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Setup for Inference
• There is an unknown parameter θ
• There is a random variable X defined on some sample space
• The sample data x = (x1, x2,…, xn) are observations of the 

random variable, 
– x is a realization of the random variable X

• Example: 
– X is a random variable height
– x contains the values of height in the sample data (x1 is my 

height, x2 is your height, etc.)
– The random variable height is distributed following some 

parameter X ~ p(X | θ)
– The sample data values of height, x, is not distributed as 

anything (my height is not distributed, neither is yours, etc.)
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Sampling Distribution 
of the Sample Mean Estimator

• Let X be a random variable, p(X) = N(μ, σ2) where σ2 is known
• Wish to make an inference about μ
• Let      be an estimator for μ
• Let    be the estimate from a particular sample x

• Let θ = μ

• The sampling distribution of                 is
where 
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Sampling Distribution 
of the Sample Mean Estimator
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Sampling Distribution for 
an Estimator, Not a Parameter
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Estimator vs. Estimate
• Statements like

refer to properties of the estimator and are prospective in the 
sense that they do not depend on the actual observed values x

• But for any estimate from a particular sample, we have no 
way of knowing how close this estimate is to μ

• We cannot say if     is within 1.96 standard errors of μ, even 
with probability .95
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Hypothesis Testing
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100

H0: μ = 100
HA: μ ≠ 100

Test with defined level α (.05)

x
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Test with defined level α (.05)
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If p < α, reject H0
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Hypothesis Testing
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Probability in Hypothesis Testing
What's wrong with NHST? Well, among many other things, it does not tell 
us what we want to know, and we so much want to know what we want to 
know that, out of desperation, we nevertheless believe that it does! What
we want to know is "Given these data, what is the probability that H0 is 
true?" But as most of us know, what it tells us is "Given that H0 is true, 
what is the probability of these (or more extreme) data?" These are not the 
same, as has been pointed out many times over the years…

-- Cohen (1994, p. 997)
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Probability in Hypothesis Testing

Adopting an explicitly Bayesian approach would resolve a recurring 
source of confusion for these researchers, letting them say what they mean 
and mean what they say.

-- Jackman (2009, p. xxviii)

What's wrong with NHST? Well, among many other things, it does not tell 
us what we want to know, and we so much want to know what we want to 
know that, out of desperation, we nevertheless believe that it does! What
we want to know is "Given these data, what is the probability that H0 is 
true?" But as most of us know, what it tells us is "Given that H0 is true, 
what is the probability of these (or more extreme) data?" These are not the 
same, as has been pointed out many times over the years…

-- Cohen (1994, p. 997)
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Confidence Intervals
A __% confidence interval for a parameter θ is an interval (L,U) 
generated by a procedure that in repeated sampling has a __% 
probability of containing the true value of θ, for all possible 
values of θ

• Define an interval for θ via the estimator (L, U) =         , based 
on the desired level of confidence 1 – α

• Example: p(X) = N(μ, σ2) where σ2 is known
• The estimator is 
• The estimate is 
• The estimate may differ for different samples
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Confidence Intervals for a Population Mean
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Confidence Intervals
• Probability interpretation is for the estimator

• Over repeated samples, the proportion of intervals that contain 
θ will be 1 – α
– The proportion of times such intervals will contain θ is 1 – α

• Do not know whether a particular interval contains θ

Can we say that a particular interval contains θ with any 
probability?

( ( )) 1p X    
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From the Literature on Confidence Intervals

For instance, with respect to 95% confidence intervals, Masson and 
Loftus (2003) state that “in the absence of any other information, 
there is a 95% probability that the obtained confidence interval 
includes the population mean.” Cumming (2014) writes that “[w]e 
can be 95% confident that our interval includes [the parameter] and 
can think of the lower and upper limits as likely lower and upper 
bounds for [the parameter].

-- Morey et al. (2016, p. 104)
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From the Literature on Confidence Intervals

For instance, with respect to 95% confidence intervals, Masson and 
Loftus (2003) state that “in the absence of any other information, 
there is a 95% probability that the obtained confidence interval 
includes the population mean.” Cumming (2014) writes that “[w]e 
can be 95% confident that our interval includes [the parameter] and 
can think of the lower and upper limits as likely lower and upper 
bounds for [the parameter].

These interpretations of confidence intervals are not correct. We call 
the mistake these authors have made the “Fundamental Confidence 
Fallacy”…

-- Morey et al. (2016, p. 104)
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Fundamental Confidence Fallacy
Morey et al. (2016)

If the probability that a random interval contains the true value is 
__%, then the plausibility or probability that a particular 
observed interval contains the true value is also __%; or, 
alternatively, we can have __% confidence that the observed 
interval contains the true value.

Confuses 
• What is known before observing the data 
• What is known after observing the data

Frequentist CI theory says nothing at all about the probability that a 
particular, observed confidence interval contains the true value; it is 
either 0 (if the interval does not contain the parameter) or 1 (if the 
interval does contain the true value).             --Morey et al. (2016, p. 105)
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Summary of Probability in Frequentist Inference
• Grounded in frequentist conception of probability

– Data vary upon repeated sampling, parameters don’t

• In inference, probabilities formulated regarding estimators 
(point or interval) or stats/estimates upon repeated sampling

• Confidence interval is not a probability for a parameter
– Probability for an interval, upon repeated sampling

• p-value is not a probability for a hypothesis
– Small p-value evidence against a hypothesis…
– …large p-value not evidence for a hypothesis
– Magnitude of p-value not a good measure of magnitude of 

evidence 
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Summary
• Frequentist probability &inference
• Estimators vs. estimates
• Sampling distributions
• Hypothesis tests
• Confidence intervals
• Probability statements

https://xkcd.com/1478/


