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eccentricity is e= 1.5 ft, and the height of the building is 12 ft. Determine the natural periods and modeg

of vibration of the structure.

Solution

Weight of roof slab: w =30 x 20 x 100 Ib = 60 kips

Mass: m=w/g = 1.863 kips-sec? /ft

m(b* +d?)

Moment of inertia: 7, = 2

Free Vibration

=201.863 kips-ft-sec

Lateral motion of the roof diaphragm in the x-direction is governed by Eq. (9.5.18):

mii, + 2k, =0

Thus the natural frequency of x-lateral vibration is

op=yf 2 [2E0 6 ssnrad
TV T TV Tges 0223 rad/see

The corresponding natural mode is shown in Fig. E10.6c.

The coupled lateral (u,)-torsional (1) motion of the roof diaphragm is governed by Eq. (9.5.19).

Substituting for m and I, gives

_[1.863
201.863

From Eqgs. (9.5.16) and (9.5.19) the stiffness matrix has four elements:

kyy = k, =75 Kips /1t
kyo = kgy = ek, = 1.5 x 75 = 112.5 kips

d2
ko = *k, + ?kx =8168.75 kips-ft

Hence,

o 75.00  112.50
T |112.50  8168.75

Chap. 19

(a) First mode (b) Second mode
=5.878 rad/sec ; = 6.794 rad/sec

Figure E10.6
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With k and m known, the eigenvalue problem for this two-DOF system is solved by standard procedures
to obtain:

Natural frequencies (rad/sec): w; =5.878;w, =6.794

—0.5228 —0.5131
Natural modes: ¢, = [ 0.0493 } 1, = { —0.0502 ]

These mode shapes are plotted in Fig. E10.6a and b. The motion of the structure in each mode consists
of translation of the rigid diaphragm coupled with torsion about the vertical axis through the center of
mass.

Example 10.7

Consider a special case of the system of Example 10.6 in which frame A is located at the center of mass
(i.e., e=0). Determine the natural frequencies and modes of this system.

Solution Equation (9.5.20) specialized for free vibration of this system gives three equations of
motion:

42
mii, + 2k, =0 mii, +ku,=0 ol + Ekxu9 =0 @

The first equation of motion indicates that translational motion in the x-direction would occur at the

natural frequency
[ 2k, [2(40
W, = p = % =6.553rad/sec

This motion is independent of lateral motion u, or torsional motion u, (Fig. E10.7c). The second equation
of motion indicates that translational motion in the y-direction would occur at the natural frequency

k. 75
Wy, =/ ;z- = 1568 =6.344rad/sec

This motion is independent of the lateral motion u, or torsional motion u, (Fig. E10.7b). The third
equation of motion indicates that torsional motion would occur at the natural frequency

&k, (20240
I F G YTV
@0 =31, =\ 2001.863) ~ 029> rad/see
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Figure E10.7




516

Earthquake Analysis of Linear Systems Chap. 13
0.046 0.016

13.985 713.798 0.156 ¢
;0,913 0910 > 1.135 > 0.842 0.4484
0.794 0.810 G001 1134 > 1.134

0.585 0.606 1.134 0.448 1.29o<
0310 0.324 1.134 > 1.290 ? 0.842
7 n 2 . o

7.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Tl =2 sec T2 =1.873 T3 =0.672 T4 =0.439 T5 =0.358

Figure 13.2.9 Natural periods and modes of vibration of building with appendage.

large deformations in the appendage. Table 13.2.4 gives the modal static responses for the
base shear V, and appendage shear V5. Observe that V. for the first two modes are similar
in magnitude and of the same algebraic sign; V5. for the first two modes are also of similar
magnitude but of opposite signs. The responses D,(f) and A,(t) of the SDF systems corre-
sponding to the five modes of the system are shown in Fig. 13.2.10. Note that D,(1)—also
A, (f)—for the first two modes are essentially in phase because the two natural periods are
close; the peak values are similar because of similar periods and identical damping in the two

modes.

TABLE 13.2.4 MODAL STATIC RESPONSES

Mode

1 2 3 4 3

Vi/m 1951 1633 0333 0078 0.015

V/ms 9938 —8979 0.046 —0.007 0.0001

The modal contributions to the base shear and to the appendage shear together with the
total response are presented in Fig. 13.2.11. Observe that the response contributions of the
first two modes are similar in magnitude because the modal static responses are about the
same and the A,(f) are similar. In the case of base shear, the two modal static responses
are of the same algebraic sign, implying that the two modal contributions are essentially in
phase [because so are A;(f) and A,(¢)], and hence the combined base shear is much larger
than the individual modal responses. In contrast, the modal static responses for the appendage
shear are of opposite algebraic sign, indicating that the two modal contributions are essentially
out of phase, and hence the combined appendage shear is much smaller than the indi-
vidual modal responses. However, it is very large, being almost equal to its own weight.
As a result, significant damage to appendages at the top of essentially undamaged struc-
tures has been observed during earthquakes. Two examples are shown in Figures 13.2.12 and

13.2.13.
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Figure 13.2.10 Displacement D, (f) and pseudo-acceleration A, (7) responses of modal SDF systems.
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Figure 13.2.11 Base shear and appendage shear: modal contributions, V,,(r) and Vs, (1), and total

responses, V,(¢) and Vs(z).
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TABLE E13.12a PEAK MODAL RESPONSES

uy b/2 u, Vs T, Via Vg
Mode  (in.) (in.) (kips)  (kip-ft)  (kips)  (kips)

1 2.168 —3.065 11.63 —118.8 11.63 6.814
2 2.042 2999 14.64 155.2 14.64 —6.662

Step 4: For this system with two modes, the ABSSUM, SRSS, and CQC rules, Egs. (13.7.2)-
(13.7.4), specialize to
r< ||+ |l re(ri+r)'? rz(rf+r§+2p12r1r2)”2 ()

For this system, B, = @, /w, = 5.878/6.794 = 0.865. For this value of B, and ¢ =0.05, Eq. (13.7.10)
gives p;; = 0.322. The results from Eq. (1) are summarized in Table E13.12b, wherein the peak values
of total responses determined by RHA are also included. These were computed using the results of
Example 13.8, where D, (f) and A, (r) were computed by dynamic analysis of the nth-mode SDF system.

TABLE E13.12b RSA AND RHA VALUES OF PEAK RESPONSE

uy (b/2) uy Vi T, Via Vs
(in.) (in.) (kips)  (kip-ft)  (kips) (kips)

ABSSUM 4.210 6.064 26.27 274.0 26.27 13.48
SRSS 2.978 4.289 18.70 195.5 18.70 9.530
CQC 3.423 3.532 21.43 162.3 21.43 7.848
RHA 3.349 3.724 20.63 174.3 20.63 8.275

As expected, the ABSSUM estimate is always larger than the RHA value. The SRSS estimate is
better, but the CQC estimate is the best because it accounts for the cross-correlation term in the modal
combination, which is significant in this example because the natural frequencies are close, a situation
common for unsymmetric-plan systems.

Figure E13.13a—c shows a two-story building consisting of rigid diaphragms supported by three frames,
A, B, and C. The lumped weights at the first and second floor levels are 120 and 60 kips, respectively.
The lateral stiffness matrices of these frames, each idealized as a shear frame, are

225 -75 120 —40
b=k = [—75 75] ki =k =k, = [—40 40]

The design spectrum for ¢, = 5% is given by Fig. 6.9.5 scaled to 0.5g peak ground acceleration.
Determine the peak value of the base shear in frame A.

Solution This system has four DOFs: u,; and u; (Fig. E13.13a); j =1 and 2. The stiffness matrix of
Eqgs. (9.5.25) and (9.5.26) is specialized for this system with three frames:

e k, ek,
ek, ek, + (d*/2)k,
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Figure E13.13a-c (continued)

Substituting for k., k,, e =1.5 ft, d =20 ft, gives

2250 —=75.00 3375 -112.5
K= 75.00 —112.5 112.5
(sym) 24,506 —8169
8169

The floor masses are m; = 120/g = 3.727 kip-sec*/ft and m, = 60/g = 1.863 kip-sec’/ft, and the floor
moments of inertia are Ip; = m;(b* + d*)/12 = m;(30* +20%)/12 = 1300m;/12. Substituting these data in
the mass matrix of Eq. (9.5.27) gives

3.727
1.863
403.7
201.9

The eigenvalue problem is solved to determine the natural periods 7, and modes ¢, shown in
Fig. E13.13d. Observe that each mode includes lateral and torsional motion. In the first mode the two
floors displace in the same lateral direction and the two floors rotate in the same direction. In the second
mode the two floors rotate in the same direction, which is opposite to the first mode. In the third and
fourth modes the lateral displacements at the two floors are in opposite directions; the same is true for
the rotations of the two floors.

The T, are computed from Egs. (13.3.4) to (13.3.6): I'; = 1.591, I, = 1.561, I's = —0.562, and
ry=0.552.
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Figure E13.13d  (continued)

For T, = 1.512, 1.307, 0.756, and 0.654 sec, the design spectrum gives A;/g = 0.595,
A,/g=0.688,A;/g=1.191, and A,/g=1.355.
The peak values of the equivalent static lateral forces for frame A are [from Eq. (13.9.4b)]
fAn = (rll/a)i)k)'((ﬁ_\'n + e¢071)A"

Substituting for I';, w;(= 4.156), k,, Aj, ¢,1, and ¢y, gives the lateral forces associated with the first

mode:
1.591 225 75| ([02134] , ; 5 |-0.0201 }) _ {24.2}
{f:lz} - (4.156)* 0555 2.2 [—75 —751\ ([0.4269 11 20.0403 24.2
Jaz), :
Static analysis of the frame subjected to these lateral forces (Fig. E13.13e) gives the internal forces. In

particular, the base shear is Vi =fi1 +fu =48.4 kips. Similar computations lead to th.e peak base shear
due to the second, third, and fourth modes: Vji = 53.9, Vi3 = 12.1, and V44 = 13.3 kips.

> 24.2 kips

24.2 kips

77 4
Frame A Figure E13.13¢
The peak value r of the total response r(f) will be estimated by combining the peak'modal
responses according to the CQC rule, Eq. (13.7.4). For this purpose it is necessary to determine the

Sec. 13.10
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frequency ratios f;, = w;/w,; these are given in Table E13.13a. For each of the f3;, values the correlation
coefficient p;, is computed from Eq. (13.7.10) with ¢ =0.05 and presented in Table E13.13b.

TABLE E13.13a NATURAL FREQUENCY RATIOS g,

Mode, i n=.1 =2 n=3 n=4 wj(rad/sec)
1 1.000 0.865 0.500 0.433 4.157
2 1.156 1.000 0.578 0.500 4.804
3 2.000 1.730 1.000 0.865 8.313
4 2.312 2.000 1.156 1.000 9.608

TABLE E13.13b CORRELATION COEFFICIENTS pj,

Mode, i n=1 n=2 =3 n=4
1 1.000 0.322 0.018 0.012
2 0.322 1.000 0.030 0.018
3 0.018 /0.030 1.000 0.322
4 0.012 0.018 0.322 1.000

Substituting the peak modal values V,,, and the correlation coefficients p;, in the CQC rule, we
obtain the 16 terms in the double summation of Eq. (13.7.4) (Table E13.13¢). Adding the 16 terms and
taking the square root gives V,,, = 86.4 kips. Table E13.13c shows that the terms with significant values
are the i =n terms, and the cross terms between modes 1 and 2 and between modes 3 and 4. The cross
terms between modes 1 and 3, 1 and 4, 2 and 3, or 2 and 4 are small because those frequencies are well
separated. The square root of the sum of the four i =n terms in Table E13.13c gives the SRSS estimate:
Vipa = T4.7 kips. This is less accurate.

TABLE E13.13c INDIVIDUAL TERMS IN CQC RULE:
BASE SHEAR V4 IN FRAME A

Mode, i n=l n=2 n=3 n=4
1 2344.039 839.912 10.833 7.839
2 839.913 2905.669 19.748 13.250
3 10.833 19.748 146.502 51.797
4 7.839 13.250 51.797 176.807

13.10 A RESPONSE-SPECTRUM-BASED ENVELOPE FOR SIMULTANEOUS RESPONSES

The seismic design of a structural element may be controlled by the simultaneous action of two or
more responses. For example, a column in a three-dimensional frame must be designed to resist an
axial force and bending moments about two axes that act concurrently and vary in time. We limit this
section to two response quantities: r,(¢) and r,(¢); for a column r,(¢) represents the bending moment
M(t) about a cross-sectional axis and r,(f) represents the axial force P(z). The values of r, and r,
at a time instant ¢ are denoted by one point in the two-dimensional response space (Fig. 13.10.1a),




