, DAD.

Express the decimal number 100 in all radices from 2 to 9.

S. How many different positive integers can be expressed in k digits using radix

numbers?

Most people can only count to 10 on their fingers; however, computer scientists can do
better. If you regard each finger as one binary bit, with finger extended as | and
finger touching paim as 0, how high can you count using both hands? With both
hands and both feet? Now use both hands and both feet, with the b g toe on your left
foot as a sign bit for two’s complement numbers. What is the range of expressible
numbers?

Perform the following calculations on 8-bit two's complement numbers.
00101101 11111111 00000000 1111111
+01101111 + 11114111 —11111111 - 11110111

8. Repeat the calculation of the preceding problem but now in one’s complement,

10.

11.

12,

9. Consider the following addition problems for 3-bit binary numbers in two’s comple-

ment. For each sum, state

a. Whether the sign bit of the result is 1.
b. Whether the low-order 3 bits are 0,

¢. Whether an overflow occurred.

000 000 111 100 100
+001 + 111 +110 +111 +100

Signed decimal numbers consisting of n digits can be represented in n + 1 digits
without a sign. Positive numbers have 0 as the leftmost digit. Negative numbers are
formed by subtracting each digit from 9. Thus the negative of 014725 is 985274,
Such numbers are called nine’s complement numbers and are analogous to one’s com-
plement binary numbers. Express the following as three-digit nine’s complement
numbers: 6, -2, 100, ~14, —1, 0.

Determine the rule for addition of nine’s complement numbers and then perform the
following additions.
0001 0001 9997 9241
+ 9999 + 9998 + 9996 + 0802

Ten’s complement is analogous to twao's complement. A ten’s complement negative
number is formed by adding I to the corresponding nine’s complement number, ignor-
ing the carry. What is the rule for ten’s complement addition?

