Prof. Sabrina Pricl

A.Y. 2024-2025

Lesson 1 Water, pH and buffers

- The fundamental molecule of life
- 60-95% of living human cells is H_20
 - 55% in intracellular fluids
 - 45% divided between:
 - Plasma (8%)
 - Interstitial (between cells) and lymph (22%)
 - Connective tissue, cartilage and bones (15%)

Lymph (from Latin, lympha) is the fluid that flows through the lymphatic system, a system composed of lymph vessels (channels) and intervening lymph nodes whose function, like the venous system, is to return fluid from the tissues to the central circulation

- In biochemistry:
 - Transport medium across cell membranes
 - Body temperature maintenance
 - Solvent in the GI and excretion system

- In biochemistry:
 - Transport medium across cell membranes
 - Body temperature maintenance
 - Solvent in the GI and excretion system

• Healthy humans

- Daily water intake/loss = 2L
 - Intake --> 45% from liquids, 40% from food and 15% chemical reactions
 - Loss -> 50% urines, 5% feces and 55% evaporation from lung and skin

- In biochemistry:
 - Transport medium across cell membranes
 - Body temperature maintenance
 - Solvent in the GI and excretion system
- Healthy humans
 - Daily water intake/loss = 2L
 - Intake --> 45% from liquids, 40% from food and 15% chemical reactions
 - Loss –> 50% urines, 5% feces and 55% evaporation from lung and skin
- Water balance must be preserved:
 - Loss >> intake --> dehydration
 - Intake >> loss --> edema

Water dissociation and pH

- H₂0 <-> H₃0⁺ + OH⁻
 - $[H_3O^+] = [OH^-] --> neutral$
 - [H₃O⁺] > [OH⁻] --> acidic
 - [H₃O⁺] = [OH⁻] --> basic
- $K_w = [H_3O^+] \times [OH^-] = 10^{-14} (25^{\circ}C)$
 - In human body @ 37°C --> K_w = 2.4 x 10⁻¹⁴
- In **pure water** --> [H₃O⁺] = [OH⁻] = 10⁻⁷ (25°C)
 - pH = -log[H₃O⁺] --> in pure water pH = 7
 - In human blood @ 37°C --> pH =7.4 --> [H₃O⁺] = 3.98 x 10⁻⁸
- pK_w = -logK_w = 14

Weak acids and bases

• In biology we have only weak acids and bases (incomplete dissociation)

 $CH_3COOH + H_2O <--> H_3O^+ + CH_3COO^ CH_3COO^-$ conjugate base

 $K_a = [H_3O^+][CH_3COO^-]/[CH_3COOH]$

 $NH_3 + H_2O <--> NH_4^+ + OH^ NH_4^+$ conjugate acid $K_b = [NH_4^+][OH^-]/[NH_3]$

 $pK_a = -logK_a$ $pK_b = -logK_b$

$$K_a \times K_b = K_w = 10^{-14} - pK_a + pK_b = 14$$

Buffers and pH control

• A solution that contains a conjugate acid-base pair of any weak acid or base in relative proportions to resist pH change when small amounts of either a (strong) acid or base are added is a buffer solution

Buffer

- Stomach pH = 1-2
- GI tract pH = 8-9
- Blood pH = 7.4
 - Blood pH < 7.2 --> pathological condition = acidosis
 - Blood PH < 6.8 --> death
 - Blood pH > 7.6 --> pathological condition = alkalosis
 - Blood pH > 8.6 --> death

- Respiratory acidosis
 - Inefficient expulsion of CO₂, increased concentration of H₂CO₃, impaired-respiration pathologies (pneumonia, emphysema, asthma)

• Metabolic acidosis

 Decreased concentration of HCO₃⁻, results from various kidney diseases, uncontrolled diabetes, or vomiting of non-acid fluids

- Respiratory alkalosis
 - Excessive CO₂ removal, decreased concentration of H₂CO₃, hyperventilation
- Metabolic alkalosis
 - Increased concentration of HCO₃⁻, results excessive vomiting of stomach acid

• PROTEIN BUFFER SYSTEM

- Protein buffer system helps to maintain acidity in and around cells
- PHOSPHATE BUFFER SYSTEM
 - Phosphate buffer helps to maintain intracellular and urine pH
- BICARBONATE BUFFER
 - main extracellular buffer, main blood buffer
 - Helps in controlling CO_2 levels --> CO_2 + H_2O <--> H_2CO_3 <--> H^+ + HCO_3^-
 - Coupled with CO₂ (blood) <--> CO₂ (lungs)

Buffer action and the pH of blood

- Normal blood pH = 7.4
 - Kept at this value by the buffering action of HCO₃⁻, resulting from these two parallel physiological equilibria:
 - CO₂ + H₂O <--> H₂CO₃
 - H₂CO₃ <--> H⁺ + HCO₃⁻
- $K_{eq} = [H^+][HCO_3^-]/[CO_2]^* = 7.95 \times 10^{-7} --> pK_{eq} = -logK_{eq} = 6.1$
- Rearranging:

 $[H^+] = K_{eq} \times [CO_2] / [HCO_3^-] -> \log[H^+] = \log K_{eq} + \log ([CO_2] / [HCO_3^-] ->$

 $-\log[H^+] = -\log K_{eq} - \log[CO_2] / [HCO_3^-] -> pH = pK_{eq} + \log[HCO_3^-] / [CO_2]$

*[H₂O] = 55.6 M = const = included in the K_{eq} value

Quiz time

- A patient suffering from acidosis had a blood pH of 7.15 and a CO₂ concentration of 1.15 mM.
- If the reference range for pH = 7.4 are:

 $[HCO_3^{-}] = 22.0 - 26.0 \text{ mM} \text{ (average} = 24 \text{ mM})$

 $[CO_2] = 1.20 \text{ mM}$

and pK_{eq} for the bicarbonate buffer = 6.1

- Q1. What was the patient's bicarbonate (HCO3⁻) concentration?
- Q2. What are the implications of this value to the buffer capacity of the blood?

Quiz time

R1.

 $pH = pK_{eq} + \log[HCO_3^{-}]/[CO_2] --> 7.15 = 6.1 + \log[HCO_3^{-}]/(1.15 \times 10^{-3})$

 $10^{1.05} = [HCO_3^{-}]/(1.15 \times 10^{-3}) \longrightarrow [HCO_3^{-}] = 12.9 \times 10^{-3} \longrightarrow [HCO_3^{-}] = 12.9 \text{ mM}$

R2.

Normal $[HCO_3^-]$ average value = 24 mM --> $[HCO_3^-]$ in patient lowered by 11.1 mM --> severely impaired buffer capacity --> any further, small acid production will have serious consequences for the patient