

BUILDINGS HVAC SYSTEM Solar Angles

Solar angles, horizontal coordinates

- The reference is the observation horizontal plan
- We identify the solar angles
- θ_z : zenith angle
- β : solar height
- ϕ : solar azimuth, positive in west direction

Heat Gains and Cooling Loads

Summer operation

Winter operation

Surface Balance

$$Q_{sol} + Q_{ref} = Q_{os} + (Q_{rad} - Q_{at}) + Q_{oi}$$

$$Q_{sol} = \alpha \cdot [A_s \cdot (I_D + I_d) + A_{sh} \cdot I_d]$$

$$Q_{ref} = A \cdot \alpha_{os} \cdot I_{ref}$$

$$Q_{os} = h_c \cdot A \cdot (T_{os} - T_o)$$

Sol-Air Temperature

• Q_{ref} offset by $Q_{rad} - Q_{at}$

 $Q_{sol} + Q_{ref} = Q_{os} + (Q_{rad} - Q_{at}) + Q_{oi}$ $Q_{sol} = Q_{os} + Q_{oi}$ $Q_{oi} = h_o \cdot A \cdot (T_{sol} - T_{os})$ $\alpha_{os} \cdot I_t = h_o \cdot (T_{os} - T_o) + h_o \cdot (T_{sol} - T_{os})$

• Sol-air temperature

$$T_{sol} = T_o + \frac{\alpha_{os} \cdot I_t}{h_o}$$

Heat Balance Equation

• For a surface a heat balancing equation can be written

$$q_{i,t} = [h_{ci}(T_{r,t} - T_{i,t}) + \sum_{j=1}^{n} h_{ij}(T_{j,t} - T_{i,t})A_i + S_{ir}$$

- h_{ci} convective heat transfer surface *i*
- h_{ij} radiative heat transfer
- $T_{r,t}$ room temperature
- $T_{i,t}$ *i*th surface temperature
- $T_{j,t}$ *j*th surface temperature
- $S_{ir,t}$ solar radiation
- $L_{ir,t}$ electric lights
- $E_{ir,t}$ radiative energy from equipment absorbed *ith surface*
- $O_{ir,t}$ radiation from occupants absorbed on the surface

$r_{,t} + L_{ir,t} + E_{ir,t} + O_{ir,t}$

sensible cooling load

$$Q_{rs,t} = \sum_{i}^{m} h_{ci} (T_{r,t} - T_{i,t}) A_i + \dot{V}_{if} \rho c_{pa} (T_{o,t} - T_{r,t}) +$$

- *h_{ci}* convective heat transfer surface *i*
- \dot{V}_{if} volumetric flow rate infiltration
- *T_{o.t}* outdoor temperature
- *S_{c.t}* solar radiation from windows
- $L_{c,t}$ electric lights
- *E_{c.t}* convective energy from equipment absorbed *ith surface*
- $O_{c.t}$ sensible heat from occupants

$+ S_{c,t} + L_{c,t} + E_{c,t} + O_{c,t}$

Heat Balance Method

- Impossible to solve equations without computer
- Different methods developed
 - Transfer function method
 - Radiant time series
 - Finite difference
 - CLTD/SCL/CLF Method, cooling load temperature difference
 - TETD/TA Method total eqivalent temperature difference
- CLTD/SCL/CLF Method
 - CLTD: Cooling Load Temperature Difference
 - SCL: Solar Cooling Load
 - CLF: Cooling Load Factor

CLTD

• Space sensible cooling load

$$Q_{rs,w} = U \cdot A \cdot CLTD$$

- U overall heat-transfer coefficient
- A area of exterior wall, roof, or window
- *CLTD* cooling load temperature difference (usually in °F)
- *CLTD* tables reported for specific conditions
- Possible correction for different temperatures

$$CLTD_{corr} = CLTD + 78 - T_r + 2$$

 $T_{om} - 85$

Space Cooling due to Fenestration

• The data is split according to the exposition of the window

$$Q_{rs,s} = Q_{sun} + Q_{sh} = A_s \cdot SCL_s \cdot SC + A$$

 Q_{sun} space cooling load from solar heat gain through sunlit area of window glass Q_{sh} space cooling load from solar heat gain through shaded area of window glass A_s, A_sh sunlit and shaded area SC shading coefficient

 SCL_s solar cooling load for sunlit glass facing specific direction SCL_{sh} solar cooling load for shaded area as if glass is facing north

- $A_{sh} \cdot SCL_{sh} \cdot SC$

Internal Cooling Loads

• Sensible internal heat hain contains the radiative component and is multiplied by a factor

$$Q_{int,s} = q_{int,s} \cdot CLF_{int}$$