1 Fourier transform

Definition 1.1 (Fourier transform). For f € L'(R? C) we call its Fourier transform the

function defined by the following formula
N _d —itx
fie) = @nt [ e fayn

We use also the notation Ff(£) = F(€).
Ezxample 1.2. We have for any € > 0

2
||

lg|?

e = (2775)_g/ e e 5 d.
Rd

We set also
FHI(E) = (2m) 8 / ¢ f (o) dar
Rd
We have what follows.

Theorem 1.3. The following facts hold.

~

(1) We have |f(§)] < (271)7%||f||L1(R47(C). So in particular we have

_d
[ F fll oo ra,cy < (2m) 2| fll 1 (rec)-

~

(2) (Riemann— Lebesgue Lemma) We have 5lim f(&) =o.
—00

(1.1)

(1.2)

(1.3)

(1.4)

(8) The bounded linear operator F : L'(RY,C) — L>(R%,C) has values in the following

space Co(R%, C) c L*(R?,C)

Co(R%,C) := {g € C°(R%,C) : lim g(z) = 0}.

(1.5)

(4) F defines an isomorphism of the space of Schwartz functions S(R?, C) into itself.

(5) F defines an isomorphism of the space of tempered distributions S'(R?, C) into itself.

We have F[O,, f] = —i&;F f.
(6) For f,g € L'(R%,C) we have

Theorem 1.4 (Fourier transform in L?). The following facts hold.



(1) For a function f € LY(R?,C) N L3(R?,C) we have that f € L2(R%,C) and ||f]| 2 =
| f|lz2- An operator

F:L*(R%C) — L*(R%,C) (1.6)
remains defined. For f € L?>(R%,C) for any function o € C.(RY,C) with ¢ = 1 near
0 set

F1(©) = lm 2m) 7 [ o @)oo/ Ao
/o0 R4
] . (1.7)
= lim (27 _2/ e T f(x)dx.
| /Oo( ) o (z)
Then (1.7) defines an isometric isomorphism inside L*(R%,C), so in particular we
have
IFfll2mae,cy = 1 fll L2 rac)- (1.8)
(2) The inverse map is defined by
* : —4d i&x
Ff(a) = Jim (m) [ (/N
/oo R (1.9)

1 i&-x
~ Jim (27) /|€ e

(3) For f € LY(R?,C) N L?(R%,C) the two definitions (1.1) and (1.7) of F coincide (by
dominated convergence). Similarly, for f € L*(R?, C) N L?(RY,C) the two definitions
(1.3) and (1.9) of F* coincide.

__ The above notions extend naturally to vector fields. So we have a Fourier transform f —
f from (LY(R%))? — (Co(RH))4, from (L?(R%))? — (L2(R%))? |, from (S(R%))? — (S(RY))4
and more generally from (S’'(R%))4 — (S'(R?))?. Notice that all these maps except the 1st
are isomorphisms, and all are one to one maps.

We have the following lemma.

We consider now for A =3, % and for f € S'(RY, C) the heat equation

u—Au=0, u(0,z)=f(x). (1.10)

By applying F we transform the above problem into

o~

U+ EPa=0, a(0,&) = f(&).

This yields u(t, §) = e*t|5|2f(£). Notice that since f € S'(R?,C) and et ¢ S(RY,C) for

any t > 0, the last product is well defined. Furthermore, we have 4(t,-) € C°([0, +00), S'(R%, C))

and, as a consequence, since F is an isomorphism of S’(R%, C) also u(t, -) € C°([0, +00), S’ (R", C)).
~ x 2 ~ ~

We have e~€” = G(t,¢) with G(t,z) = (2t)~ 3¢~ i . Then, from a(t,€) = G(t,€)f(€) it

follows u(t, x) = (27T)_%G(t, ) * f(z). In particular, for f € LP(R? C), we have

_lz—y|?

ta) = ) H [ 5 pa.

2



Notice that by (1.2) we have

d l=?
(47Tt)_2/ e 4t dxr = 1.
R4

We will write
la—y|?

S f(x) = (4mt) "2 / e~ f(y)dy. (1.11)
Rd

Notice that for p > 1 we have ||€tAfHLp(Rd) < |||l (rey and for f € L'(R%) and any z € R?

2 @) < (rt) 4 [ ldy < amt) 1l = )l
Rd
(1.12)
12
We set also Ky(x) := (47rt)_%e_%. Then '™ f = K; * f. Ki(x — y) is the Heath Kernel.

Lemma 1.5. For any q > p > 1 and j > 1 there exists Cjpq s.1.

_J_df1_1
1962 fllpageny < Conat 4670 fll o for amy £ € PRI, (1.13)

Proof. For brevity we consider only 7 = 0. Using Young’s convolution inequality
1 1 1
1K * fllpamey < (15Kl Lo ey | 1| Lo (mey where p +l=—+ >

where
_ay, = _did _dy, =
HKtHLa(Rd) = (47Tt) 2”6 4t ||La(Rd) = Cpqt 2 2a WhereCpq = (471') 2H6 4 HL“(Rd)'
Now
A G I Gl

and so this yields (1.13) for 7 = 0. The case j € N is obtained in an elementary fashion by
differentiating.

0
Theorem 1.6. p € L'(R?Y) be s.t. fp = 1. Set p.(x) = e p(x/e). Consider
C.(R% C) and for each p € [1,00] let Co(R%,C) (C)p be the closure of C.(R%,C) in LP(R?,C),
so that C.(R4,C), = LP(R?,C) for p < oo and C.(R4,C),, = Co(R%,C) & L>®(R?,C).
Then for any f € C.(R%,C), we have

. _ e rp/md
l{%pe*f—f in LP(R%, C). (1.14)
In particular we have
li LP(RY
t{%e Af = fin LP(R%,C). (1.15)



d

Proof. Clearly, (1.15) is a special case of (1.14) setting € = v/t and p(z) = (47) 2e~ = .
To prove (1.14) we start with f € C.(R?, C). In this case

po £@) = 1a) = [ (fo—en) = @)piwiy

so that, by Minkowski inequality and for A(y) := ||f(- — y) — f(*)||r, We have

e * £(2) — £(2)]l10 < / ()| A (e v)dy.

Now we have lim,_,0 A(y) = 0 and A(y) < 2|/ f||zr. So, by dominated convergence we get
sy o £(2) — (@)1 = lim [ 1o0)|Ae p)dy =0,

So this proves (1.14) for f € C.(R% C). The general case is proved by a density argument.
O

2  Some spaces of functions on L? based Sobolev Spaces

We will introduce the homogeneous Sobolev spaces H¥(R?) and we will generalize the
standard Sobolev spaces H¥(R?). For £ € R let (¢) = /1 + |£|? be the Japanese bracket.
For a tempered distribution u we denote by u its Fourier transform. We consider for s € R
the space formed by the tempered distributions u

H*(RY) with norm [ull grs (ray = [1(6)°Ull L2y < 00 - (2.1)

We consider for s € R the space formed by the tempered distributions u s.t. u € L} (R%)

loc
H*(R?) with norm HUHHS(Rd) = |17l 2ray < o0 . (2.2)
The following lemma is elementary.

Lemma 2.1. The following statements are true.

o L2(RY) — H*(RY) defined by f — F* (#) is an isometric isomorphism and all the

H*(R?) are Hilbert spaces with inner product (f,g)ms = <<§>5f, (&9 12 -

o We have S(R?) C H*(R?) if and only if s > —d/2. Furthermore, this embedding is
dense.

o The H*(RY) have an inner product defined by (f, 9 s = <|£\Sf, 1€1°9) 12

We will use also the following.

Lemma 2.2. Let 0 > —d/2. Then C°(R?) is dense in H(RY).



Proof. Tt is immediate that S(R?) is dense in H?(R?) (because C°(R¥\{0}) is dense in

L2(R?,|€)29d€)). So it is enough to show that for any 1 € S(R?) and for y € C°(R%,[0,1])

a cutoff function with xy = 1 near the origin, then x (E) ) oo, ¢ in H(R?) for any
n

o > —d/2. Indeed recall

— ~

F*9(6) = (21)2 F(€)g(€) so that

2

~

| emEntRm)it = njn - 5

2

I (5) 6= vl = [ delep

:/Rddgygﬁg / (2m)"2R(n )(@(S—%) —9(©)) dn

So, by Minkovsky Inequality,

I (5) ¥ = ¥l < (2 >3/Rddn|>z<n>r</ | [ (3(e- 1) -909) )

We split in the right integrating in |n| < C and in |n| > C, where C is arbitrary. In the
integral in |n| < C we get a sequence that, essentially by dominated convergence, converges
to 0. Next, we consider the integral in || > C. We can bound it from above by

(2m) % /n>cd77>?(77)(< /R e /R K (€Z>2d§>2+¢m). (2.3)

Now we claim that for ¢ independent of 1 we have
[, Bt w|de < el (2.4

/R el

Indeed, we spit the integral into regions |n| <[], |n] ~ [¢| and |n| > |£|. We have

/ €[>

[n|>€]

/ €
In|<|€]

Finally, for |n| ~ ||

/ €
[n|~€]

So we proved (2.4). Inserting this in (2.3) and taking C sufficiently large we obtain that
(2.3) is arbitrarily small.

de-nfdsm™ [ jeracst
In>¢|
We have

~ 2
e —n)| de= vl

el des [ le-ni

e de< [ e=n o] ds sl [ [b©)f a1l

O



Remark 2.3. We will also consider the space HU(RC.!) N H'*(R?) for ¢ > —d/2. Then, by
a similar argument, C°(R?) is dense in H?(R%) N H1+7(R%).

While the H $(R?) have an inner product, in general they are not complete topological
vector spaces and the following will be important to us.

Proposition 2.4. For s < d/2 the space.Hs(]Rd) is complete and the Fourier transform
establishes an isometric isomorphism F : H5(R%) — L*(R?\{0}, [¢|?*d¢).

The above proposition is a consequence of the following lemma.

Lemma 2.5. Let s < %l. Then we have the following facts.
i L2(Rd\{0} ‘£|28d£) C Lloc(Rd7d£)
o L2(R\{0}, [¢[**d¢) C S'(RY)

e The Fourier transform F : S'(RY) — S'(RY) is s.t. F (HS(Rd)) = L%(RY, |€]?5d¢)
and establishes an isometry between these two spaces.

Proof. Let g € L*(RA\{0}, |¢]**d¢). Obviously g € LL (R¥\{0},d¢). Let now B = {¢ €
R : |¢] < 1}. Then

[ tat@as < ( [ 1100 st) ([1er QSds)

s vol(S§d-1)
< 4/ vol(59- 1’(/0 r41280) 3| g]| 2 e pepos ) = 7o l9llaraezeae)-

Next, we check that L2(R4\{0},[¢|?*d¢) < S'(RY). We split ¢ = xBg + xBcg. Then
xBg € L'(RY, d¢) implies xpg € S’(R?). On the other hand we have xgcg € L?(R%, (€)2%d¢).
This in turn implies xpcg € S'(RY), where the embedding L?(R?, (€)27d¢) C S'(RY) for any
o € R follows from

=

7€t = [ ©7 £ €16 < I aqus groan | (€20l
< W lzagus eeary 460722 HIE)™ ol e

for m chosen s.t. 20 4+ 2m > d. O]
Remark 2.6. For s > % the space HS(Rd) is not a complete space for the norm indi-

: F
cated. In particular, the Fourier trasform defines an isometric embedding H*(RY) <
L2(RIN\{0}, |€|?*d¢) with image which is strictly contained and dense in L2(R9\{0}, |£|?*d¢).

The fact that the image is dense can be seen observing that C(R™\{0}) is dense in
L2(R\{0}, |¢[2°d€) and we have FE*(RY) D 0 (R {0}).



f€)

For s = ¢ + ¢ with g9 > 0, if we pick f € C°(R?) with f(0) # 0, then ’£‘d+570 is a
2

Borel function not contained in L}, (R?, d¢). But |¢]* ’Jd(f)zo = :£|(d§)5|: e LY(RY, d¢)
implies that |;|Cd(f)520 e L3(RY, |¢|?%d€). Yet there exists a sequence {uy} in H*(RY) such
that &, ~—15% \sﬁ(f)%‘) in L2(R4\{0}, |€]25d€). Then {uy,} is a Cauchy sequence in H*(R%)
which is not convergent in H*(R%).

For s = % consider f(§) = i ]TX[3/4,5/4}(2’€’§‘). Notice that for each &, at most one term

k=1

of the sum is non zero, because [27%3/4,27%5/4) N [2773/4,2775/4] = ) for j # k. Indeed,
if 7 < k then

27%5/4 < 27U=V5/4 < 2773 /4 where the latter follows from 5 < 6.

Then |¢]2|£(€)] € L*(R?, d€) since
= 1 = 1
| Jes)ae - > 2 L Vg (2 = > [t aspn (e < o0

but f, which is supported in the ball B(0,5/4), is not in L'(RY, d¢) since otherwise we
would have

— 1 =~ 1 n—oo
00 > /Rd | f(&)]dE > ; E2kd /Rd Xi3/4,5/4 (25 1€1)d€ = ;k/Rd X([3/4,5/4)(1§])d§ 22E%, 0.

Remark 2.7. For s € (0,1) an equivalent definition of H*(R%) and of its norm is that

u(z +y) —u(z)[?
|y‘d+2s

u € LZOC(Rd) and / dxdy < oo.

R xR4

See [1, Proposition 1.37].

Later on we, when discussing the Navier Stokes Equation, we will deal with vector
fields. Given a vector field u = (uj)? | € (S'(R%))? its divergence is

d

o .
divu =V -u := —ul .
Z aLUj
Jj=1
Notice that dive = —i Z;'l:1 &7 so that a u is divergence free, that is dive = 0, if and only

if Y0, &7 = 0.
We have the following elementary representation in d = 3.



Lemma 2.8. For any u € D'(R3,R3) we have
Au=V(V-u)—V x(Vxu). (2.5)

Proof. Obviously, summing on repeated indexes and for {?j }?:1 the standard basis in R3,
we have

Ay = 61(9]11]?@ — (84%1@?1 — 8]6]’1%?1) (2.6)

Recalling the tensor ¢;;, defined by €123 = 1, €;jx = 1 if ijk is an even permutation of 123,
ik = —1 if ijk is an odd permutation of 123, £;;, = 0 if two indexes are equal, we have

V X (V X U) = €Z‘j/§aj(v X u)k?l = eijkeki’j’ajai’uj’?i
— — —
= (0iirjy — 0ijr8jir) 0Oy € s = 0;0iu; ¢ s — 0;0ju; €',

where we used the identity €;jrepijr = €ijk€irjik = 0ird;j1 — 03505 with Kronecker’s deltas.
The last two displayed formulas prove that (2.5) is true.

O
A similar representation is true for d = 2.
Lemma 2.9. For any u € D'(R% R?) we have
Au=V(V-u) = VE(curl u), (2.7)
where curl u := Oyug — dour and VLV = (0,V, =01 V).
Proof. From (2.5) we have
i j k
Au = V(V . u) - 61 82 33
0 0 a1UQ — 82u1
= V(V . u) — (1'82(811142 — 82u1) —jor (81u2 — 82u1)) .
This gives (2.7).
O
Definition 2.10. We call Leray’s projector, the operator P defined by
, . 1 &
(F(Pu))! =@ — e > ggal. (2.8)
k=1

We denote by H(R?) the subspace of L?(R%, RY) formed by divergence free vector fields. We
will also consider V(R?) := H(R?) N H'(R?,RY) and C2(RY, R?) := O (R, RY) N H(RY).

A direct and elementary computation yields the following.



Lemma 2.11. We have

Pu=—A"'V x (V xu) ford=3 and (2.9)
Pu = —AVE(curl u) for d = 2. (2.10)

Proof (sketch). For example in the case d = 3, formally we have

P=1- %Vdiv (2.11)

and from (2.5) we have

1 . 1
1-— ZVdIV = —ZV X (V X |_|),

which yields (2.9). This was formal, but becomes rigorous taking Fourier Transform.  [J
Lemma 2.12. C2(R% R?) is dense in H(R?) for any d = 2,3.

Proof. Let us consider dimension d = 3. If u € H then u =V x A, for A= —A"'V xu €
H'(R3,R3). Notice that from Lemma 2.2 we have that C2°(R3,R?) is dense in H'(R3,R?).
Since H! 3 A — V x A € L? is a bounded operator, the statement follows. For d = 2 the
argument is similar and can be generalized to all d. O

Lemma 2.13. C2(R? RY) is dense in V (R?) for any d.

Proof. The argument is similar to the previous one. Let us consider dimension d = 3. For
u € V(RY) we have u = Vx A, for A = —A~'Vxu € H'NH?. But from Remark 2.3 we have
that C°(R%,R?) is dense in H'(R? R%) N H2(R?, R?). Since H' N H?>> A -V x Ac H!
is a bounded operator, the statement follows. We will use this lemma only for d = 3. ]

For v € H¥(R?) and A > 0 let us set Pyu := F* (X|¢[<rFu). Notice that this map sends
L?(R%) into itself since

1P xull i ey = €1 X g anFull 2 gay < 1€ Full p2(ray = l[ull e (ray-
Notice that P is a projection, that is P?\ =P,, by
P{u =Py oPru=F*(xjgrFPru) = F* (xfgarFu) = F(xjejrFu) = Pru,
If dive = 0 then also divPyu = 0. Indeed
d d d
(divu =0 ) & @ =0) = F(divPyu) = > Ixjgani’ = xgen » & @ =0,
j=1 j=1 j=1

which in turn implies divPyu = 0.



2.1 L? based Sobolev Spaces

The following spaces, for p € (1,00) are formed by tempered distributions u s.t. for s € R:
W*P(R?) requiring @ in Li,.(R?) and with |ull,yepgay = 1(1€°0)" | pogay 5 (212)
Ws’p(]Rd) defined with HuHWs,p(Rd) = H((f)sﬁ)vHLP(Rd) . (2.13)

We will not use the above spaces except for p = 2. The following is true.

Theorem 2.14. We have
WhP(RL) = WEP(RY) for all p € (1,00) and all k € N. (2.14)

Proof. For this we need the theory of Calderon and Zygmund operators, see later in Sect.
3. O
For p =1 and p = 0o (2.14) is not true, see [18].

2.2 Hardy Littlewood maximal function

Let f € L} (R?) and consider (for B(x,r) the ball of center 2 and radius r in R%) averages

loc

1
wl(B(@.1) /B(x,m fw)dy.

Notice that for any r > 0 the function x — A, f(z) is continuous. Indeed, fix 6y > 0 and
consider 0x € B(0,00). Then by the triangular inequality B(x + dz,r) C B(z,r + dp). So,
for éx € B(0, o)

Arf(x) =

1

A f(2)—Ay f(z+02) = ol(BO, 1)) /B(MMO) (XB(2)\Batow,) U) = XB(atozm\Br) () f(y)dy

with for any y

|6x]—0
(X B2\ B(a+o2.) (U) = XBa+sem\Ber) Y) XB@r+o0) W) f(y) = 0.
By dominated convergence A, f(x) — A, f(x + 0x) — 0. We define
M f(x) = sup Ar|f|(). (2.15)

r>0

From the definition we conclude that M f is lower semi continuous that is {z : M f(z) > a}
is open for any a. It also obvious that M is sub additive:

M(f +g)(z) < Mf(z)+ Mg(x).
We have the following obvious estimate

[M f ()] < 1Nl oo (may: (2.16)

10



One important fact is that it is not true that A maps L'(R?) into itself. Indeed if say
K C R?is any compact set and if B(0,cp) D K, then since for |z| > ¢y we have B(z,2|z|) D
B(0, |z]) D K, we have computing at r = 2|z|

_ vol(B(z,r) N K) vol(K)
M) =0 S ol(B0, 1)t = Vol(B(0, 1)27af?

which shows that My ¢ L'(R?).
Notice that each g € L'(R?) satisfies Chebyshev’s inequality:

”g”Ll(Rd)
o

vol{z : |g(x)| > a}) < for any a > 0 (2.17)

Indeed (2.17) follows immediately from.

19101 ey = / 9()ldy > / l9()ldy > / ady = avol({z : |g(x)] > a})
Rd {z:|g(z)|>a} {z:|g(z)|>a}

If T: LY(R?Y) — LY(R?) satisfies 1T fllprray < Allfll 1 (ay for all f € LY(R%) and for a fixed
constant A, from (2.17) it is easy to conclude that

A
vol{z : |T'f(x)| > a}) < EHfH_Ll(Rd) for any o > 0 and any f € L'(R?).

Unfortunately we have seen that M does not map L'(R?) into itself. However we will show
that it satisfies the last property. Indeed we will prove now that M is weak (1,1) bounded,
that is there exists a constant A > 0 (in fact we will prove A = 39) s.t.

vol{z : M f(z) > a}) < §||f||L1(Rd) for any ae > 0 . (2.18)

To prove this we consider the set {x : M f(z) > a}. Then, for any x in this set, there is a
ball with center in x, which we denote by B, with [ |f| > a vol(B;). Pick any compact
subset K of the above set, and cover it with such balls B,. Extract now a finite cover,
corresponding to finitely many points 1, ...xxy. We have the following covering result,
which we state without proof.

Theorem 2.15 (Vitali’s lemma). Let By, ,...,By, be a finite number of balls in R?. There
exists a subset of balls

{B1,...., B} C{By,, ..., Bay} (2.19)
with the Bi...By, pairwise disjoint, s.t.

v0l(By, U+ U Byy) <34 " wol(B). (2.20)
j=1

11



We consider balls Bj...By, as in (2.19) and from
K C By, U---UBy, = vol(K) <vol(Bg, U---UDBy,),

from (2.20) and from the definition of the B, we get
37vol(K) < iVOI(B') < i 1/ If] < @ (2.21)
et ’ oot @

(2.21) implies vol(K) < 3%~ f|1. By vol({z : |M f(z)| > a}) = SUP K  {a:| M f ()| >a} VOL(K)
for compact sets K, then (2.21) implies (2.18).

(2.16) and (2.18) imply by the Marcinkiewicz Interpolation Theorem 2.16, proved below,
M fl o ray < Apll fll Lr(ray for all p € (1,00] . (2.22)

We will use this result in the proof of the Hardy-Littlewood-Sobolev Theorem, and of
Sobolev’s estimates.

Before introducing the Marcinkiewicz interpolation Theorem, we recall that for a mea-
surable function ¢ : R? — R the distribution function is

Ma) == vol({z € R? : |g(z)| > a}).

Notice that A : [0,00) — [0, 00] is decreasing. This implies that it is measurable.
For a function g € LP(R%) with 1 < p < oo we have

l9()] o0
[awprar= [ av [*7 portaa= [~ aoper "
Rd Rd 0 0 (veR%|g(z)[>a}

o (2.23)
= /0 paP I\ (o) dox

where the 1st equality is elementary, the last follows immediately by the definition of A(«),
and the 2nd follows from Tonelli’s Theorem applied to the positive measurable function

F(z,a) = |af~Ixe, (lg(z)] — @)xr, ().

Theorem 2.16 (Marcinkiewicz Interpolation). Let 1 < ¢ < oo and T : L*(R?) + L4(R%) —
L}OC(Rd) be a subadditive operator s.t. for two constants A1 and Aq and for all f

HTfHLq(Rd) < Aq”fHLq(Rd) (2-24)

A
[z ITF(@)] > o} < ISl rey for any @ >0 . (2.25)

Then for any p € (1,q) there is a constant A, such that for any f € LP(R?) we have
1T fll o ey < Apll fll Lo (wa)- (2.26)

12



Proof. Fix p € (1,q) and f € LP(R?). For a > 0 arbitrary set

fila) = {f(w) i@ =8 g fole) = {f(x) if [ f(2)| < &

0 otherwise 0 otherwise.

Notice that f; € L'(R?) by

/m rda:—/ £
{z:[f(x)|>5}

2

x)|Pdx.

and f, € LI(R?) by

q p
Uy — aq )|Pd
/RdlfQ(:v)l z /{lef(xkg}! ()] fL‘< / | f(x)[Pdz.

Using (2.24), we get
Tf(@)] < |Tfi(x)] + [T f2()].
Then o o
(o [TF()| > o) € {o: [TAE)| > T3 U e (10~ A)@)] > 5.

We have, using (2.25),

« 2
vol({z : T — A — z)|de = A1 — z)|dx
(s [TA@) > N < ang [ n@de=al [ s (o)

and by Chebyshev’s inequality we have

(07

vol({z : [T fa(x)[¢ > (5)"}) < ( ) 1T fall? gy < (i) Al fol o gy (2.28)

Substituting ¢ = T'f in (2.23)
/ T f () Pda = / " pavol({z : [T ()| > a})da
Rd 0

< /0 " par Wol({a : [T ()] > Shda+ /0 " par Wol({a - [T ()7 > (5) D =n+k

Then by (2.27)

L <24, / par=? / f(@)lde
0 {z:|f(x)|>5}

2| ()] 2Pp
= 2pA1/ dz|f(x)] / P 2da = Al/ |f(x)|Pdx
Rd 0 p—1 " Jpa
S

2P L f(a) Pt
p—1

13



and by (2.28)

B<way ["poret [ f()]da
0 {z:0<|f(z)|< 5}

“+oo
< pAl / da|f (z)|? / P~ da = 2r-1 L gg / |f(z)Pdz.
{z:0<|/ ()]} 2/ ()| ¢—p " Jr

2P7 4| f(z) P74
a—p

2.3 Sobolev Embedding

We will use the properties of the Hardy Littlewood Maximal function, and specifically the
definition and (2.22), to prove the following important theorem.

Theorem 2.17 (Hardy-Littlewood-Sobolev inequality). For any

1 1 d-
WG(O,d)and1<p<q<oowith;):§—l—Tfy (2.29)
there exists a constant C s.t.
I [ £ =l dylageey < Cllfllae (2:30)

Proof. For an R > 0 to be chosen momentarily, we split

/ fz— y)lyldy = / f@ = y)lyl "y + / fz — y)lyl~dy.

R4 lyl<R ly|>R

We claim that
| | fl@=y)ly|dy| < Mf(:c)/ ly| Yy = cRYM f(x). (2.31)

y|<R ly|<R

We assume for a moment this claim and complete the rest of the proof. By Hélder we have
|/ L e [ ot ey
yl>

We have |y|™7X{y:y1>R} € LP' (R%) exactly if yp’ > d. The latter inequality is true because

SRS

1 1

= - =~ <0=v —-d=—>0.
p q

In this case

1

d _ a
4 q

_ _ ! _ P _
H‘y’ 7X{y:|y|>R}HLp’(Rd) = <V01(Sd 1)/ r— P +d 1d7“> =cRr Fy:cR i

>R

14



Hence
_d
[ £ =)l sl S R + gy RV

Now we choose R so that the two terms on the r.h.s. are equal:

Mf(z) _ py-a-2 _ -2
HE
Then we get
Mf(z)\ 4
[ 7=l S RS+ g B =20 g ()

=2 (Mf(@)* |fln "

Then
_ 1-2 P 1-2 P
I /Rd F@=ylyl7dylla@ay S 11l N F) e llza = [l “ NPz S 1N e

To complete the proof we need the inequality in (2.31). More generally, we prove that if
® € L' (R?) is radial, positive and decreasing, then

[ fe el < [ 1= nlewdy < 25w [ e (2.32)

Then (2.31) is just (2.32) for ®(y) = |y|77 X {y:|y|<R)}-
Notice that (2.32) is true for radial functions of the form

= axs (2.33)
J
for a; > 0, B; a ball of center 0. Indeed

vol
a; flx—y)|dy = a;
Ejjj/Bju =Y

B.
EB;; /Bj |flz —y)ldy < %:GJVOI(Bj)Mf(ﬂﬁ) = Mf(fﬂ)/‘pdy'

n—oo
In the general case the result follows considering a sequence ®, * & a.e. with the

®,, functions like in (2.33). Then (2.32) follows from Beppo Levi’s (or also Lebergue’s)
monotone convergence theorem.

O
For the above proof see [19] p.354, while for the next one see [18] p.73.
Lemma 2.18. For any v € (0,d) there exists ¢, > 0 s.t.
F(- 17 = eyl (2.34)

15



Proof. Tt is enough to show that for any ¢ € S(R?) we have

/ |V p(x)dx = ¢, / |4 (&) de. (2.35)
R4 R4

Starting from (1.2) and Plancherel we have

||

[ete Fowin = [ %
R4 R4

d—
Now we apply to both sides fooo %5% and commuting order of integration we obtain

00 212 d R o 2 g
/ dm(x)/ et T :/ d§¢(§)/ e &
e 0 < R4 0 €

a~y |z~ bylg[r

for appropriate constants a, and b,. In fact a, = 23T (% + 1), by = 27T <d_T7> and

297 r(45)

237(3+1)

Cy =

We have the following version of Sobolev’s Embedding Theorem.

Theorem 2.19 (Sobolev Embedding Theorem with fractional derivatives). Let p € (1, 00),

0<s< % and % = % - 3. Then there exists a C s.t. we have

11 zaeey < CF lypes ey for any f € SR, (2.36)

Proof. For f € S(R%) we have for some fixed ¢

~

f@) = 2mF [ e (16 7(©)) g = [ o=yl gtu)dy where 5(9) = I F(©

where we used m = (2%)%(;5 T which holds for ¢ € S(R?) and T € S'(R?).

Since g € LP(RY), by the Hardy-Littlewood-Sobolev Theorem we have that f € LI(RY) for
1 1 d-—(d-s) 1

q P d p

Ul ®w

O
Notice that for 0 < s < %l we know that H*(R?) contains S(R?) as a dense subspace,

s0 (2.36) with p = 2 extends to all f € H*(R?).

16



2.4 Assorted inequalities

Lemma 2.20 (Interpolation of Sobolev norms). For any s € [0,1] and any k = sk1 + (1 —
s)ka we have

||f||Hk(Rd) < || fII5 kl(Rd)Hﬂ Hk2 (Ra) for any f € H’ﬁ(Rd) Hk2(Rd), (2.37)
In particular, for s € [0,1] and any f € H'(R?)
£ 117 ay < IF 1 Gy | 1 ey (2.38)
Proof. (2.38) follows from (2.37) for k; =1 and k2 = 0. So let us turn to (2.37).

Obviously there is nothing to prove for s = 0,1, so we can assume s € (0,1). Notice that

for p = 1 we have p' := o= 1= Now, we have

10y = [ (P 1F@P) (P Fle) P de
S s s)k2 s)
< NEPHFFO N 3 g NEPC FOPN

= P LTI gy 15 TS = W2 ey 1 o

O
Lemma 2.21 (Agmon’s inequality). Given a pair 0 < r < d/2 < s we have
=4 4
P P N [ (2:39)
Ezample 2.22. For instance,
1 5 1
ol o) < 1Vl 22 g 19720 s (2.40)
where notice that here we are assuming u € L}, (R? R3), which excludes additive constants.
—d
: d -~ (&)
It 11 k that H 2z (R? L>®(R%). Indeed, f el A— h €
is well known that Hz(R%) ¢ (R%). Indeed, for u(§) T+ log (&) we have u

H%(Rd). On the other hand we have @ ¢ L'(R?) . We show that u ¢ L>°(R?). Suppose
by contradiction that v € L>(R%). Then for x € C(R%,[0,1]) with x(0) = 1, radial and
decreasing as |£| grows,

/ N / KRGk u(@)de < (1R s ey el e gy

where the first equality follows from Plancherel.

But then, since x(&/k)u(€) is an increasing sequence of functions, we have x(-/k)u LEL N

in LY(R%) with 8l Ly ray < XN 21 ey llwll oo (may- This is a contradiction.

17



Proof of Lemma 2.21. For R > 0 we have

()] < (2m) 4 /|£ T 1617 + (o) / ae)] (€l 1€ de

[§I>R

N

1 1

< @m) %l oy ( /g o Ifl‘”d5> + (2m) 7l oy ( /|s . |§|_25d£>

d_s

a4,
S el gray B2 + [lull gragay R2

We choose R so that the two terms are equal, which yields

(d_r)eer H(d r)clr.

so that |u(z)| < CdHUHHT (RY) 5(RY)

O
Later in Sect. 12 we will use the following modification of Lemma 2.21.

Lemma 2.23. Let U C R? be a bounded open subspace with OU a smooth submanifold of
R? and suppose f € H*(U) with k > 2. Then for any r € [1,2] we have

(k=3)

e ok (2.41)

1z @y < CrarllF I 1f Iy, with 6 =
Proof. We know that there is an appropriate extension operator H*(U) > f — Ef €
HF(R?) with Ef|y = f. Then we use

1 1,,
Efllm@s) < 1Bl Rg)HEfHHk gey and [ Ef |2 @sy < 1Bl s HEfHHk(Rg

and Agmon’s

1,i

[Efll oo r3) < HEfIIHl (R3) HEfHHz(Rs S NEf I s HEfHHk R3)

which yields
ey < ellF s A1 o

Substitute by Holder |[£[2wy < £l (o | fl fyr) and then we get

ey < ellf1ES o 11 e ) 118

18



Solving with respect to || f|| o) we obtain

1-(1-2)(1-
1A P 03 = < o2 71
So we get the following, which is the desired result:

2<1_%) o (k_%) 3

2k
T4 A,L kr+3— kr+4+3—
HfHZoo?[’} &< cillfll g Qk | o =allfl B HfHH;(UT-
O

Theorem 2.24 (Gagliardo—Nirenberg). If p € [2,00) is s.t. - > 2 — L then there exists C
s.1. L1

1 sy < I sy where s =a (5= ). (242)
Proof. By Sobolev, for == % 5 we have

HfHLP(Rd) < C”f”Hs(Rd)
Here s is like in the statement. Also s = d (7 — %) <1l<& % — % < %. Finally, apply
(2.38). O
1—d/4 || 4 d/4

Remark 2.25. Forp = 4 and d = 2,3 we have s = d/4 and || f|| 4 (ra) < C’HfHL2 Rd) 171 (RY)"

Lemma 2.26 (Gronwall’s inequality). Let T > 0, X and ¢ two functions in L*(0,T), both
>0 a.e., and C7, Cy two non negative constants. Let Ap € LI(O,T) and let

o(t) < C1 + Cy /Ot A(s) ¢(s)ds for a.e. t € (0,T).

Then we have .
o(t) < Cre? Jo M) for g6 t € (0, 7).

Proof. Set t
P(t):=C1 + CQ/O A(s) ¢(s)ds.
Then 1)(t) is absolutely continuous and so it is differentiable almost everywhere and we have
P (t) = Col(t) p(t) < Ca(t) ¥(t) for ae. t € (0,T).

Also, the function t(t)e 2 Jo Ms)ds ig absolutely continuous with
d

7 (w(t)e_c2 Jo Ms)ds) <0 for ae. t € (0,7).

Then we have
b(t) < eC2Jo A&ds0) = Oy eC2Jo M)ds for all £ € (0, T).
Since p(t) < 1(t) a.e., the result follows. O
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3 The Calderon—Zygmund theory

We consider now Calderon—Zygmund (CZ) kernels. We will use the following definition.

Definition 3.1. In these notes, we will say that a function K : RY x R\A — C with A
the diagonal {(x,z) : z € R}, is CZ if there exists a fixed constant C s.t. the following
conditions hold:

(C-Z1) we have

|K(x,y)] < [ for any x # y and
e (3.1)
]Vm,yK(m,y)] S W fOI' any x ;é Y.
(C—Z2) there is an operator T, which satisfies
Tf(z)= | K(z,y)f(y)dy for z & supp f (3:2)

R4

and which defines a bounded operator 7' : L?(R?) — L?(R%) with norm bounded by

C.
There are many examples.
Ezxample 3.2. 1. Let us consider the operator R; = \/% which is a well defined bounded

operator in L?(R%) since

RiF(€) = —ifg’f(g)-

Notice that for K = F* <—i%), we have R;f(x) = (27r)_gK * f(z) where for ¢ €
C>®(R4,0,1]) any function with ¢ = 1 in B(0,a) and ¢ = 0 outside B(0,b), for some

0 < a < b, we have

K(z)=—i lim (27)°2 /R d 6759 e IRV e

R—+o00 |£|

It is easy to see that for any = # 0 the above limit converges and that K(z — y)
satisfies the inequalities (3.1) for a fixed C'. For example, the 1st inequality follows
splitting

€i£.z§ T eiE-xQ _ "
/Rd g Pl !)¢(€/R)d§+/Rd P/ B = plela))de

where we bound the absolute value of the 1st integral by

/ de — bhvol(54D 1
el d |zl

=]
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and the absolute value of the 2nd integral by means of an integration by parts using
Lel® = &% with [ := ,|7’2£, and writing it as
iz

[ e [If! (&/R)(1 - (&\xl))} de.

It is now easy to see that

(LY | ete/ B = etelol)| | < Ox o
€]” ||V [EIN

Hence the absolute of the 2nd integral is bounded by

1/ 1d§ CNmNd—Cli.
Mal¥ jel> e €Y aN=dz[N N |z

The 2nd inequality in (3.1) can be obtained noticing that
d
K(z)=—i lim (2m)"2 [ %@
oK (o) = =i lim_(2m) ¢ [ o (e Ry

When one considers the above inequalities with an additional factor & inside the
integral, one gets the upper bound of the 2nd inequality in (3.1).

The operators R; are called Riesz transforms.

. The above discussion works out similarly with operators 9% _ and —2° _ with

Vi-A (1-A)%

any multi-index with |o| < k. In particular, \/7 has symbol <1§”

. Notice that (Pu); = u; — RjRyuy, and so in particular it is a CZ operator.

. Let us consider in R the Hilbert transform

Hf(z) = 2 lim S 4, - —l(P.Vé) . f (3.3)

T e=0t Jig—y|>e T — Y m

with P.V1 the tempered distribution that acts on a ¢ € S(R) as lim @daz.
=0t Jigj>e X

Notice that using the Residue theorem we have

iep O
lim emice 2T —imsign(§)
=0t Jiz|>e x
so that 1 1
1
—F(PV.—)=—i(2m) 2zsi .
LF(PV.L) = ~i(2m) bsian(c)
Then

F(Hf)(§) = —isign(£) £(£)-
which implies that (C-Z2) is true. Since (C-Z1) is obvious, we conclude that the
Hilbert transform meets the conditions of Definition 3.1.

21



Remark 3.3. Consider the operator Tk, f := F* [X]lhﬂ- Then xg, = 27 1i(—isign — i)
implies T, = 27(I +iH). Analogously Tk = 27'(I —iH). Next,

Tia,+00) = 27 4T 4 i€'%® He™%) and T—oop) = 2711 — i He 07,

Finally
T(a,b) = 271(T(a,+oo) — T(b7+oo)) — 4fli(elaa:H€flam o elb:):He—lb:p).

Next, if in R? we consider the half-plane z; > 0, then

F* X0 | = 271 +iH) [ where
(Hlf)(l'l,xg, ceeny a;d) = H(f(-,(]}g, ,l'd))((L'l)

In general, any operator of the form F* [X pﬂ with P a polygon in R? can be expressed in
terms of the Hilbert transform.
Remark 3.4. Let p € (1,00) and let LP(R,C) 5 f = lim F(-+ iy) where

y—0t

F:{z+iy:x €R, y> 0} — C is a holomorphic function with sup/ |F(z+iy)[Pdz < oco.
y>0 JR

Then, if v = Re f and v = Im f, we have v = Hu (and, by H? = —1, u = —Hwv). We give

a brief impressionistic and non—rigorous discussion of how this comes about. Notice that if

f is the boundary value in R of F' by Cauchy integral formula we have

1 1 1 1

F(x+iy):27ri/ﬂ{t—x—iyf(t>dt:27ﬁ (-—iy*f)(x)

where here we assume f € S(R,C). Then for y — 0" by the Sokhotski—Plemelj theorem
we get

. I L. o
yli)r(r)l+ i P.V.; +ind(t) in S'(R,C). (3.4)
This implies, assuming here F € CO(R x [0, 0)), that by f(z) = lil%l+ F(z +1iy) we have
Yy—

1 : f(z) :
1@ =55 (L%L /,m —p detinf @)) :

that is f = iH f, which is the desired result.
As for (3.4), for f € S(R) we have

f@) . t oy
Rt—iydt_/[Rt2+y2f(t)dt+1/Rt2+y2f(t)dt-

By a change of variables, by dominated convergence and by the continuity of f in 0 we have

Yy o 1 y—0
/RWf(t)dt—/RtQHf(ty)dt =07 £(0).
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Next we write

t t
/t2+y2f() /ﬂgy Wf(t)dt-i-/tlzy mf(t)dt.

We have
y—>0

0.

‘/|t<yt2+y ‘ |/t|<yt2+y £ = FO)at| "3

Next we write

ot _ ot 1 ft)
/|t>y 7yl 0= /|t|>y (t2 + 72 t> Jdt /|t>y e

and observe that, changing variable,

- Y T PO —
/t'zy <t2+y2 : t> o= /t|zy @+ V= /s|21 nEEEA

y=0 1
=0 #(0) /|s|218(82+1)dt

by dominated convergence. But the last integral is null. This proves (3.4).

Theorem 3.5. Consider an operator T as in Definition 3.1. Then for any p € (1,00)
the operator T, initially defined in LP(R?) N L2(RY), extends into a bounded operator T :
LP(RY) — LP(R?) with operator norm that depends only on p and C.

Before proving Theorem 3.5 we need the Calderon—Zygmund decomposition lemma.

Theorem 3.6 (C-Z Decomposition). For any f € Ll(Rd) and any o« > 0 there exist
families of balls Bj, disjoint sets Q; with B; C Q; C 3B; with U;Q; = U;3B; (here 3B;

has same center and trice the radius of Bj) functions g and bj s.t.
1. f =g+ Z bj.
J
2. lg(z)| < 3% for a.a. z, 191l 1 (ray < (1+ 3%) £l 21 (ray-

] L C ) _ 2d
5. supp b; € Qj, /R by (a)da = OandZHb ey < (1+3) 112 oy

4. ZUOZ ) < *||f||L1(1Rd

Remark 3.7. Notice that in the Calderon-Zygmund decomposition g is the good part of f
and b; form the bad part of f.
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Proof. Define Q = {x € R?: M f(x) > a}. Here notice that if = () then just set g = f.
For any = € Q) there exists a maximal r, s.t.

A fl(z) = |F(y)|dy = a.

e
vol(B(2,72)) JB(ar.)

Let us consider the family of balls { B(z, 1) }.cq. It contains, by a generalization of Vitali’s
Lemma, see Theorem 2.15, a maximal family of pairwise disjoint balls {B;} s.t.

Q C UgeaB(x,72) € U;(3B;).
Notice that this implies

3d
d
vol(UpeqB(z,73)) < ZVOI(SB]-) <3 zvol(Bj) < Il ey,
J J
It is possible to choose disjoint sets @Q; s.t. B; C Q; € 3B; and U;Q; = U;(3B;). One way
is to choose

Qr=3B,NC (Uj<ij) nc (Uj>kBj) (3.5)
with C'X the complement of X. Notice indeed that obviously for & > ¢ we have

QrNQeCC(UjcrQj) NQr = (Nj<cCQ;j) N Qe C CQrN Qe = 1.

Obviously Q C 3By.

We have By, N (Uj>;Bj) =0 and so By, C C (Uj>;Bj). We have B, N (Uj<xQ;) = 0 because,
by (3.5), we have By, N Q; = 0 for any j < k. Hence we conclude By, C Q.

Finally we show UpQr = U3 Bg. Obviously we have UpQr C Up3Bj. Suppose there exists
xr € Up3By, with o & UpQg. The latter implies @ ¢ Ui By, and so x € C (U5 B;) for all
k, as well as © € C' (U;j<;xQ;) for all k. But then, since x € 3B, for some ¢, it follows that
x € Q. And so we get a contradiction. Hence UpQr = U3 By.

Now define

bi(@) = (f(w) — averageq, /) xq, (@)
average . f for x € @,
g(x) = { 8e, / ‘ QJ
f(z) for x & U;Q;
Then we claim that the statement of the theorem is satisfied. First of all for any z € R¢
either z ¢ Q; for all j, and so f(z) = g(x) with b;j(z) = 0 for all j, or z € Qj, for exactly
one jo, and so f(x) = g(x) + bj, (x) with bj(x) = 0 for all j # jo. This proves the 1st claim.
For x ¢ U;Q; 2 Q2 we have M f(x) < . Then, since for a.e. « we have

£ = Tim A @) < M (@)
we get |g(x)| = |f(z)| < o a.e. in the complement of U;Q;. For x € Q; we have
1 1 34 d
9(0)| = overaseq 1 < s | WOy < s | 15wl = s [ 1wy < st

J
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Furthermore we have

ol = [, @+ .l < s + 30 Y vol,)

J J

< (14 3%) /1l oy

The fact that supp b; C Qj, / bj(z)dx = 0 follows immediately by the definition of b;.
R4
We have

D sl gray < N Fllprray + D vol(Qg)|averageg  f| < || fll 1 may + 3% Y | vol(Q;)
J J J

< (1 + 32d) £l 2 mey-

O

Proof of Theorem 3.5. By duality it is enough to consider only p € (1,2]. Further-

more, since by hypothesis (C-Z2) we know that the case p = 2 is true, by Marcinkiewicz

Interpolation the statement of Theorem 3.5 results from proving that T is weak—type (1, 1).
We need to prove that there exists an A > 0 s.t.

A
vol({z : |[Tf(z)| > a}) < EHfHLl(Rd) for any a > 0 and any f € L*(RY). (3.6)

For fixed a > 0 and any f € L'(R?) consider the C~Z decomposition f = g+ Z b;. Notice

J
that |g(z)| < 3% a.e. and 9]l L1 (ray < (1+ 3%) [ £l (ray imply g € L?(R?) with

/ lg|*dx < Cda/ | f|dz for Cy = 3¢ (1 + 32d)
R4 R4

and so by Hypothesis (C-Z2) we have || Tg|3, Ry < Callfllp may-
Then by Chebyshev’s inequality (2.17) we have

< TNy oI sy

vol({z : [(Tg)(x)| > a/2}) <

o? Q

We next consider b; and consider for x € 3B; and for y; the center of Bj,

M) = | Kby = | ()~ KG) by

were we used average b; = 0. Then by (3.1) we have
1) < —r [ o= wl Iy(w)ldy
DT e =yl o, Y '
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Then for r = radius(B;)

C
Th@lde< [ e [ eyl bl
/Rd\?)Bj ’ |z—y;|=3r |z — y; |4+ ly—y;|<3r Y
C
< Cd? ly — 5l b (y)|dy < CdCHbj”Ll(Rd)'
" Jly—y;|<3r

Let now E = U;(3B;). Then for b = Z b; we have
J

Tb| < / Thi| < cyC bi < cgC(1+ 32| f .
L 3 o, 71 0 S sy < OO+ E 91 e

Hence
vol({z & E : |(Tb)(x)] > a/2}) < ZHTb‘LLl(ﬂW) s 32d)HfH§@Rd)'
So since
vol{z & E - [Tf(z)| > a}) < vol({z & E : [Tg(x)| > a/2} +vol({x & E - |(Th)(z)| > a/2})
< |40+ ca01 48 ”f”g@Rd)
and

3d
vol(B) < Y- vol(38;) < 3 Y vol(By) < e
J J

we conclude that (3.6) as been proved with A = 39 4 4C + ¢,C(1 + 32%).
O
Now we consider the Proof of Theorem 2.14. We follow [18] from p. 136. Preliminarily,
we state the following lemma.

Lemma 3.8. Suppose 1 < p < oo and s > 1. Then f € WSP(R?) if and only if f €
WLP(RY) and 0,5 f € WLP(RY) for all j = 1,...,d and furthermore the norms || f||ws»
and || fllws-1.0 + Z?:l |02 fllws—1.0 are equivalent.

Proof of Theorem 2.1} assuming Lemma 3.8. Obviously for k = 0 we have WP =
Wor = .
It is obvious that f € W*P(R?) if and only if f € Wk=LP(RY) and 9,; f € WF—1LP(R9) and
that the the norms || f||yyrr, and || fllype-1., + Z;-lzl |05 fllyyx—1,» are equivalent. But then
Lemma 3.8 guarantees that WP = WP with equivalent norms, and so on for all k € N.
O
Proof of Lemma 3.8. Let us start assuming that f € W*P (R%). Then setting g(¢&) :=
(€)° F(€) we have g € LP(R?) by definition of W*P(R%). Then notice that

(& P = (&9 = 2m) 2T 1% g



where J_, = ((6)71)Y is easily seen to be an L'(R?) function: this can be seen by an
integration by parts argument like in the discussion of the Riesz transforms above. Hence
we have

_d _d
[fllws-10 < 2m) 72| Tl prllgllze = (2m) 72 ([Tl o[ fllwsir-

Next we consider

€ B = —i ) 7€) = ifg)@(@ ~ Ryg(6),

where Ej is a variant of the Riesz transform considered considered in the list in Example
3.2. But then, since the Riesz transforms are CZ operators, it follows that

10 fllwi-10 < | Rjllze—rollgllze = IRjl|Lo—sze lglle | fllws».

Summing up, we obtained
d
_d ~
1 lwer + D 100 Fllwero < (@0) 51T lla + dl Rallzoa ) 1 Flbwer,
j=1
where we used the fact, easy to show, that HEJ‘HLP_) r» is constant in j, so that one impli-

cation is proved.

Now we consider the opposite implication, assuming f € WS LP(RY) and 0,;f €
Ws=LP(RY) for all j = 1,...,d. Then §(£) := (£)*7' f(€) is g € LP(R?) and, from 0z,9(§) =
()51 8;7.\]"(5), dx,9 € LP(R?) for any j. Now we have

d .
O F= 7= ~G= =73 2 (-ig))7

This means that

d
(& Y =(2m) 2 T1%g— Y Rjdug

j=1

and so

d
_d =
1 lwsr < @m)"ZNT-1llillglze + D IR Lo 20]10s, 9]l o
j=1
d d ~
= (2m) "2 | T-allpall Fllws-1o + Y I Billo— 10110z, Fllws-1a,

J=1

which obviously proves the opposite implication and completes the proof of Lemma 3.8.
O
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4  Linear heat equation, take 1

For Section 4 see [4]. _
Let T € Ry and f : [0,T] — H* }(R% RY), for d = 2,3, be an external force s.t.
f =Pf and consider the following heat equation:

ur — Au = f
V-u=0 (t,z) € [0,T] x RY (4.1)
u(0) = up € PH*(R?, R%)

Definition 4.1. For a fixed s < d/2 let f € L*([0,T], H*~'(R% R%)) with f = Pf. Then u
is a solution of (4.1) if

we L®([0,7], H* (R, RY)) , Vu € L2([0,T], H*(R%, R? x RY)), (4.2)
if '
u is weakly continuous from [0, 7] into H*(R% R%) (4.3)

(that is, if for any ¢ € H%(R% R%) the function t — (u(t),1)), which is a well defined
function in L>°([0,T],R), is in fact in C°([0,T],R) )
and if for any ¥ € C2°([0,T] x R%, RY) we have

t
(u(t), ®(t))r2 = / ((u(t), AV(E)) 12 + (u(t), 00T (X)) 2 + (f(t), W(¥)) 12) dt' + (uo, ¥(0)) 2.
0
(4.4)
The following theorem yields existence, uniqueness and energy estimate for (4.1).

Theorem 4.2. Problem (4.1) admits exactly one solution in the sense of the above defini-
tion. For any t the following energy estimate is satisfied:

t t
lu(®)1 . + 2/ IV u(t)[%.dt" = [luolF. + 2/ (f(t),u(t) gadt’ (4.5)
0 0
Furthermore we have ‘
u e C°([0, 7], H* (R, RY)) (4.6)
and the formula
2 t / 2
a(t, €) = e ¥ (¢) + / e OREF(, ©)at. (4.7)
0

Proof. (Uniqueness). It is enough to show that the only solution of the case up = 0 and
f=01isu=0. Let u be such a solution. Then

(ut), U(t)) 12 = /0 ((ult), AU(E)) 2 + (u(t), BU(E)) =) dt.
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Let W(t,x) = ¢(z) with ¢» € C® (R4 R?). Then the above equality reduces to

(ult), Pz = /0 (ult'), D) 2. (4.8)

We claim that this identity holds for all ¢ € H*S(Rd, R%) N H—st1(RY, R?Y). From Lemma
2.2 we know that C®(R4,R?) is dense in H*(R% RY) (here we use s < d/2) and in
H—sT1(R? R?) and so the claim follows by density and the fact that

(, Ve HS(RYRY x H5(RY,RY) — R

L2([0, 7], H*TH(RY, RY)) x H*H(RE,RY) 3 (u(t), ) — /T(u(t’), AP 2dt’ € R
0

are both continuous bilinear forms. ' .
Hence we can conclude that (4.8) is true for all v € H—*(R% R%) N H~5(RY RY). In
particular we can replace ¢ by P, and get

t t
t
SnQIIMIHS/O P u(t’)| edt

where the integral fg |Ppu(t)|| yodt’ is well defined by P,u € L®([0,T], H* (R, RY)).
So, we obtained

t
[(Prou(t), ¥) 2] < 0?9 - / IPru(t')| godt’ for all ¢ € H*(R?,RY).
0

This implies
t
IPau(t)] . < n? / 1Pt gt
0

and hence ||Ppu(t)| 7. = 0 by the Gronwall inequality. This implies u(t) = 0 for ¢ € [0,7].

(Existence). First of all, there exists a sequence (f,) in C°([0,T], H*~ (R4 R%)) s.t.
fo 22E% fin L2([0, T, H5Y(R%,R?)). This follows from the density of C2°(I, X) in
LP(I,X) for p < oo for I an interval and X a Banach space, see Appendix A.

Applying P,, to (4.1) and replacing f by f, we obtain the equation

(un)t - P, Au, = Pnfn

4.9

{ un(0) = Pprug (4.9)

Notice that P, f, € CO([O,T},HS'(Rd,Rd)). Since (4.9) is a standard linear equation it

admits a solution u,, € Cl([O,.T], H*(R4 R%)). Notice furthermore that u, = P,u, and so
in particular u, € C°([0,T], H" (R4, R%)) for all r > s.
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Furthermore, applying (-, un) ;. to (4.9) and using

d

(PnAup, up) Z/ €125 GR in (£, £)dE = =) " (Ekin, EnTin) 12(B(0,0), ¢[2+de)

k=1

d
= (&klin, Ertin) p2(Re g2sag) = [ Vtinl|%s
k=1

we obtain

1d
2dt
s.t., after integration, we obtain

||un||2 + ”VUn||2‘s = <Pnfnaun>Hs

1 ¢ 1
O+ [ 19yt = SPaolly + [ Cufald)un®) ot (210
The difference wu,, — u,1¢ solves

{(Un - unJr@)t - PnJréA(un - unJrZ) - Pnfn - Pn+€fn+€
un(0) — tn4¢(0) = (Pr — Prye)uo

Then, like for (4.10) we get

1 1 [t
3 lun(®) = wn eI, +25 /0 IV () () I8 =

1 t
= 7||(PTL - Pn+Z)U0||§'{s + /0 <Pnfn(t,) - Pn+£fn+€(t/)7 (un - Un-‘rf)(t,))Hsdt,

< *II( Pro)uoll3. + / IPnfn(t) = Pryefure) s IV (un — tnpe) ()| grodt’

1 t
< §II(P —Poio)uol, + / IPnfu(t') = Prgefrse)3adt' + = [ IV arn) (0[5t
Hence

t
ot (t) — e (0)]%, + /0 19 (1t — 1) ()13 s

t
< H(Pn - PnJrf)uOH%(s +/0 HPnfn(s) - Pn+€fn+@(3)”§'{sfld3'

Since f, UimA N f in L2([0,T], H*~Y(R% R%)) implies also Py f, f therein, the

last inequality implies that (u,) is Cauchy in C([0,T], H*(R%, R%)) and (Vu,) is Cauchy in

L2([0,T), H*(R%, R%)). Let u be the limit. Notice that u satisfies (4.2) and (4.6), and so

obviously also (4.3).

Taking the limit in (4.10) we see that u satisfies the energy equality (4.5).

n—-+00
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Next, we check that u is a weak solution of (4.1) in the sense of Def. 4.1. We apply
(., U(t)) 12 to (4.9) with ¥ € C2(]0,00) x RY R?). Then we have

d

dt <’U,n, \II>L2 = (Aun, l:[/>L2 + <Pnfn7 \I/>L2 + <Un, at\I/>L2

Integrating we have
(un(t), W(t)) 2 = (Pnuo, ¥(0)) 2 —/0 (un(t'), AU (') podt!

+/0 <Pnfn(t/),\11(t/)>L2dt’+/0 (un(t), 00 (1)) p2dt’.

Taking the limit for n — oo we get

(ult), W(8)) 12 = {up, T(0)) 12 — /0 (ult'), AV(E)) L2 + /0 ), Ut edt’ + /0 (u(t'), U (¢)) 2dt.

which yields (4.4). Hence u is a weak solution of (4.1) in the sense of Def. 4.1.
Next, we prove the Duhamel formula (4.7). Applying the Fourier transform to (4.9)

{@%(t,&) + Xje<n €2 (8, €) = Xjei<nfa(t,€) (4.11)
@(075) = X\§|§naﬂ(§)

Notice that suppuy(t,-) C {|¢| < n} so that X|5‘<n]£|2un(t €) = €%, (t,€). Then, by the

variation of parameters formula

t o~
Tn(t,€) = e 1 x g1 <cnio (€) + /0 e IR N qen Fut, )dt. (4.12)

Now we know
Un(t, &) "= AL, €) in C([0,T], LA(RY, |¢[>d€))
X|§\<na0<f) nze up(&) in L2(Rd, |§‘25d§),
X|§\<nfn<t £ — e f(t/,f) in L2([07T] % Rd, ‘€|2(371)dtd§)
Notice that

Ty(t, &) == /0 =t ler g’ €)dt

is a bounded operator from L2([0, T] x RY, |¢|2¢~Vdtd¢) into L ([0, T], L*(RY, |¢|?*d€). In-
deed for t € [0,T] and fixed ¢ € R? and for g € C.([0,T] x (R\{0}))

t
\Tg(t,§)<(/ ¢ 2—IER gy ;/ lg(t', €)2dt’) %S / g(t',€)|2dt’)z

0
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and so

s 1 s
[ emaopas < g [ el oarde.
R4 [0,T]xRd
This implies
TGl oo (fo,17, 2R g2 de) < V' 1/20191 L2 (0, 1) x R4, 26— D it -
Since C.([0,T] x (R¥\{0})) is dense in L2([0, T] x R%, [¢[25~Ddtde) a well defined bounded

operator remains defined. Taking the limit for n — oo in (4.12) all terms converge in
L>=([0,T], L2(RY, [£]?%d€)) to the corresponding terms of

(t,€) = e P Ty (e) + / t e COIE F(i eyar.

0
O
Remark 4.3. Notice that applying the Fourier transform to (4.7) we get
¢
u(t) = ePug + / et (i at' (4.13)
0
The following theorem yields additional estimates.
Theorem 4.4. Let f be like in Theorem 4.2 and consider the corresponding solution
we C(0,T), H%), Vue L*[0,T], H®).
Then, additionally, we have
[u()ll o2 € LP((0, T, R) for any p > 2. (4.14)
Moreover we have
? : 1
V(t):= / % sup |a(t,¢ d¢ | <||luol|lzs + —IIf o1y
(t) » iy Ogt/gt\ (", &)l l[uoll 47 o1 11 L2 0,8, 1251 (4.15)

el ooz lzoory < (lollzs + 1 2o ryizs) ) -

Proof. From the Duhamel formula (4.7) and the previous computation

(¢, €)| < e Go(6)] + \ﬂfl 17 GOl z2(0,1)-
so that
\5!8021;1;\@(5,5)\ < !f\s\%(f)lﬂﬂs\ﬂﬂ\lf( Ollrz0,0)-

32



Taking the L2(R?, d¢) norm we get

1 -~
V(1) < [[uo(E)l L2(ra,jep2sae) + EHfHL2((o,t),m(Rd,\g|2<s—1>dg))-

and this yields the 1st line in (4.15).
To get the 2nd line in (4.15), from the energy estimate (4.5) we obtain

t t 1
()% +2/ [Vt dt" < [luol%. +2/ THf(t')HHHWHVU(t’)Hgsdt’

snuo||2~s+W /Ilft’ 13, .dt

that is
lu(®)3,, + / IVult)|%,dt’ < |Juol,. + / LFEI,, . dt

This obviously implies

T
sup [u(®)%. < ol + [ 7€) 1t and
0<t<T 0

T T
/O IVu(t') | dt" < HUOHQ~S+/O 1F @) Femnd
and hence, from va + b < v/a + /b fijor a,b > 0

ll oo 0.7, 110) < Nwoll s + 1F 1l L2 o, 19, 1

Ml g 2o, < Nl + 171 oy, sre)

So by the interpolation of Sobolev norms Lemma 2.20 for 2 < p < oo

2 2

1—2 _ 2
Hlull ;os2 lzpo,r) < HHUHHJ’HVUH Nz < lull 0.1, Vel o llzoo,7)

_2

=l gy 10 g1y < N+ 1 7

5 The heat equation, take 2

For this section see [14]. In this section pairs like (¢/, q) of indexes will not be dual to each
other.

Proposition 5.1. Assume that

1<li<r< 1<
- = T, 5.1
{ I B (5-1)



forr' £, or

1<l<r<oo, 1<lU<r <
- =5 - 5.2
{ f<te o
forl' =1 or, finally and if v’ = oo,
1<i<r<oo, 1<lI'<r =
- =T - . 5.3
{ 442 <242 (5:3)
Then there exists a fixed constant c(a,b,d,l,l',r,r") s.t.
N
— / / /
||/ A A o (aiymay < €@ by d LU )| Fll o 1 g sty (5.4)
a

Proof. First of, by translation invariance we can always assume [a, b] = [0, T].
For 1/ < oo and I’ < ' we have

t t
R Py N B PR

t d
HSA@—W(WﬂuﬁMT

_d(1_1 1 1 1
S Ixomt gt )HLa ool fll L where 1 + — == + o

where we need % (% l) a < 1 for the above to hold. This is equivalent to

d/1 1 1 1 1
(-2 )< =14+ =
2 a T

which in turn is equivalent to

d+1 1+1+d
21 l’* r 2’

equivalent to the condition in (5.1).
For ' < oo and I’ = v’ we have by Young’s convolution inequalities

t , ey

H /O A fat | oy, S | / / (t—¢) 4 5 F(¢ y)dyat |,
_d _lz?

<N 5 a1

where 1 + % = é + % Now proceeding

_d = < (=t <
[t 2™ 3 pipallfllpr e S 722 Ly my 1 F e o S Nl
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where the latter makes sense exactly if % — % < 1 which is equivalent

1 1 1 2
lo—=1-(14--3)<Z
a <+r l><d’

which gives (5.2). Finally, for ' = oo, and for ¢ € [0, T},

t t
/ d(1_1
HL/1 A £t e Jﬁ 20~ [ dt! §;j€<t—-ﬂ>—2<% £ e dt’

<W7““) £l 1
[O,T]

by the Holder inequality, where the latter makes sense exactly if g (% — %) % < 1, that is

d d 1
z‘r<2@‘y)

which coincides with (5.3). O
We will use an analogous version involving the gradient of f.

Proposition 5.2. Assume that

{1§l§r§ , 1<l’<r’<oo (5.5)
d 2 d :
7+TS;+ +1

forr' £, or

1<i<r<oo, 1<I'<r <o
{ d d (5.6)
l T
forl' =1" or, finally and if v’ = oo,
1<i<r<oo, 1<lI'<r =
T T i, 2 (5.7)
[+ <i+l

Then there erists a fixed constant c(a,b,d, 1,1, r,r") s.t.

t
| / ettt )Vfdt,HLr/Lr((a,b)X]Rd) < c(a,b,d,1, U, 7“,)||f||Ll’Ll((a7b)><Rd) Jor any f € Ll((aa b) x Rd)-
(5.8)

Proof. Again, by translation invariance we can always assume [a,b] = [0,T]. For ' < oo
and I’ < 7’ we have by Corollary 1.5

t t
,/O P |y, < ||/ |2 f gt

t
_,_é 1_1
rsAa—w SEDlI gyt
1 1

T v

1_1 1
2 (12| peeo || £l 11 1 where 1 +
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d
Whereweneed%—i—i(%—%)agl
Lod(t 1y 1 1]
2 2 “a

which in turn is equivalent to

for the above to hold. This is equivalent to

that is the condition in (5.5).
For 1’ < oo and I’ = v’ we have by Young’s convolution inequalities

2
[z—y]

t
R e I [ R e e N
< ||f%*%%e*rHLlLanfum
where 1 + - é—i—% Now
[ T PV L R L e PO E PR 1y
where the latter makes sense exactly if 4 —|— 5 — 35 < 1 which is equivalent

d—d(l—i—l—l)<17
r 1

which gives (5.6). Finally, for ' = oo, and for ¢ € [0, T,

t t t
H / AT fat | < / 12O £ edt’ < / (t— ) 320 £ o
0 0 0

_1_d(1_1
S leee ) A1l

LV-1[0,T]

by the Holder inequality, where the latter makes sense exactly if [% (% - %) + %} l,l_l < 1,

that is
d d 1
22 1_- =
L <2< l,),

which coincides with (5.7). O
Later we will consider parabolic cylinders for d = 3.

Definition 5.3 (Parabolic cylinders). Given (¢, zo) € R x R? for any R > 0 we will denote
by Q% (to,zo) the set
R2 2
Q*R(to,l’o) = <t0 — 7,?50 + 2) X Br(xo)

and with Qg(to,xo) the set
Qr(to, z0) = (to — R t0) x Br(xo).
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Notice the relation

R2
Qr(to,z0) = Qr (to + 2,:100) : (5.9)

We will focus especially on the cylinders Qgr(to, zo). We will write Qr = Qr(0,0).

Proposition 5.4. Let f € L2(Qg(to, z0)) such that such f vanishes outside Q,.r(to, 20),,
for an ps € (0,1) Consider the equation Wy — AW = 8;f in (to — R%,0) x R® and its
restriction in Qgr(to,zo). Assume that W (—1,z) =0. Then, for any p; € (0, ps):

1. f € LPLE(Qr(to, x0)) = W € LFCYY(Q,, z(to. 20)) for any a € (0,1);

2. f € LEWE™(Qr(to, 70))) = W € LFCY*(Q,, p(to, z0)) for any a € (0,1);
3. f € LFC™(Qrl(to, x0)) for an a € (0,1) = VW € L®(Q,, g(to, 0));

4. f € L¥CE(Qr(to, 0))) for an a € (0,1) = VFW € L®(Q,, g(to, z0)).-

Proof. By scaling and translation we reduce to the case Qr(to,zo) = Q1.

Notice that Theorem 4.2 guarantees that the existence and uniqueness of a solution W &
L%((=1,0), LA(R®)) N L2((—1,0), H(R?)).

Next, it is enough to prove the 1st and 3rd claim. Let us start with the 1st claim. First of
all

¢
W(t,x):/ Velt=9)2 fds

17\2
3/ ds/ (t—s)" 2e 1 A=) 0;f(s,y)dy
R3

d R d
/ S/]R"e t—S)1+3f( y)dy.

M\DJ

Now, by Corollary 1.5 we have

t
Wl < | / VI i 0

t t
< / Vel fl g nsyds & / (t— )7 2ds)|fll s (0 < 1]l =0,

Next, we write

|z \ — |z |2 P .
()= W(e2) = ()73 [ [ S S
RS 2(t —s)2 2(t —s)2
Introducing
x Yy z
§= y N = y P =
(t—s)2 (t—s)2 (t— )2



we have
Wi(t,x) — W(t,z
3 t —n/? p—nl?
=2 [ s [ e | G - )| s - 9 P

-1
Then

l&—n|? lo—n|?

o [ s [ oot L mm e L) g g ay
R3 1€ = pl
Now split the domain of integration in two parts. In the first part | — p| > 1. When this
holds we bound the integral by

C’/ ds/ ~1/2—0/2
R3
_Iml” \
<20 [ aste— sy /R el

In the region where | — p| < 1 we bound from above the integral by

S m) s,

_le—n? _lp—nl?

: s e 1 () —e 1 (pj—my) s
d —5) /2 - d
i S/RS@ 5) = (s, (£ = 5)"2n)]dn

(t _ s)—l/?—a/Q sup
3 T€[0,1]

_1/2— _lr(=p)—n? _Ir(E=p)—n?
(t = 5)1/202 sup](e B e ) ) i,

3 T€[0,1

t
< / ds / (t = 8)7/27% (1 4 9) dnl| |z

¢ 19— _In? _In?
+/1ds/R3(t—s) 1/2—a/2 <e 5 4 2e 8 |77’2> dUHfHL??z SCHfHLZOz'

We now consider the 3rd statement. For € > 0 we consider

t—e Jz—y|% —
e(t, ) ds | e = S’ BT f(s,y)dy
R3 )1+

_lotr(e=p)=nl?®
o (" oy (g ) = ) ) |l

Then
t—e |z—y|? . .y _
I We(t, x) / s/ e AT 5Jk1 3 < ?/g)(%i; gyk) f(s,y)dy
1 R3 (t—s)tt2 2(t — 5)*t2
t—e z—yl2 . .y _ —
/ S/ e |4(t,y‘s) 5Jk —_— (xj y])(IEk _ yk) |l‘ o y|cx f(say) fisax) dy
1 R3 (t—s)1T2 2(t — 5)?F [z =yl
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So, using

= —2 n=—2

(t—s)7 (t—s)7

e _le=ni? 1 ’5 — 77|a
|OkWe(t, )| < HfHLOO((—l,O),Cg’a) /_1 ds /R3 e 1 ’(gjk; = 27§ —my) (&, — nk)‘ mdn
[l

<C ay for C' = d (1 ——————=dn.
HfHLOO( 1,0),0%) for sup / S/RJ (1+ In] )( s)i—ar2 n
O

Proposition 5.5. Assume that W, — AW = f in Qg(to, o) and W (tg — R?) = 0. Assume
[ vanishes outside Q,_g(to, zo) for an ps € (0,1). Then, for any p; € (0, ps):

1. f € L®L®(Qg(to, x0)) = W € LFCy™(Q,, g(to, x0)) for any a € (0,1);

2. f € LOWk®(Qp(to, 20)) = W € LFCy(Q,, x(to, x0)) for any a € (0,1);
3. f € L¥C%*(Qg(to, o)) for an o € (0,1) = VW € L L (Q,,r(to, z0));

4. f € L*C**(Qr(to,z0)) for an a € (0,1) = VF2W € L L (Q,, p(to, o).

Proof. The proof is similar to the previous one. It is enough to prove the 1st and 3rd claim.
Let us start with the 1st claim. First of all, by Corollary 1.5

t
W leion < | / 2 s 10y

t t
< /1 €42 oo ((—1.0yxR3)dS S /1d5||f||L°°(Q1) = | fllzoe(@y)-

Next
3 3 [ _le—uP? N
W(t,z) —Wi(t, z 2/ ds/ (t—s)"2 |e 4= —e 4t=9) | f(s,y)dy
R3
and, differentiating,
oyl g — Cle=ul g — oy

O, W (t,x) — O, W(t,2) = (4m) 3 / ds/ ey I i LI f(s,y)dy,

R3 t—s) 2(t —s)2

so that we get in the r.h.s. the exact same quantity discussed in the 1st claim of Proposition
5.4 and the same exact proof holds yielding the 1st claim.
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Next, we consider like before

t—e lz—y ‘ .
<(t, ) / ds/ e 4t-s) ng f(s,y)dy.
RS (t—s)2

Then
t—e _e— 12 0 .y —
0;0We(t,x) = / ds/ B i T — (2 — ;)@ 3 ) f(s,y)dy
~1 R3 (t—s)tt2 2(t — 5)*T2
t—e z—y|2 . . ay. _ _
_ / dS/ e L(t_y‘s) 5jk - (xj y])($k _ yk) ‘ZE’ o y‘a f(87y) f(sa x) dy
-1 R? (t —s)tt2 2t — 5)2t2 R
is exactly the formula used in the proof of the 3rd claim of Proposition 5.4.
O

6 The Navier Stokes equation

We will only deal with the Incompressible Navier Stokes (NS) equation:

ur+u-Vu—Au=—-Vp
V-u=0 (t,z) € [0,00) x RY (6.1)
u(0,2) = up(x)

where u : [0,00) x R — R? with u = Z‘;:l u/e; with e; the standard basis of R?,

4. 62 o )
:;%?,V'uzz&cjuj,u-VU:ZUj&cjv.

p is the pressure and it is simply serves the purpose to absorb the divergence part of the
Lh.s. of (6.1).

We can write

d
u-Vu = div(u @ u) for div(u @ v)’ := Z O (uFv7) since (6.2)
k=1

U

div(u @ u)! = Z O (uFu?) Z uF o + u? le’LL =u- V!
k=1 k=1 g

So we rewrite (6.1) and

V-u= (t,z) € [0,00) x RY (6.3)



Definition 6.1 (Weak solutions). Let ug be in L?(R?). A vector field u € L? ([0,00) x

loc
RY) which is weakly continuous as a function from [0,00) to L?(R% R?) (we will write

u € CY([0,00), L2(R4 R?)), and what we mean is that t — (u(t),¢);2 € C°([0,0),R)
for any ¢ € L?(RY R%)) and s.t. divu(t) = 0 for every ¢, is a weak solution of (6.3) if for
U € C2([0,00) x R4 R?) with divl = 0 we have

(u(t), W(t)) 2 = / ((ult'), AT 2 + (ull)), BT () 2

—(div(u @ u)(t'), U(t'))2) dt’ + (ug, ¥(0)) 2.

Remark 6.2. Notice that in Definition 6.1 we could replace the half-line [0, co) with a half-
line [tg,00) with tg € R. In this sense, observe that any solution in Definition 6.1 solves
weekly the NS equation in [tg, 00) for tg > 0 and initial value u(tp), that is to say, for any
for U € C([tg, 00) x RY RY) with divl¥ = 0 we have

t
(Wl0), 0O) 2 = [ (@), AU 2+ uld), 0T o)
to .
—(div(u @ u)(¥'), ®(t))12) dt’ + (u(to), U(to)) L2
Indeed, we can extend any such test function into a ¥ € C2°([0, 00) x R4, RY) with div¥ = 0.
Then taking the difference of (6.4) and
to
(u(to), ®(to)) > = / ((u(t), AW(E)) 2 + (u(t'), OL()) 2
0

—(div(u @ u) ("), U(t")2) dt’ + (ug, ¥(0)) 12,

(6.4)

we obtain exactly (6.5).

Let us now formally take the inner product of the first line of (6.1) with u and integrate
in RY
1d
2dt
We have, summing on repeated indexes,

(u-Vu,u)r2 = /dujukajukdx = 2_1/

R R4

lullZs + (u- Vu, u)p2 = (Au,u) 2 = —(Vp,u)

w0 (uFuf)2de = —2_1/ lu|?divu dz = 0 and
R4

(Vp,u)r2 = / ujc?jpda: = —/ pdivu dx = 0.
Rd R4

So, formally (rigorously if u is regular and we can integrate by parts), we get
1d
2dt

This in particular yields the following energy equality

lullZz + [ Vullz. =0

t
() e gy + 2 / () 2 gy = ol g, (6.6)
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Theorem 6.3 (Leray). Let ug € L*(R?) for d = 2,3 be divergence free. Then (6.3) admits a
weak solution with u(t) € L= (Ry, H)NL? (Ry, V) such that the following energy inequality
holds:

t
() Bz gy + 2 /0 [Vu(t) 2y @ < lluoll3e g, (6.7)

The proof of Theorem 6.3 is long and will be considered later.
Remark 6.4. Theorem 6.3, along with other results on more regular solutions, was published
originally by Leray [9], in 1934, before the appearance of the notions of distribution [16]
and Sobolev space [17]. A presentation in a modern framework is in Ozanski-Poonen [11],
which is freely available in https://arxiv.org/abs/1708.09787 .

Notice that if we apply formally the operator P to equation (6.3) we obtain formally

{“t ;(Aof‘x):fgoi%’ W (¢ 2) € [0,00) x R (6.8)
where we set 1 1
Ons(u,v) = —?P’(div(u ®v)) — 5P(div(v ®u)). (6.9)
Here notice that
R 1 ¢
P(div(u @ v))? = Zal ((ulv]) - x Zﬁjak(ulvk)> . (6.10)
=1 k=1

In dimension 2 the result can be strenghtened.

Theorem 6.5 (Case d = 2). When d = 2 the solution in Theorem 6.3 is unique, it satisfies
(6.6) and u(t) € C°([0, ), L?).

Theorem 6.5 depends on Sobolev’s Embedding H %(RQ) < L*(R?). Furthermore, we
will use the following lemma.

6.1 Proof of Theorem 6.5

The following is important.

Lemma 6.6. Let d = 2,3. Then the trilinear form
(u,0,0) € (CZR)T x (CZRT)? x (CZRN)? = (div(u @ v), )2 €R - (6.11)

extends into a unique bounded trilinear form (H'(R))? x (HY(R®))? x (HY(R?))¢ which
satisfies for a fived C

. d d 1—4 1—4
(div(u @), p)r2 < Cl[Vul| L2 [Vl g lull 2 * vl 2 * Vel 2 (6.12)

If furthermore div u = 0 then
(div(u ® v),v)r2 = 0. (6.13)
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Proof. Recall that from (6.2) we have div(u ® v)! = 2221 i (uFv?). Then for fields like in
(6.11) we have

d d d d
(div(u ® Z (div(u @ v)?, @) 2 = Z(Z O (uFv?), i) 2 = ZZ bl Oy’
Jj=1 j=1 k=1 j=1k=1
Now the r.h.s. can be bounded by
[(W*0?, 0 2] < [l [| 2|V pll e < u |l pallo? || 24l Vol 2.

Finally, we apply Gagliardo-Nirenberg inequality writing

d 1—4
lu¥llpe < ClIVar| 22 a2 2

The same holds for v/. Then we obtain (6.12), obviously with a different C. This implies
that the form in (6.11) is continuous and, by density of C>*(R%) in H'(R?), it extends in a
unique way.

Next, we write for ¢ = v

d d
(div(u ®@ v),v ZZ kol O’
7j=1 k=1
d d d
=27 IZZU O (v7)? :212 divu)v? ,v7) 2 = 0.
j=1k=1 J=1

Notice that this formal computation (the Leibnitz rule used for the 2nd equality requires

some explaining) is certainly rigorous for v € (C°(R%))9. On the other hand inequality

(6.12) yields (6.13) by a density argument also for v € (H!(R%)). O
We consider the following general lemma.

Lemma 6.7. There exists a constant C = Cr such that for any u € L*((0,T), H*(R?)) N
HY((0,T), H Y (RY)) we have u € C°([0, T], L>(R%)) with

[wll oo (0,77, L2 (RaY) < C (Hu||L2((O,T),H1(Rd)) + HaHLZ((O,T),H*l(Rd))) . (6.14)
Furthermore we have |[u(t)||3, € AC([0,T]) with
d .
@Hu(tﬂ@ =2 (u(t),u(t)) . (6.15)

Proof. Let us assume additionally that u € C1(]0, T], L?(R%)). Then for any fixed t, € [0, 7]
we have

lu(®)IIZ2 = llu(to)lIZ> + 2/ (u(s), a(s)) ds (6.16)

to

< Hu(to)H%2 + HUH%?((O,T),Hl(]Rd)) + Huuiz((o,T),H*l(Rd))‘
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We can choose [u(to)||2, =T! fo |u(s)||22ds obtaining (6.14) for C' = V14 T-1
The general case is obtained by considering a sequence (uy,) in C1([0, T], H'(R)) converging
towin L2((0,T), H*(R*))NH((0,T), H~'(R)). To get such a sequence, we can extend ap-
propriately u into a function in L2(R, H*(R?))NH(R, H~!(R%)), and then we can consider
Up = Pe,, * U With €, 7% 0. Then this sequence satisfies the desired properties.
Then (6.14) implies that (u,) is a Cauchy sequence in C°([0,T], L?(R%)). The limit is
necessarily u, which satisfies (6.14). Also by a limit, we conclude that u satisfies the
equality in (6.16), for any fixed ¢y € [0,7]. This implies [|u(t)||2, € AC([0,T]) and formula
(6.15).

O

Proof of Theorem 6.5. We first claim that for any d = 2 solution we have

O € L*((0,T), H ' (R?* R?)) for any T > 0. (6.17)
Let us assume this for the moment. Since from (6.7) we have u € L?((0,T), H'(R2?,R?)),
then u € L2((0,T), H'(R%2,R?)) N H((0,T), H *(R?,R?)) for any T > 0. By Lemma 6.7
we have u € C°([0, 7], L?) for any T > 0, and so u(t) € C°([0, c0), L?).

We now assume that there are two solutions u and v with u(0) = v(0) and we set w := u—wv.
Both w and v satisfy (6.4). We claim that we can take as test function w, obtaining

(u(t),w(t)) = /0 (—(Vu, Vw) + (u, dpw) — (div(u @ u),w)2) dt’ and

(v(t),w(t)) = /0 (—(Vv, Vw) + (v, w) — (div(v @ v),w)2) dt’ (6.18)

To prove the claim, notice that there exists a sequence of test functions ¥,, which converges
to w in

L*((0,7),HY n HY((0,T), H Y)Y nC ([0, T], L?).

This implies that (6.4) with the ¥,, converge to the above formulas, where we have taken
in account w(0) = 0 and where we used also estimates like, see Lemma 6.6 below,

t t
/ (div(u @ u)(t'), w(t')) 2dt’ < C/ IVu(t)] g2 |ut’) || 2| Vw(t')|| p2dt’
0 0
< ClVull 20,0, ) IVl L2 (0,0, 2) 1wl Lo ((0,8), £2)

and an analogous one for the other nonlinear term.
Taking the difference of the two formulas in (6.18), we obtain

w(t)||2s = /0 (—IVw#)|Z2 + (w(t), dw(t)) — (div(u ® u)(#') + div(v @ v) ('), w(t))2) dt'.
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Formula (6.17) for any solution and Lemma 6.7 imply [|w(t)[|7, € AC([0,T]) with %Hw(t)H%Q =
2(w(t), Opw(t)). Hence, using the cancellation (6.13) in the 3nd line,

1d
2dt
= (div(v ®@ v) — div(u ® v) + div(u ® v) — div(u @ u), w)
= —(div(w ® v) — div(u @ w),w) = —(div(w ® v)

= — (O, wkw) < |Vl pallwlds < Vol w2 Vol

]2 + [Vewl2 = (div(o ® v) — div(u®u), w)

< E(VollE wllZe + [ VwllZ.,

where in the 4th line we applied Gagliardo Nirenberg in dimension 2. From the last formula
we obtain

d
£||w||%2 < 2¢%|| V|32 ||w|/22 which by Gronwall yields
2 [t (12 /
lollz < o 19N 0) 7, = 0.
To complete the proof we need to prove claim (6.17). We apply (6.4) for U(t,z) = ¢(x) €
C2(R% R?) and obtain

(u(t), ¢) = (u(0), ) :/0 ((Au(t), ¢)) — (Pdiv(u ® u)(t'), 9)) dt.

The above formula extends to any ¢ € H!(R? R?).
We want to use Lemma A.30, which states that if u,g € L'(I, X) are such that

(u(t2), f)xx — ((tr), flxx- = / ’ (g(s), ) xx«ds for any f e X*,

t1
with X a Banach space, then dyu = g in D'(I, X) := L(D(I,R), X).
Here we apply Lemma A.30 taking X = H !(R% R?) and its dual X* = H!(R% R?).
Obviously, we have

Al 1o,y 11y < VTl p2(0.7), 1)

Notice that the above inequality does not depend on the dimenslion. The treatment of
the nonlinear terms, depends on the dimension and is based on H?z(R?) < L*(R?), which
depends on the dimension, and is

IPdiv(u @ w)l L2 (o,r),1-1) < VT lu® ull 2oy, r2) = VTIllullall 207y S \/THHUHZ% 22 (0,1)
< VT ||ull oo 0.1, I VUl 2 (0,7), 22)

where in the last inequality we used the interpolation HuHi{% < |l g2 ||V 2.

So we can apply Lemma A.30 obtaining that
Ou = —Au + Pdiv(u ® u) in D'((0,T), H™ 1)
and furthermore that (6.17) is true.
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6.2 Proof of Theorem 6.3

We consider a sort of regularization of the NS equation. In the sequel we consider only case

[d=3]
Using a smooth mollifier p € C(R%,[0,1]) s.t. [ p(x)de = 1 and with pc(z) =
e~ p(z/€), we consider

{ut — Au=—=P((pe *xu) - Vu) (6.19)

u(0) = pe * ug.

If we are in the framework of Theorem 4.2, then
¢
u = e p. % ug — B (u)(t) where O (u)(t) := / AP ((pe xu) - V) dt’ . (6.20)
0
Lemma 6.8. Equation (6.20) has exactly one mazximal solution. This solution u is global
m teme, with
u € C°([0, +00), L2(RY, RY)) N L®(Ry, LR, RY)) N LA(Ry, H' (R, R? x RY)  (6.21)
Furthermore, u satisfies the energy identity (6.6).

Before we prove Lemma 6.8 we state a useful abstract lemma.

Lemma 6.9. Let X be a Banach space and B : X?> — X a continuous bilinear map. Let
a < m where || B|| = sup|z|=|yj=1 |1B(@,y)|l. Then for any xo € Dx(0,) (the open ball

of center 0 and radius o in X ) there exists a unique x € Dx(0,2a) s.t. x = xg + B(z,z).

Proof. We consider the map
r — xo + B(x, z). (6.22)

We will frame this as a fixed point problem in D x (0, 2«).
First of all, we claim that the map (6.22) leaves Dx (0, 2«) invariant. Indeed

<2
e —
lzo + B(x, 2)|| < [lzoll + || Bz, 2)|| < llzol + [ Bll[l]* < o (1 + 4] Blla) < 2a.
——

<1

Next, we check that the map (6.22) is a contraction. Indeed
[1B(z,2) = B(y,y)ll < [|B(z —y,2)|| + [[B(y,z — y)|| < 4e|Blllz -y
where 4a||B|| < 1. So the map (6.22) has a unique fixed point in D x (0, 2a).
Proof of Lemma 6.8. Let, for T € R,

X = L% ([O,T],H(Rd,Rd)) N L2([0, T], H* (R, RY x ]Rd))
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and

¢ t
B(u,v) := —/ AP ((pe s v) - V) dt' = / eBPdiv((pe + v) @ u) dt’.
0 0

Then by Theorem 4.2

1B (u, U)HLoo([o,T],Lz)mm([o,T],Hl) < C||Pdiv(pe * v ® U)Hp([o,T],H 1)~ S Cll(pe*v) ® “HL2 ([0,T],L?)
< C\/THPe * UHLOO([O,T],LOO(Rd))Hu”Loo([o,T},H(Rd)) < CE\/THUHLOO([O,T],L?(]I@))HUHLOO([O,T],L?(Rd))'
So we have proved

|B|| < C-VT. (6.23)

We have

AN YAN
1€ pe  woll oo 0,11, L2y 2o 811y < 1€ 0l Lo ey 122y a1y < Collwollze

So, for

1
C'OHUOHL2 < 4C€\/T’
by Lemma 6.9 the existence of a unique solution of (6.20) in X of norm < 2Cpl|ug||r2, for
a time T' = T (||ug||z2) *. Notice that any solution is in C°([0,T], H(R¢,R?)) by Theorem
4.2. And there is not just one solution in D x(0,2Co||ug||z2), but just one solution in X.
To see this notice that if v, uC?([0, T], H(R% R%)) are two solutions, then u(t) = v(t) in a
closed nonempty subset of [0,7]. But since if u(t) = v(¢) in [0, to] with to € [0,7), it is
easy to see that there exists € > 0 such that u(t) = v(¢) in [0,%9 + £). This implies that
u(t) = v(t) in [0, T7.

Let us consider the maximal solution

ue CO([0,T%), L*(RY, RY))
and let us suppose that T* < 4+o00. Then we claim that

lim ||u(t)||z2 = +o0. (6.24)
t—T*

In fact, suppose that (6.24) false. Then there exists an M and a sequence t,, — T* with
llu(tn)|lz2 < M. Then for n such that ¢, + T (M) > T, let

w(t) = u(t) for 0 <t <ty
T\t —ty) for t, < t <ty + T(M)

!Notice that that the fact that T = T (||uo||.2) rather than T' = T (uo) says that this problem is subcritical,
basically, not too difficult.
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with v the solution of

t

v(t) = ePulty,) — / AP (px v - Vo) dt .
0

Then in fact w solves (6.20), by uniqueness it coincides with « in [0, 7*), and hence we can

extend u beyond T™ getting a contradiction. Hence, if T* < +00 we have (6.24).

Now we discuss the fact that (6.24) is impossible. To see this we consider the identity (4.5)

t t
lu(®)lIZ2 + 2/ IVu(t)72dt" = [|pe * uoll7> — 2/ (Pdiv ® u), udt’,
0 0

where the last term cancels by by the cancelation (6.13). So that we get the energy identity
(6.6). This prevents the blowup (6.24) and completes the proof of Lemma 6.8.
O
We consider now a sequence €, — 0% and denote by u,, the corresponding sequence of
solutions provided by Lemma 6.8. In particular, we have

(1 (1), T (1)) = /0 ((tns AT) + (1, L) = (B (e * - Vet , 1)) dt’ + {pz % ug, ¥(0))

(6.25)
for any ¥ € C([0,T] x R4, RY).
Let us focus here on d = 3. Then the u,, belong to the spaces in (6.21) with norms uniformly
bounded by ||ugl| ;2. From Theorem 4.4 for the case s = 0 we have

2
=

un € L"(Ry, Hr (R4, RY) for all 2 < r < 4.
For % = — 2 we get by Sobolev Embedding u, € L"(Ry, L4(R?)) for g +2= % for all
r > 2. In particular in the case d = 3 for ¢ =r = % by (4.5) we obtain

lunll 10

L3 (R3xRy) < Juoll>-

This can be easily proved by the energy inequalities satisfied by all the u, and by Holder
inequality. "

By the weak pre-compactness of bounded subsets of L3 (R3 x Ry ) this implies that, up to
a subsequence, there exists u € L§(R3 x Ry) s.t. u, = win Ll?o(R?’ x R4). Our aim is to
show that u satisfies (6.4) by taking the limit in (6.25). Clearly we have

¢ ¢
im [ ((tn, A + (i, 0,0)) dt’ = / (4, ADY + (u, DY) dt'.
n—-+o0o 0 0
We will prove the following result.
Proposition 6.10. We have u € L® (R, L2(R RY)) N L2 (Ry, HY(RY, RY)), div u = 0
and for any T > 0 and any compact subset K C R% we have

lim lun (t, ) — u(t, z)|?dtdz = 0. (6.26)
=0 J10,T)x K
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Moreover, for any ¢ € C°(]0,00), H' (R, RY)) we have (Un, V) p2(Ra Ry = (Us V) [2(Rd Ra) N
L2 ([0,00)), that is

loc

lim [[{un(t) —u(t), ¥ (t))llcoqo,ry) = 0 for any T'. (6.27)

n—oo

Notice that (6.27) implies the weak continuity u € C°([0, +00), L2) and

lim <un(t)7 \Ij(t» = <u(t)7 \Il(t»

n—-4o00

so that, to complete the proof that u satisfies (6.4) what will be left is
t t
lim (Un, pe,, * Up - VU)dt' = / (u,u - VW)t (6.28)
0

n—-+00 0

which will also follow from Proposition 6.10, as we will see later.
Proof of Proposition 6.10. Fix an arbitrary T' > 0 and an arbitrary compact subset K
of R%. Tt is enough to prove the following claim.

Claim 6.11. The set formed by the elements of the sequence {u, },en is relatively compact
in L2([0,T] x K,R%).

Proof of Claim 6.11. We will show the following statement, which is equivalent to
Claim 6.11.

Claim 6.12. For any € > 0 there exists a finite family of balls of the space L2([0, T] x K, R%)
which have radius € and whose union covers the set {u, }nen-

Proof of Claim 6.12. First of all, if we want to approximate {u, }nen with {Py,tn fnen
for a fixed ng, we can use the fact that for any ng and any n we have

T
l|lun — Pno“””%?([O,T}XRdRQ = /0 Hun - PnounH%%Rd,Rd)dt

T T
< n02/0 |V, — VPnounH%g(Rd)dt < n02/0 ||Vun||%2(Rd)dt < na2|]u0||%2(Rd).

Hence we can choose ng large enough s.t.
€
[t = Proun | L2 (jo,1) xR ) < B for all n € N. (6.29)
Now consider {P,,up tnen. Then Claim 6.12 is a consequence of
Claim 6.13. {P,,u,}nen is relatively compact in L2([0,7] x K,R%).

Indeed Claim 6.13 implies that for any & > 0 there is a finite number of balls B2 (o 7x i re)(f5, g)

which cover {Py,un}nen. Hence by (6.29) we conclude that for any ¢ > 0 the balls
Ba(jo,r1x kg (fj: €) cover {uy}nen and so we get Claim 6.12.
Proof of Claim 6.13. It will be a consequence of the following stronger claim.
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Claim 6.14. {P,, u, }nen is relatively compact in C°([0, T], (L%(K))%)  L*(]0, T}, (L*(K))4).

Proof of Claim 6.14. To get this result we want to apply the Ascoli-Arzela Theorem
(for which a sufficient condition for a sequence of continuous functions f,, : K — X, with
K compact metric space and X a complete metric space, to admit a subsequence that
converges uniformly to a continuous function f : K — X is that it is equicontinuous and
{fn(k)}n is relatively compact for any k € K 2). So it is enough to show that {P,uy, }nen
is a sequence of equicontinuous functions in C°([0, 77, (L?(K))?%) and that for any ¢ € [0, T]
the sequence {P,,,u,(t) }nen is relatively compact in (L?(K))<.
First of all we want to show that {P,un nen is a sequence of equicontinuous functions in
C°([0,T), (L*(K))%). This will follow from Hélder inequality (since § > 1 if d = 2,3) and
from the following claim.

Claim 6.15. There exists a fixed constant C' = C(ng) s.t.

H(Pnoun)t” ) < C for all n.

L (0,7),L2(RY)

Proof of Claim 6.15. Recall that u, solves (6.19) in the sense that it rather solves the
integral equation (6.20). This poses the interesting question of whether or not solutions
of the integral equation are in some sense solutions of the differential equation. When we
apply the projection P, to (6.20) we obtain

t
Ppyun = etAPNOPEn*UO_Pno(I)an (un)(t) where Py, ®c, (un)(t) := / et )APHOP ((pe, * un) - Vuy) dt’,

0
(6.30)
where we used the fact that P,,, commutes with the Laplacian A. Recall that by the proof
of Lemma 6.8 we can conclude that

&, (un) € L® (R+,H(Rd,Rd)> .
In particular this implies
P,,®., (up) € L ([o,T], H(]Rd,]Rd)) for any T > 0. (6.31)
On the other hand, by Theorem 4.2 and more specifically by (4.6), we know that
un € CO ([0, +oo),H(Rd7Rd)> .
This implies

P,y € C° ([0, o), H(Rd,]Rd)> (6.32)

2The proof goes as follows. One first considers a dense countable subset A of K. Then by a diagonal
argument, one considers a subsequence {fn,.} s.t. {fn,,(k)} converges for any k € N to a limit that we
denote by f(k). Using equicontinuity and the completeness of X it is easy to see that {fn,, (k)} converges for
any k € K. We denote again by f(k) the limit. Finally, using equicontinuity we conclude that f : K — X
is continuous
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Now we are in position to use Proposition 4.1.9 in Cazenave and Hareaux [3] and conclude
by (6.31) and (6.32) that

(Protin)t = —PrgP (pe,, * U - Vun) + Py Auy, in D'((0, +00), H(RE, RY)), (6.33)

see Definition A.26. After these preliminaries, which in particular guarantee the existence

of (Pp,tn)¢ as an element of D'((0, +o00), H(RY, R?)), we move to the proof of Claim 6.15.

To get the bound in Claim 6.15 we bound the two terms in the right hand side of (6.33).
We have

IPog Atin]| 2 (ma gy < g lltnl| p2(ra gay < 190l p2(ra ra)
and, by Gagliardo-Nirenberg inequality,

[P0 (pe,, * un - Vun) ||L2(]Rd,le) <[P0 (Uni pe,, * unj) €>i”L?(Rd,]Rd)
d

< ng Z [tnipe, * Unjl L2(raray < Cnollpe, * unllLara raylltnll R ray
ji=1

2
d 1—4
§Cn0H’U«nH%4 Rd Rd < C'ng [Vunllzallunll* ) -
(R4,R%) L L

Then we have

d
[(Prgun)il 4 < g Tt |uo| gt ra)

Ld ([0,77,L2(R4,R%))

d d

T CmollunlFe i g o |Vl 2 o1 gy < C
for some constant C' independent of n by the energy equality (6.6).
Hence we have concluded the proof that {P,,u, }nen is a sequence of equicontinuous func-
tions in CO([0, T, (L?(R%))9).
To complete the proof of Claim 6.14 we need to show that for any ¢ € [0,7] the sequence
{P o un(t) }nen is relatively compact in (L2(K))?. It is here that we will exploit the fact
that K is a compact subspace of R,
We know that {P ., (t) }nen is a bounded sequence in H'(R?, RY) for any ¢ € [0,7]. This
follows immediately from ([P un(t)|| g1 < nollun(t)||r2 < nol|luol|z2, which follows from the
energy equality (6.6) which guarantees ||uy,(t)||z2 < ||uollr2. We recall now the following.

Claim 6.16. The restriction map H'(R%) — L?(K) is compact for any compact K .
Sketch of proof Indeed this is equivalent at showing that

Tt =xwr (L

We have Tf = [K(z,£)f(£)d¢ with integral kernel K(z,€) = xx(z){€)"te ¢, Tt is
easy to see that 7, "=5° 7 in the operator norm where the 7,, has kernel Kn(z,§) ==

) is compact as L2(R%) — L2(RY).
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Xk (2)(€) e X p(om) (€)- Since Ky, € L2(RE X Rg), it follows that 7, is a Hilbert—Schmidt
operator, with ||7,|lms = ||Kn||L2(Rngg)- It is easy to show that || 7|22 < [Tnllms-
IC,, is the limit in L?(RY x Rg) of elements in L?(R%) ® LQ(Rg). The latter ones are integral
kernels of finite rank operators and their operators converge in the Hilbert—Schmidt norm,
and so also in the || - || 2_, ;2 norm, to 7,. We conclude that there is a sequence of finite
rank operators which converges in the operator norm to 7, which then is compact. O
It follows that {P,,,u,(t)}nen is relatively compact in L?(K,RY) for any ¢ € [0, 7).
Hence the hypotheses of the Ascoli-Arzela Theorem have been checked and we can conclude
that Claim 6.14, that is the claim that {P,,,u, }nen is relatively compact in CY([0, T, L?(K, R%)),
is true. O
By the above series of Claims and by u, — u in L%O(R3 x Ry ), we conclude (6.26).
We turn now to the proof of (6.27).
Fix a function ¢ € C°([0,00), H' (R4, R%)). For a given ng consider

9n(t) = (un(t), () L2(Ra) and g (1) = (Pugun (1), ¥ (1)) L2 (ra).

Then for any € > 0 and any fixed T > 0 there exists ng s.t.

[(Pry — DY)l oo (0,17, 22 (ra)) < €

This and [[un ()| Lo o.7),22(me)) < l[toll L2 (wa) imply

lgn — ggno)HLoo([o,T} < Juoll 2 (ray€.

Furthermore, for any fixed T' > 0 there exists a compact K s.t.
1) | oo (0,17, 22 (R K)) < €
Then, if we set gﬁf“”K) (t) == (Proun(t), ¥(t)) 12k rey We have

Jf ) = gir)

n I zo (0,77 < llwoll 2 (raye.

We claim that
P, un — Ppoou in CO([0,T), L2(K,RY)). (6.34)

Indeed, by Claim 6.14, and by a diagonal argument, we know that there exists a v s.t.
P, u, — v in C°([0,7], L?(K,R%)) for any T and K. It is easy to conclude that v €
L%([0,T] x RY,RY) and that P, u, — v therein. On the other hand, we know that u, — u
in L2([0,7] x K,R%). This implies that u, — wu in L?([0,T] x R4 RY). Since Py, is
continuous as an operator from L2([0,T] x R? R?) into itself, is continuous for the weak
topology. This implies P, u, — Ppouin L2([0, T] xR, R?). But then this implies v = P, u
in L2([0,T] x K,R%), and so we get (6.34).

In turn, (6.34) implies

[955} = (Pgtun (8), (D) 2010y "= (Prgu(0), 9(8)) 1) in CO(10,77).
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But then also
[{un(t), V(1)) 2(may — (u(t), ¥ (1)) L2 (me | oo 0,17

< [(Proun(t), ¥ (1)) L2(x) — (Prou(t), (1)) L2 (i) | o= (0,17 + 2l[woll 2 (raye
+ [[{u(t), (1 = Py )00(t ))L? rey [l zoo (o, + Iu(®), (1= Xk )Y (#)) 2ray | Lo (0,17 <
< [(Proun(t), ¥()) L2(x) — (Prou(t), (1)) L2 (i) | L= (0,17 + 4llwoll 2 (raye

Since e is arbitrarily small, it follows that we obtain that g, converges to (u(t), ¥ (t)) 12(rd r4)
in L>=([0,T]), and hence in C°([0,T]). In particular we have shown that u € C°([0, o0), L2 (R?, R?)).
The proof of Proposition 6.10 is completed. O

We will now show that div,u(t) = 0 for all t. Notice that we knew already that

lim (un(t,z) — u(t,z)) - ®(t,z)dtdz = 0 for all ® € L3([0,T] x R% RY).

=00 J[0,T] x R4

For ®(t,z) = x(t)V¢(z) we have from the above limit
/[0 . dtx(t) /Rd divyu(t, 2)¢(z)dz = 0 for all ¢ € C°(R%, R) and any x € C*°([0,T],R),
This implies that
/Rd divyu(t, )y (x)dz = 0 for a.e. t.

In fact, u € C°(]0, ), L2 (R4, R?)) proves that the integral on the Lh.s. is continuous in ¢.
This integral equals 0 for all t, and not just for a.a. t. It follows that div,u (¢, x) = 0 for all
t.

We now prove that u satisfies the energy inequality (6.7).

Notice also that, up to a subsequence, uy,(t, ) noeo, u(t, z) for almost any (t,z), see p.

94 [2], and Vu, — Vu as n — +oo in L2((0,T) x R% R? x RY). We claim that, since we

assume we have extracted a subsequence, so that u,(t,x) Do, u(t, ) for almost any

(t,z) € Ry x RY, this implies that for almost any ¢ we have u,(t, ) DZHO u(t, z) for ae.

x. Indeed, if this was not the case, setting w(t, ) := lim sup,, |uy (t, ) —u(t, )|, there would
exist J C Ry with measure |J| > 0 and with [, w(t,2)dz > 0 for ¢ € J, which would imply
fR+de w(t, z)dtde > 0, and so w > 0 on a subset of R, x R? of positive measure. But we

know that w = 0 a.e. in Ry x R? and this proves our claim.
Then the energy inequality (6.6) for all w,, implies by Fatou

t
()22 gy + 2 /0 IVt gyt (6.7)

t
< timinf (032 +2imint | [V () 2

t
< timinf (1 Ol + 21 | IFun) [t ) < ol
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where here for the 1st term in the 1.h.s. we apply the classical Fatou theorem for a sequence
of integrable functions converging pointwise to a function, see [2, Lemma 4.1], while for the
2nd term in the L.h.s. we apply claim (iii) Proposition 3.5 [2].

6.2.1 End of the proof of Leray’s Theorem 6.3

Proposition 6.10 has provided us with a divergence free function
u € L2([0, 00), L* (R, R") N L*([0, 00), H' (R, R)) N C°([0, 00), Ly, (R, RY))

which satisfies the energy inequality

t
Hu(t)H%%Rd) + 2/0 HVU@/)H%z(Rd)dt/ < H“0|’%2(Rd)- (6.7)

To finish with the proof and show that w is a weak solution of the NS equation, we need to
prove
t t
lim (Un, Pe, * Up - VI = / (u,u - VO)dt'. (6.28)
0

n——+oo 0

We observe that, since ¥ € C1([0,00), H!(R? R?)), for any £ > 0 there is a compact set
K CR?st.

sup [[VU(s, )| L2(ra\ k) < € (6.35)
s€[0,7T

(6.35) is elementary to prove and it is assumed in the sequel.
By Hoélder, (6.35), Gagliardo—Nirenberg and the energy equality (6.6) we have

t T
\/ ds/ Pe, * Un (8, ) @ up(s,z) : VU(s, z)dx| < / ds||pe, * tun @ unlL2ray | VPU(8) | L2(Ra\ )
RA\ K 0

< T Hpsn * Up QU n||LE(0T] LQ(Rd HV‘I’HLOO ([0, L?(Rd\K))

< <7 HHunHL4 RY) | 4 eSeT T HHunHLz Rd) L2(R4) I Ld(0,T)

LE(O T -~
< 8T ||un||L(oo [0 )T] L2(Rd))||vun||L2([0 T} LQ(Rd)) < 5T%HUOH%2(Rd)'

Hence, to prove (6.28) it is enough to show for any compact set K C R?

t
lim ds/ Pen, * Un(8,2) @ up(s,x) : VPU(s, x)dx
K

n—o0 0

. (6.36)
= / ds/ u(s, ) @ u(s,z) : VPU(s, z)dz.
0 K

The limit (6.36) is a consequence of

lim pe, * U @ uy = u @ u in L*([0,T), L*(K))
n—oo
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which in turn is a consequence of

lim u, = u in L*([0,T], L*(K)). (6.37)

n—oo

To prove (6.37), we consider Y € C°(R%,[0,1]) s.t. x = 1 in K, Q := suppx and with
IV X[l oo (ray < 1. Then by Gagliardo Nirenberg we have

d d d
| Fllzacae) < CEl oy IV F L2y + 17V 2a) ™ < CILF iy | Fll ot ey

1 4—-d d
Using this inequality and Holder inequality with 3= "5 + 3

)

d

Ju — un”Lz([O,T],L‘l(K)) S ffwe = UnHLz HU unHHl(Rd HL? (0,T)
_ 171 _ 4

<[l u””Lz(Q)”Lﬁ(O’T)HHu un”Hl(Rd)HL%(O,T)

_ 14 4
= HU - un||L2([07T],L2(Q))||u - un||L2([O,T},H1(Rd))

n—-+0o00

d 1—4
< 21+ VT)Juoll o (e ray) # lu — unll 2 o1, 12(0)) — 0

where the limit holds because u, “——% v in L2(]0,T], L*(Q2,R%)), by Proposition 6.10.
This yields (6.37) and so also (6.36).
This completes the proof of Leray’s Theorem 6.3.

0

Remark 6.17. The solutions we have found do not satisfy only the energy inequality (6.7),
but in fact the more general inequality

lu(®) 122 g gy + 2/ [Vu(t )||L2 R ga2)d dt' < [[u(s)|[72 g gay for any 0 <s <. (6.38)
We will check later that
n—-+oo

for a.a. t we have [lu,(?)|L2rerey — [|ut) || 2 (ra Ra) (6.39)

so that (6.38) is proved in analogy to the proof of (6.7), exploiting the fact that the sequence
U, satisfies

t
()72 et ey +2/ IVtn ()72 o o2y A = Nl ()72 (o . (6.40)

Notice this interesting continuity from the right.

Lemma 6.18. If u(t) is a Leray—Hopf solution for d = 3 then for any s > 0 we have
u(t) b, u(s) in L?(R3,R3).
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Proof. From (6.38) we have limsup [[u(t)| 23y < ||u(s)||2(rsy- On the other hand, since
t—st

+
by weak continuity w(t) 22 u(s), by Fathou’s Lemma we have lim iEf w22 (rs
t—rs

)
[|w(s)||L2(rs)- Hence we have the limit lirrgr [w(®)llL2®sy = llu(s)||L2ws)- This and u(t) togt
t—s

u(s) yield u(t) o, u(s) in L?(R3,R3).
O
The proof of the claim in (6.39) follows from the following lemma.
Lemma 6.19. For any T > 0 and any € > 0 there exists R = R(uo, T, €) such that
/ luc(t, 2)|?de < € for alle € (0,1) and a.a. t € [0,T] (6.41)
lz|=R

where ug is the solution to (6.20).

We remark here that in the above statement the small constant ¢ and the constant
e € (0,1) parameterizing the solutions to (6.20) are distinct.

Proof of claim in (6.39) assuming Lemma 6.19. Fix a T > 0 and consider the
sequence u,, of the proof of Leray’s Theorem. For any € > 0 fix the R of Lemma 6.19. Then
[unll Lo (0,1),2(jo|>r) < € for all n (because R = R(up, T\ €) is independent from &, € (0,1)).
This implies also

1wl oo ((0,7),22(|2)> Ry < Hminf [|un || poo (0,7),22 (> R) < €

by Fathou’s Lemma. On the other hand, we have u, ~—""% u in L?((0,T) x Dga(0, R)).

The latter implies that (extracting a subsequence) uy, (t) 225 w(t) in L*(Dga(0, R)) for

a.a. t € [0,T]. In fact, it is easy to show that there is a set of full measure J C R, such

that (extracting a subsequence) w, () Do, u(t) in L?(K) for any compact K cC R

This coupled with ”un||L°°((O,T),L2(|a:|2R) < € and Hu||Loo((07T)7L2(|I|ZR) < € yields (639) for
all the t € J.
O
Proof of Lemma 6.19. We start from equation (6.19). Recalling P = 1 — iniv,
(2.11), we can write, summing on repeated indexes,

1
—P ((pe * ue) - Vue) = —(pe * ue) - Vue + ZVdiV ((pg * uf)@kug)

1 A
= —(pe ¥ ue) - Vue + 2V (‘93'(/)5 * U’;)@kuﬁ)

9;0, ;
= —(pe xue) - Vue — V —JA (pE *uf)ug)

= —(pe *u:) - Vue — VR;Ry, (p‘E * uf)uj> where R; = i are the Riesz transforms.

3 m
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So we can write (6.19) as

{us—Au5+pg*u5-Vu5+Vpg =0
ue(0) = ug

where p. = R;R; (p(E * uf_:ug) .
Let us consider now for 0 < r; <r

0 for |z| <m

o(z) == ll=r for ) < lz| <7

T—T1

1 for |z| > r.

Then, applying (-, ous) to the equation, we obtain

1d

—— olu.|? +/ o|Vu.|*> = —/ s ou? Dyl ul —i—/ |ue |2 pe * e - Vg—i—/ Pette - V0.
2dt Jps R3 R3 R3 R3

Integrating between (0,t) we have
1 2 1 2 ! 2
5 oluc(t)|” < 5 0l pe * uo|” + (’VUEI el + [ue|” |pe * ue| + [pe] ’USD Vol
2 R3 2 R3 0 R3

1 1 t
<o [l [Vl e ul? (ol + Do )
|z|>r1 0 JR3

r—1r1
and so also

1 1 1 ¢
5[ P < [ s [ (9 el e o + o] )
|| >r |z|>r1 r—=T1Jo JRr3

For the nonlinear term, we have
[[Vue| |uel + ]u5|2 |pe * ue| + || |Ua|||L1((0,t),L}E)
< (HVUSHLl((O,t),Li) + HUaH%Z((o,t),Lg) + HpSHLl((O,t),Lg)) [[we ll oo ((0,0),22)-
We have [|pellz1((0,0),22) < 03”“5”%2((0,@,%)' Now we bound
lluell oo (0,0),22) < lluollrz
Vel Ligo.0.22) < VEIVuellz2or.r2) < VEluollzz

and, by Gagliardo Nirenberg,

1/4 3/4 1/2 3/2
el 20.0,00) S Maell s 190155 120,y < Tuaell 2 oy 1) 170 N2 0022

3/2
< Juolli (VelVuelzzon i2)) " < Viluolzz.
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So, for a dimensional constant C3, we have
Cs \/7E+ %
/ e (1)]2 < / pewunf? + BTV (1 gl 2) for all & € (0,1).
|z|>r |lz|>r1 r—n ‘

Now we fix € > 0 and, keeping in mind that ¢ € [0, 7] and € € (0, 1), we pick r; such that

2
[ oerubs [ k<
|z|>r1 lz|>r1—1 2

and subsequently we pick r such that

03(\/T+ é/T) €2

2
1 —.
ol (1+ fluollzz) < 5

Then we obtain R = r(ug, T, €) such that (6.41) is true.

7 Initial datum in V(R?)
Theorem 7.1 (Local existence of regular solutions 3d). There exists a constant co > 0
such that for ug € V(R3) :== H*(R3,R3) N H(R?) there exists a T > COHVu0||Z§l s.t. one of

the Leray’s solutions satisfies u € L>([0,T],V) and V?u € L*([0,T], L?).
Furthermore, this solution u satisfies the energy equality

t
Hu(t)H%Q(Rd) + 2/ HVu(t’)H%Q(Rd)dt’ = Hu(s)H%Q(Rd) forany 0 <s<t<T. (7.1)

Proof. We consider the solution u obtained from the limit of the sequence wu,, defined by
(6.19), and which we can write as

Un + P ((pe, * un) - Vup) — Dup =0, u,(0) = pe, * up. (7.2)
Applying (-, —Au,) we obtain
. d
2 1%\\VunH%2 + [ Aun|2 = ((pen * tn) - Vn, Dtg) < ||(pe, * n) - V|| 2| Atun|| 2

3 3 1
< | oo [ Vtn || 2| Atn| 12 < e[ Vun | 22| Aual 72 < Cl[Vunlfs + 5”Aun”%27 (7.3)

1 1
where we used Agmon’s inequality [|uy|| e g3y < HVunHzQ(Rg)\|V2un|]22(R3), see (2.40), and

Young’s inequality ab < % + %)\%b%, where we choose A so that %)\é = 1/2. We obtain

d
ZIVunllie + [ Aunlze < ClVunlze.
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From this we derive
d 2 6 . 2 2 2
%HVUTLHLZ < C[|Vup g2 with [[Vun(0)[[72 = [[pe, * Vuolzz < [Vuol 72 (7.4)

Let us consider the ODE

d
X = CX? with X:(0) = || Vug|72.
The equation is separable, so the general solution is obtained writing % = (Cdt and inte-

grating separately, so that

1 1 X(0) [Vuol|3 2
-t ==C0t= X(t) = = .
2X2 ' 2X2(0) V1 —20tX2%(0) \/1 — 20| Vg4,
We claim
[Vun(t)]|22 < X(t) for any n € N and for any 0 < ¢ < (20| Vugl[72) " (7.5)

Now, we have

d
p (IVun|72 — X) <A ([|[Vuall32 — X) with X := C (X? + X||Vu, |72 + || Vun| 12)

Integrating, and using ||Vu,(0)]|7. — X (0) < 0, we obtain
t
IV (8)]22 — X (8) < / A ([ Vul22 — X) di’
0

for any 0 < ¢ < (2C||Vugl|72)~". But then, we can apply Gronwall’s Lemma 2.26 (here the
function A satisfies the hypotheses in Lemma 2.26) and conclude that the claim in (7.5) is
true.

So there exists a T like in the statement s.t.

t

||un(t)||§{1 +/0 ||un(t/)H?12dt/ < CT,||uo||H1 for t € [0,T7. (7.6)
Recall that we had u, convergent to u in various ways. By Banach—Alaoglu there exists
a subsequence which is *—weakly convergent in L>([0,T], H') and is weakly convergent in

L?([0,T], H?). This and various forms of Fathou lemma, see in [2] Proposition 3.5 for the
weak topology and Proposition 3.13 for the x—weak topology, implies that

t
)2 + /0 () 122’ < Coju,, for ¢ € [0,7) (7.7)
We turn to the proof of the energy identity (7.1). We first claim that

div(u ® u), dyu € L*((0,T), L?). (7.8)
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Let us assume this claim. Next, we claim that
T
/ (Opu — Au + div(u ® u),w) dt = 0 for all w € L*((0,T), H). (7.9)
0

Let us assume also (7.9). Then apply (7.9) for w = x[,4u. Then we get

t
/ (B, u) + [[Vul2) de’ = 0

where we use (div(u ® u),u) = 0, from (6.13). Next, we can apply Lemma 6.7 and conclude
that [|u(?)]|2. € AC([0,T]) with %Hu(t)”%2 = 2 (u(t),u(t)). This yields (7.1).
Let us now prove (7.8). We have

[div(u @ u)|lz2(0,7),22) S MIVull2llullzellrz0,r) < Nl oo o), mm) [l L2(0,7),250)

S Ml poe o), 51 lull 20,7y, m2) < 00
using Sobolev’s embedding H2(R3) — L°°(R3) and (7.7). Next, we apply (6.4) for ¥(t,z) =
#(r) € C2(R3,R?) and obtain

(u(t), ) — (u(0), ) = / (W Du(t'), 6)) — (Pdiviu @ u)(t'), 6)) dt.

This extends to any ¢ € L?(R?,R?). Then we can apply Lemma A.30 3 for X = L?(R3 R?),
concluding the following, which completes the proof of (7.8):

du = Au — Pdiv(u @ u) in D'((0,T), L?). (7.10)

We turn to the proof of (7.9). There exists a sequence of test functions ¥, — w in
L%((0,T), H), which satisfy

T
(u(T), ¥ (T)) — (uo, ¥n(0)) = /O ((Du(t'), Ta(t)) + (u(t'), 0 ¥a(t))
—(div(u @ u)(t'), U, (t'))) dt’.

Integration by parts, which can be proved like in [2, Corollary 8.10], yields

T T
(w(T), Up(T)) — (ug, U (0)) — /0 (u(t), 0, () dt = — /0 (Byu, U,,) dt’,

3Recall that Lemma A.30 states that if u,g € L*(I, X) are such that

u(t2), f) e — (), F e xe = / " (9(5), £) o ds for amy € X",

with X a Banach space, then d;u = g in D'(I, X).
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so that we obtain
T
/ (Opu — ANu+div(u @ u), ¥,) dt’ =0
0

and for n — oo we obtain (7.9).
O

Theorem 7.2 (Uniqueness of weak solutions). Let ug € V(R3) and let u € L>([0,T],V)
and V?u € L?([0,T], L?) be a solution discussed in the proof of Theorem 7.1. Consider also
a weak solution v with initial datum ug and satisfying the energy inequality (6.7). Then
u=wv in [0,T].

/

Furthermore, we have ||[Vu(t)| 2 SZENN if the lifespan T* = sup{T s.t. u €
L>([0,T],V)} is T < 0.
Finally, there exists a constant g > 0 s.t. if

IVuoll 2 [luoll L2 < o (7.11)

then the statements in Theorem 7.1 and here are valid for any T > 0.

Proof. From (7.9) we have

/0 (B 0) + (', Vo) + (div(u © ), o)) df = 0.
We claim now that we can treat u as a test function for v, so that
/Ot ((Vv, Vu) — (v, 0pu) + (div(v @ v),u)) dt’ = Hu0||%2 — (v(t),u(t)), (7.12)
so that adding the two equations we have
/Ot (2(Vv, Vu) + (div(u ® u),v) + (div(v @ v),u)) dt’ = ||u0||%2 — (v(t),u(t)). (7.13)

Let us assume (7.12) and let us continue the proof.
Set w = v — u and substitute in the identities

2V, Vu) = | Vul7z + [Vol72 — [VwllZ: ,
(wt), u(t)) =27 Ju®) 72 + 27 [v(®) 7> — 27w (B,

which are the same as the expansion (a — b)? = a® + b? — 2ab, and

(div(u ® u),v) + (div(v ® v),u) = (div(w ® w),u),
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which follows from

(W1 9;0F uPy + (W 9, vF) = (11 9;0F WPy — (W 908 uF) = (wiBuF uP)

= (W 9;wP, u*) + (W Bjuf uFy = (W 9wk W) = (div(w @ w),u).

Then rearranging, we obtain the equality
2—1‘|w(t)H%2 + /Ot (||Vw||2 — {(div(w ® w),u)) dv
=2 @l + [ 9P -2 ol (7.14)
2 O+ [ 190 =2 ol <0, (7.15)

where the inequality follows from the Energy identity (7.1) and the Energy inequality (6.7).
Then

t t
s +2 [ IVlPar <2 [ (divtw @ w).u)a

t t t
S?AHMMﬂquthMﬂSAHM%MwﬁM5+Avaﬁﬂﬂ

Absorbing, as usual, the very last term in the 2nd term of the Lh.s., we obtain

t
nmw;sénw@wﬁM/

which, by Gronwall inequality, yields |lw(t)||Z, = 0.
Next, suppose the T* in the statement of the lemma is T* < oco. If there is no blow up, there
exists C' > 0 and a t' < T* with [|[Vu(t)||7. < C and T* — ¢’ < ¢o/C (that because there

are a C, a sequence ty, % T with [Vu(tn)||72 < C). In particular, for v a solution

as of Theorem 7.1 with initial value v(t') = w(t'), we have v € L*((¢',t' 4+ ¢o/C), V).
But by the uniqueness v = w in [t/,T%), so u extends into a solution in u € L*([0,t +
co/C), V), u € L*([0,# + co/C), H?), yielding a contradiction. Therefore, we must have

V()] 2 L 00 if T* < oo

We now need to address formula (7.12). We have u € H'((0,t), L?) for t € (0,T), see
(7.8), u € L>=((0,t), H') and u € L?((0,t), H?), see (7.7), and we can consider a sequence
of test functions ¥,, “=>%  in all these spaces. Starting from

/0 ((Vo,V¥,,) — (v,0,9,,) + (div(v @ v), U,,)) dt’ = (ug, ¥,(0)) — (v(t), ¥, (t)),
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for n 7 oo it is easy to see that all the terms linear in v converge to the corresponding ones
in (7.12). Also the nonlinear term converges, as a consequence of

t t
/ (div(v @ v), Uy — u) 2t < o/ 190l 2 [0l 2@ — ] oot
0 0
< ClIVollzo), 22y 10l oo 0,0),22) ¥ — wll £2((0,0), 52)

by Sobolev’s embedding H?(R3) < L®(R3).
We finally turn to the proof of the last statement of the theorem, that is the global
regularity for small initial data, that is 7" = co. From (7.9) we obtain for any T € (0,7)

T
/ (Opu — Au+ div(u @ u), —Au) dt =0
0
that is
T
/0 ((8:Vu, V) + [[ a2 — (div(w® ), Au)) dt = 0

Now, notice that Vu € L?([0,T], H') and 0,Vu € L?*([0,T], H~'). Then we can apply
Lemma 6.7 obtaining that | Vu||7, € AC([0,T]) with %HVuH%Q = 2(0;Vu, Vu). Proceeding

8
as in (7.3), adjusting Young’s inequality ab < % + 7%7 and using interpolation to get the

last line, we have

d . 3 3 1 3
g\lvulliz + 2| A7 = 2 (div(u @ u), Au) < ¢ Vul |2, [ Aul 2y = ol Vul| 2|V 2 ]| Aul| 2

1 7
< cllullz2 | Vull 2| Aullf2 < CllullZalIVul 72 + [[Aulgs

< Cillullz2 | Vull 2 ([ Aull7e + | Au] 7,
so that

d
S IVulliz < l1Auli: (Cullullz: [ Vulzz - 1) -

Since from (7.1) we have %HuH%Q = —2||Vul|3,, |lul| 12 is decreasing. We have, using Leinbitz
rule for products of AC functions, see Corollary 8.10 [2],

d

7 (lullZ21VulZ2) < flulfzllAulgs (Cllullz[IVullze — 1) = 20|Vl 7.

If [Jul| ]| Vul|fs < C; ' then [ull?2][Vul|3, is strictly decreasing in any interval [0, T] with
T € (0,7%), and so also in [0,7%). Then

d
—IVulLz +1Aul72 < Culluolz: [ Vuoll 2l Aullzz < gl Aullz:
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so that, if e < 1/2, we get
d 9 1 9 . "
@HVUHLQ + gHAU”H <0in [0,T7)
and so also

1/t : *
IVt + 5 [ I8uladt < Vol in 0.77)

This obviously contradicts the blow up [|Vu(t)|| 2 YT o i T < 00, and hence Tx = co.
This completes the proof of the global existence of small solutions.
O

Theorem 7.3 (Global existence of regular solutions 2d). For anyug € V(R?)(= H'(R%, R?)N
H(R?) we have u € L>([0,T],V) and V?u € L*([0,T], L?) for all T > 0.

Proof. The fact that locally for some T > 0 we have u € L*([0,T],V) and V?u €

L?([0,T),L?) and that we have ||[Vu(t)| 2 7T, o0 whenever the lifespan T* = sup{T

st. uw e L*([0,T],V)} is T* < oo, can be proved as above and is skipped here. So we need
to prove T = oo by showing there cannot be finite time blow up. Now we consider

d :
IVuliz + 21 Aulle = 2(div(u ® u), Au) S Jlullga || Vel al| Aull 2
1 1
S lull 3 IVl 1Aullze < (lull 2 Vullz2) 2 (Ve 2l V2ull2) 2 (| Al 2

1 3
S Jull 72 1 Vull ll Aul 22 < Cllullf2 | Vall7z + 14wl

Ol

4
where we used Young’s inequality ab < % + % adjusting A\. By absorbing the last term

in the 2nd term of the L.h.s. we obtain
d 2 2 2 2 2 2 2 2 ¢ 2
2 IVule +[18ulze < evllullzaAVullz:[Vulzz < Cllullz:[Vulz. (HVuHm +/O HAU(S)\deS> :
From Gronwall’s inequality we obtain
t 2 oo 2
IVull2s + / |Au(s)|Zads < e M iewoin IVt g 12,
0

which yields the desired result.
O

Theorem 7.4 (Higher spacial regularity). Let u € L>([0,T],V) with V*u € L*([0,T], L?)
be a solution like in Theorem 7.1 or Theorem 7.3. Suppose that ug € V N H™(R?) with
m > 2. Then u € L=([0,T], H™"(R?)) and v € L*([0,T], H™T1(R?)).
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Proof. We can go back to the framework of Theorem 7.1 with the sequence of regulariza-
tions. We claim that we can generalize (7.6) into

t
[ wn (8) |57 +/0 twr () || grrsadt’ < Cr T juo | 0 [0, 7] for all 1 < k < m. (7.16)

We have already case k = 1. Suppose 2 < k < m and we have case k—1. We apply (-, un) gx
to

Up + P ((pe, *un) - Vuy) — Duy =0 un(0) = pe,, * up. (7.2)
and obtain
. d
2 1%”“71”1{’@ + HV’uanqk = ((pe,, * un) - Vy, up) g < [ (Pen * wn) - V|| e [ un| g
1 4 1 2
< Munll g IV unll e llunll g < 5llunllze + 51V unl,

where we used the fact that, since k > d/2 for d = 2, 3, H* is an algebra. So

4
dt

From this and Gronwall we obtain

[unll iz + 1 Vunl 7 < unll e llun 7

t ¢ 2 d .
et ()] 7 + / IVl Zpeds < efo 14 ug |12, < Gy gy in [0,71,
0

where, in the exponent, is uniformly bounded in n for ¢ € [0,7] because of (7.16) with k
replaced by k — 1.

Recall, now, that we had u,, convergent to u in various ways. We can take a subsequence,
which by Banach—Alaoglu is *weakly convergent in L ([0, T], H*) and is weakly convergent
in L2([0,T], H**1). This implies that

t
[u(t)||5 +/0 Ju(®)|[e+1dt” < Chrjugl,,y, i [0,T] for all 1 < k < m. (7.17)

O

Corollary 7.5. Let u € L*([0,T],V) with V*u € L?([0,T), L?) be a solution like in Theo-
rem 7.1 or Theorem 7.3. Then, for any m we have u € C>((0,T], H™(R?)).

Proof. We have seen in Theorem 7.1 that u solves distributionally the NS equation, see
(7.10) and that du € L2((0,T),L?), see (7.8), and we know u € L?([0,T],H?). Ob-
viously w € H'((0,T),L*) n L*([0,T), H?) is equivalent to (v/=A)u € L*([0,T],H') N
H'([0,T],H"). The latter, by Lemma 6.7, implies (y/=A)u € C°([0,T], L?). Equivalent
conclusion is u € CY([0,T], H'). Then,

for any t, € (0,T), u is the unique solution in L>(([t,, T],V) N L*([t,, T], H?)
of NS with initial values u(t,). (7.18)
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Now, for any € > 0 there exists a to € (0,¢) s.t. u(tz) € H? and applying (7.18) and
Theorem 7.4, we conclude u € L>®([to, T], H*(R?)) and u € L?([ts, T], H*(R?)). So there
exists t3 € (to,€) s.t. u(t3) € H3, and proceeding by induction we get that for any n there
exists t, € (0,¢€) s.t. u(t,) € H", so that u € L>®([t,, T], H*(RY)) N L?([t,, T], H" 1 (R)).
Recalling dyu = Au — Pdiv(u ® u) in D'((0,T), L?), from u € L>®([tm2, T], H"T2(RY))
we derive du € L®([tmro, T], H™) and so u € CO([tymra,T], H™). So we conclude u €
C%([e, T], H™) for any m and, by the arbitrariness of € > 0, u € C°((0,T], H™) for any m.
Notice that this implies du = Au — Pdiv(u ® u) in C°((0,T], H™) for any m. In other
words u € C*((0,T], H™) for any m. It is easy to conclude, proceeding by induction, that
we have u € C*°((0,T], H™) and that for all j

7j—1 .

. . —1 L

Ofu=00""u-PY <9 B )div(afu@@ag =R,
k=0

O

Notice that the proof of Lemma 7.4 [14] is incomplete, because it is based on the last

displayed formula of p. 152 [14], where the uniformity in n is left untreated both in the text
and in the exercises, and seems non trivial.

7.1 Structure of the singular set
We consider a digression on the singular set of Leray—Hopf solutions in d = 3.

Lemma 7.6 (Compactness of Singular Set). Given a Leray—Hopf solution u there exists a
T. > 0 such that u € C((Ty, +00) x R3 R3).

Proof. Since u € L®(Ry,L?) and Vu € L?*(R,,L?), we known that there is a T* > 0
st IVu(T)| 2 l|lu(T*)|lr2 < &, with e > 0 the constant in (7.11). From Remark 6.2
we know that u is a weak solution of the NS in [T, 00) with initial value u(T™) € V.
By the smalleness condition (7.11) in Theorem 7.1 we know that there exists a solution
v € L®([T*,00),V) and V*v € L?([T*,00),L?) of the NS with initial value u(T*) € V.
Notice that, as a Leray—Hopf solution, see Remark 6.17, in particular u satisfies the energy
inequality

t
()2 ey + 2/ V)2 gyt < ()2 gy for any T+ < t.

*

By the Uniqueness theorem of weak solutions 7.2, we know that v = v in [T, c0). Finally,
from Corollary 7.5 we know u € C*((T%, +o0) x R3, R3).

O]

Definition 7.7. Consider a Leray—Hopf solution u. We say that a time tg > 0 is regular
if there exists a neighborhood I of ¢ in [0,00) with Vu € L>(I,L?). If ¢, is not regular,
it is called singular. We denote by R the set of regular times, and by 7T the set of singular
times.
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It is quite obvious that R is open in [0, 00), and hence that T is closed. From Lemma
7.6 we know that 7 is compact.

In this section we consider two simple results about 7, one about box—counting dimen-
sion and the other about Hausdorff measure.

Let us start with the box—counting dimension.

Definition 7.8. Consider a compact subspace X of R% and for any € > 0 denote by N (X,€)
the smallest number of open balls of radius € needed to cover X. Then the (upper) box—
counting dimension of X is

log N(X
dimys(X) = limsup (~ log, N(X, ¢)) = lim sup 5N X:€),
e—0+ e—0+ —loge

(7.19)

Lemma 7.9. For a compact subspace X of R we have dimp(X) = dim’z(X), where

log M (X
dim’g (X) := limsup o8\ (X €)
e—0t - IOg €

with M (X, €) the largest number of disjoint open balls of radius € with centers at points of
X.

Proof. First of all, we have M (X, ¢) < N(X,¢) (so that dimp(X) > dim’z(X)). Indeed, let
us consider a family of disjoint balls {D(z;, 6)}].]\/51)(’6), with z; € X. If {D(ys, e)}évz(f(’e) is a
cover of X, it is also a cover of {x1,...,zpr(x,¢)}- It is not possible to have a D(yx, €) which
contains two distinct z; # x;, because this would imply |z; — x| < 2¢ , while we know that
|z; —x;] > 2e. So M(X,e) < N(X,e).

Next, we have M(X,¢e/3) > N(X,¢e). This follows by the proof of Vitali’s lemma,
Theorem 2.15. In fact, given a cover {D(xzj,€/3)} of X, we know that we can extract a
family of of disjoint balls, which we will label as {D(x;,€/3) le, such that {D(z;, e)}f:1
is a cover of X. Then M (X,e¢/3) > L > N(X,¢). So

log M(X,¢/3) . log M(X,¢/3)  —loge/3

dim’p(X) < di X) <l —— =1
mp(X) < dimp(X) < 1eri(s)1+1p —loge lizljp —loge/3 —loge/3 —log3

= dim’z(X).

Ezample 7.10. 1. dimp([0,1]%) = d, dimp([0, 1}/ x {0}¢=9) = j.
2. We have dimp Sy = 157 for Sg = {n"% :n € N}, k > 0, see [14].

3. For C the usual Cantor ternary set, we have dimp(C) = iig;

Lemma 7.11. Let K(e€) be either M(X,€) or N(X,¢€). Then

1. if d" € (0,dimp(X)) there is a sequence €; — 0 s.t. K(e;) > e;dl while
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2. if d’ > dimp(X) there is g > 0 s.t. K(€) < e ¥ for all e € (0,¢p).

Proof. By the properties of limsup there exists a sequence ¢; — 0 s.t. —log, K(ej) —
dimp(X). So, if d’ < dimp(X),we have log. K(e;) < —d', that is K(e;) > e;dl for j > 1.
Let now d” > dimp(X). Then we claim K (e) < ¢~ forall e € (O 60) for an appropriate

€0 > 0. If this is false, there exists a sequence ¢; — 0 s.t.K(¢;) > ¢;* . Then % d".

But then dimp(X) = limsup,_,g+ l(igﬁg(? > liminf; logfﬁ > d" > dimp(X).

O
Now we have the following result.

Proposition 7.12. Given a Leray-Hopf solution w of NS in d = 3, then dimp(T) < 1/2.

Proof. Fix € > 0 and let us consider a family of disjoint 1- dimensional balls { D(t;, e)}]]\/i(r ’E),
with t; € T, with ¢1 < ... <{pz7 ). For ¢p the constant in Theorem 7.1, we claim that

t;—t > col Vu(t)|| 4 for t € ( — e, t;), (7.20)

L2

where we set ||Vu(t)||;2 = oo in the 0 measure set of points ¢ where u(t) € H'. Notice that
for u(t) ¢ H', (7.20) is obviously true. To prove (7.20) observe that if there exists a ¢ for
which (7.20) is false, then we would have t; —t < COHVu(t)HZf, which automatically implies
that |[Vu(t)||z2 < oo and u(t) € H'. But then, by Theorem 7.1, there exists a solution
v € L>®([t,t +T], H') to the NS with v(t) = u(t) and with T > ¢||Vu(t)|| ;5 > t; —¢t. This
means that t; € (t,t + 7). But since u is a Leray-Hopf solution, by Theorem 7.2 we have
w=wvin [t,t+T). But then we get a contradiction to t; € 7.

From (7.20) we obtain ||Vu(t)[|7: > \/@ in (t; — €,t;). For T sufficiently large, such that
o

u is smooth in (7, 00), using the energy inequality

M(T
flaey > 20 [ V00t = 20 Z [ St

tj—e

> 20\/c,, Z / \/ti_dtzélO\/%M(T,e)\/E.

luo |l

So M(T,¢) < 4Vf/2ﬁd) ™2 which, implies
<|I oll7 5 g, 1)
log M (X dvy/eo 1
dimp(7) = limsup log M(X, ¢) < lim =-.
0+ —loge e—0+ —loge 2
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Definition 7.13. Given a subset X C R% set for s > 0 and § > 0

s,5(X) = inf Z (diam (U;))® : {U;}32, is an open cover of X with diam (U;) < § for all j
j=1

Notice that pss(X) is decreasing in §. The we call s-dimensional Hausdorff measure of X
the number

H(X) = lim ps6(X).

The Hausdorff measure of X is
dimp (X) = inf{s > 0: H*(X) = 0}.
Remark 7.14. Notice that s 5(X) = i 5(X) if we set

pg 5(X) = inf Z (diam (U;))® : {U;}32, is an open cover of X
j=1
with diam (U;) < 6 for all j and all the U; are convex} .

Indeed, any open set is contained in an open convex set with the same diameter.

Lemma 7.15. We have dimpg(X) < dimp(X).

Proof. Let d = dimp(X) and s > d. Let s > z > d. Then, by Lemma 7.11 there is ¢g > 0
s.t. N(X,e) < e *forall e € (0,€p). Since we can cover X with N(X,¢) balls of radius €
we have

N(X,e
Z N(X,e)e’ <2sszi>0

= H*(X) = 0. This implies dimpy (X) :=inf{s > 0: H*(X) = 0} < dimp(X).

Lemma 7.16 (Isodiametric Inequality). The Lebesque measure of an open convex set in
R? of diameter D is at most the volume cqD? of the ball of radius D/2 .

See [6, Sect. 2.2]. O
Theorem 7.17. In R?, for £L? the Lebesque measure, L% = cH.

Proof. Here we will only prove L4(K) < cyHY(K) for any K cc R%. Given € > 0, we can

cover K C U72,U; with U; open convex sets and with Z diam (U;)) < HY(K) +e. Then
j=1

K| < Z |U;| < cdz (diam (U;))? < ¢q (Hd( )+ 6). This implies £4(K) < cgHY(K).
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Proposition 7.18. Given a Leray-Hopf solution u of NS in d = 3, then H'/?(T) = 0.

Proof. Since H'(T) = 0, we can cover 7 by a finite or a numerable family of disjoint
intervals {[tg, tx + €x]}ken With > €, < ¢ for any preassigned 6 > 0. Possibly picking e = 0,
we can assume that t; + ¢, € T. Indeed, if [tg,tx + €] N T = () we can discard the interval,
while if 3¢} € [ty, tx+ €] NT, then we can replace [ty t,+ €] with [ty t}]. By the discussion

in Proposition 7.12 we have ||Vu(t)|3, \[f in [t, ty + €]. Then

tr+ek dt

Vul(t dt > = 2./c, €k -
/Uk[wm]r ()2 \FZ e RN

But, by absolute integrability, the L.h.s. can be made smaller than any given ¢ > 0. Then
HY2(T) = 0.
O

7.2 Serrin’s condition
We have the following theorem.
Theorem 7.19. Let u be a solution in d = 3 of the type in Leray’s Theorem 6.3 and suppose

that
2
u € L"((0,T), L*(R?)) where = + 3. 1, withr > 2 and s > 3. (7.21)
ros

Then u € C*((0,T) x R3 R3) and u is in [e,T] for any € € (0,T) also a solution in the
sense of Theorem 7.1. Furthermore, if v is another solution of the type in Leray’s Theorem
6.3 satisfying Serrin’s condition, for possibly different exponents (still with s > 3) in (0,T)
and with the same initial value, we have u=v in [0,T].

Remark 7.20. The case L>((0,T), L3(R3)) is relatively recent, [5], is more complicated to
prove and will not be considered here.

Remark 7.21. Notice that any u like in Leray’s Theorem 6.3, we have

we L7((0,T), L*(RY)) where % + g = g, with r > 2. (7.22)
Notice that of the endpoint cases (r,s) = (00,2) follows from the Energy Inequality and
for d = 3, similarly (r,s) = (2,6) follows from the Energy Inequality and, additionally,
from Sobolev’s Embedding H'(R?) < LS(R3). Notice that in dimension d = 2 the case
(r,5) = (2,00) is true, again from Sobolev’s Embedding H'(R?) < L>(R?).

However, for d = 3 there is a difference between (7.22) and (7.21).

Proof. Let us start by assuming ug € V. Then we know that there exists T* > 0 s.t.
u € L>®([0,T1],V) if T}y € (0,T*) and that u € C*((0,7*) x R3,R3). So for the regularity
part of the lemma, it is enough to show that T° < T%. Suppose the opposite, that is

oo > T > T*. Then, recall that there is the blow up ||Vu(t)|| 2 T
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We have in [0, T*), by (7.9),
d .
ZIVulliz + 21 Aullze = 2(div(u ® u), Au) < cllull s [Vull 2 [ Dullze,

where 1 + -2 4 1 =1 and where s > 3 implies 25 € [2,6). Then, by Hélder’s (we use

s—2 =3 3 s=3 8 s—3  s+3
= = s < S S ’ 1 =
7 5 + 5 and Hf||52f2 < HfHL2 Hf||L6) and Young’s (using 1 9% + 5% )

inequalities and by Sobolev’s immersion H'(R?) < LS(R?), we obtain

» |

s=3 3
cllullps [Vull | 2, [Aullr2 < ellullps[Vull g3 [Vl oll Aull 2

, s—3 5+3 1 s=3 SQTSB s5+3 Si%
< ullp 1Vl Aul s <o (HuHLsuwuLs) +(||AuuLa)
Then we conclude

HVUHLz IIVUHLz +Aullfe < u ||[S,53Hvu||l,2

— dt
which, by Gronwall’s inequality, in [0,7™) yields

2s

s—3
V(B2 < [7u(0) Bae" 5 1N < 700 2, M5 G,

But this contradicts the blow up and shows that T* > T. Hence the regularity u €
C>((0,T] x R3,R?) is proved when ug € V. More generally, if ug ¢ V, we can consider
a sequence t, N\, 0 with u(t,) € V, from this and the uniqueness Theorem 7.2 conclude
u € C®((t,,T] x R3,R3) for all n, and hence also u € C°°((0,T] x R3,R3). The statement
that u in [¢, T'], for any € € (0,7, is also a solution in the sense of Theorem 7.1, has been
assumed implicitly in this proof, but is easily proved using Theorem 7.2.

Next, we turn to the discussion of the uniqueness in the present theorem. So let us
consider a solution v like in the statement. We claim that v can be used as test function
for v and v can be used as a test function of u in the formula (6.4).

Assuming the claim, we have

/ (Vo, V) — (v, 0pu) + (div(v @ v), u)) dt’ = [Jug|F2 — (v(t), u(t)) and

(Vo, V) — (O, u) + (div(u @ u),v)) dt’ = |Jug||32 — (v(t), u(t)).

=]

We can write the above as

; (Vo, Vu) — (v, 0pu) + (div(v @ v), u)) dt’ = [Jug|F2 — (v(t), u(t)) and

((Vv, Vu) + (v, u) + (div(u @ u),v)) dt’ = 0
0
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where in the 2nd equality we have used the fact that u,v € C°((0,T], L?), which follows

+
from the 1st part of the proof, integration by parts with the information that w(t) 1207, i

and v(t) =0, up in L2(R3,R3).Adding the two equations, we obtain the same equation
t
/ (2(Vv, Vu) + (div(u ® u),v) + (div(v @ v),u)) dt’ = |lug||72 — (v(t),u(t)).  (7.13)
0

of the uniqueness Theorem 7.2. Proceeding with the same algebraic manipulations, we
arrive to

t
()% + / (19wl — (diviw  w), u}) d
0
t
= o u(t)| 2 + /O IVul2 = 27 ol 2 (7.23)
t
o o) + /O IVol2 = 27 w22 < 0, (7.24)

where the inequality follows from the fact that both u and v satisfy the Energy Inequality
(6.7), and so the last two lines are both < 0.
Therefore we get for w =v —u

t t
s +2 [ IVulPar <2 [ divtw @ w).ujar

Like above in the proof of this theorem, we bound

2 Vo2

_— 243 " r 2 2 2s
<cllullzslwl s (Vw5 < Ilullzsllwlzz + [[Vwl|z2 where r =

2div(w @ w), u) < cllul|rs Hw||L

Then
2 ! 2
/! !/ / /
lw(®)][z2 < ¢ /0 [w(@) s [lw(E) [ 72dt
implies by Gronwall w(¢) =0 in [0, 7], proving uniqueness.
Now we have to prove the claim that v (and u) can be used as test functions in (6.4).
Suppose that v is a weak solution like in Leray’s Theorem satisfying the Serrin condition

and let u be a weak solution like in Leray’s Theorem. We know that v € C*([¢, T]) for any
€ (0,7). So, for t € (¢, T) we get

/ (u, Opv)dt' = (u(e),v(e)) — (u(t),v(t)) —I—/ (Vu(t'), Vo(t'))dt +/ (div(u ® u), v)dt'.
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Let us consider now the limit ¢ — 0*. We know by the right continuity Lemma 6.18 that
+ +
u(e) =L ug and v(e) =2 g in L2(R3,R3) so that

((u(e), v(e)) = (u(t), v())) = ({uo, v0) — (u(t), v(t))

Next, u,v € L((0,t), H') implies

t + t
/ (Vu(t'), Vot))dt =2 / (Vu(t), Vo(t))dt'.
€ 0

Finally, we show that

t
lim [ (div(u ® u),v)dt’ exists and is finite. (7.25)

e—01 J¢

The above limits are sufficient to prove

/ (u, Op)dt’ = {ug,vo) — (u(t),v(t)) —i—/ (Vu(t'), Vo(t"))dt +/ (div(u ® u),v)dt',
0 0 0

and hence the claim. To prove (7.25) it is sufficient to show that

t
1;:/ (div(u @ ), v)|dt! < oo
0

2s

. !
We bound, using r’ = =5,

/

t 37‘3 st3 , t -, , 3 (S*?)T/ <5+?’)T ,
ISAHWDWMEWWﬁdtSAHWmﬁ+AHWB5|Wprdt

25—6

= t
< ollroanim + Il i, 1) | IVuladt < oo

8 Well posedness in Sobolev spaces

In Sections 8-10 we follow [1]. The theory is mostly due to T.Kato. The approach will be
different and the results will partially overlap with the ones in previous sections. To explain
the approach we go back to equation (6.8) and observe that if Qng(u,u) is a force like the
fin (4.1), we can interpret the solutions of (6.8) as solutions of a linear heat equation (4.1).
More specifically, if we denote by B(u,v) the weak solution of

{@B(u,v) — AB(u,v) = Qns(u,v) (8.1)

B(u,v)|t=0 = 0.
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then, when we are within the scope of the theory of Sect. 4, the solutions of (6.8) can be
rewritten as
u = e“ug + Blu,u). (8.2)

In fact in Sections 8-10, for us the Navier Stokes equation will be equation (8.2). In Sect.
10 we will give an explicit formula to the operator B(u,v). It is an integral operator whose
integral kernel is the so called Oseen kernel. We will try to solve the problem by means
of a fixed point argument. Specifically, we will look for an appropriate Banach space Xr
of functions defined in [0, 7] x R?, for a subspace £ C S'(R%,R?) such that ug € £ implies

T—0t .
e""®ug € X and furthermore ||e”*“ug||x, —— 0, and we will use Lemma 6.9.

In this section we will discuss the case X = X¢ = L*([0, 77, H%(Rd, R%)) and space
of initial data H %_1(Rd,Rd) and use the abstract Lemma 6.9 to prove the following well
posedness result.

Theorem 8.1. For any ug € H%_l(Rd,Rd) there exists a T and a solution of (8.2) with
u € L*([0, 7], H%(Rd,Rd)). This solution is unique. Furthermore we have

we C([0,T], H2 YR, RY), Vu € L2([0, T], H2 1 (R, RY x RY)). (8.3)
Let T, be the lifespan of the solution. Then:

(1) there exists a c s.t.

” OH 5 (Rde) SC:>Tu0 = o903
(2) if Ty < 00 then
Tug
4
dt = oo. 8.4
L Ol s = (3.4)
(3) if Tyy < 00 then
Tug
2 _
/0 | Vu(t )H (g, Rded)dt = 0. (8.5)

Moreover, if u and v are solutions, then

lu(t) - oI, /rVu—v )2,

it (R?,R%) HTl(Rde R4) s
(8.6)
Cfo<u Ot as Hlo@EHI* 4y )dt’
<o —woll? 4_, H 7 (®IRY H 2 (AR
H? (Rd,Rd)

where C' is a fixed constant.

Remark 8.2. Notice that the following transformation preserves the solutions of the Navier
Stokes equation:
u(t,x) = uy (t,x) := u ()\Qt, Az), (8.7)
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Furthermore, notice that the norms of u in the spaces in (8.3) coincide with the analogous
norms of uy in the interval [0,7/)2]. Notice also that the norm of ug(z) in Hgfl(Rd, R9)
coincides with the norm of ug(z/\) in the same space. So the space H 5=lis an example
of space critical for the Navier Stokes equation. One obvious consequence of this is the
following: there exists no function 7'(+) : [0, +00) — (0, +0o0] s.t. Ty, > T(||u0HH%_1) for all
Uy € H %_1

Remark 8.3. While for d = 2 the solutlons provided by Theorem 8.1 are exactly Leray’s so-
lutions, for d = 3 we could have ug € H?= (]R3 R3) with ug & L?(R3,R3). The corresponding
solutions of the Navier Stokes equations provided by Theorem 8.1 are not Leray’s solutions.

Remark 8.4. We will prove in Sect. 10 that the solutions provided by Theorem 8.1 are in
C>®((0,T) x R RY).

Remark 8.5. Notice that the finite lifespan (8.4) is relevant only for d = 3. Furthermore, if
Ty, < 00, it has been shown that

el oo (0,731 £ (5 R3) = O©5

but the proof is a much harder.

We will assume for the moment Theorem 8.1 and prove the following.

9 Proof of Theorem 8.1

This section is devoted to the proof of this theorem. First we have the following lemma.

Lemma 9.1. Let d = 2,3. There exists a constant C > 0 s.t.

1Qns(u, v) [oll a5

< Clul s 3 o

(9.1)

. d
H27?(R4,RY) — (Rd R4)

Proof. If d = 2 we have
2
1Qus (w0l < D7 (105 s+ 11060 ) 1)
jk=1

L
< QZ [ 0?2 < Cllullpallvllps < Cllull ;3 llvll ;3
g,k

. 1
by the Sobolev embedding H%(Rz) C L*(R?) , since 1 = £ — 2. This yields (9.1) for d = 2.
For d=3

|Qs(uv)l, Rs)_z(nakw N (R3)+Hakwkuj)HH_%(Rg))

S (Vo]

P Vel g S (T

U)U”L%(RS L3 (R3)
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: 1

where we are using the Sobolev embedding H %(R?’) C L3(R3) (since % = 3 — 2) which in
turn by duality implies Lg(RS) C Hfé(Rg).

Hence, by 2 $=3 1Ly 3 L and Holder,

s 0l

This yields (9.1) for d = 3. O
A straightforward consequence of Lemma 9.1 is the following for C the constant in
Lemma 9.1.

Lemma 9.2. Let d = 2,3. Then for u,v € L*([0,T], (H%(Rd,Rd)) we have

3) < HVUHLZ(Ri”)HUHLG(R?’) + ||UHL6(R3)HVU”L2(R3) < 2||UHH1(R3)HUHH1(R3)-

1900 -y < Nl a1 952 g ¥ oz 9 oy 92
O
Proof of Theorem 8.1. By Theorem 4.4 we have for s = % —landp=4
1500 gy 15 = W0 gl S @t My
= || Qns(u, )] < Clull, ol ,

r2(o,7),f%-2) = 4(]0,T), Faen 4([0, 11, HT)

So in the Banach space X = L*([0, T7, H?) we have ||B|| < C. Obviously this is the same

as 4C < W Our strategy is to prove

1 1
tA
~ <
le uOHL‘*([O,T],HTd 5 RPTo 4| B]| (94)

where et®ug plays the role of zg in the abstract Lemma 6.9.
If (9.4) happens, that is if the Lh.s.of (9.4) is less than an a < ” 7> then by Lemma 6.9
we can conclude that problem (8.2) admits a unique solution in L*([0,T], H %) with norm

less than 2a < %

We consider two distinct proofs of (9.4). The 1st, simpler, is valid only if HUOHH%* is
sufficiently small and shows that (9.4) holds for all T'. In the second proof, which is general,
we drop the assumption that HUOHH ¢, is small, and we prove (9.4) for T sufficiently small.

Step 1: small initial data. By Theorem 4.4 we have for s = g —landp=4

tA

le" P uol| = llle"®uoll o2 lleor) < lluoll 7 = lluoll 4

L4([0,T17], H ) (95)

s

So, if HUOHH% . < 7= then (9.4) is true for any T > 0. In particular T, = oo and we have
just proved (1) in Theorem 8.1.

Step 2: possibly large initial data. Now we consider the case when uy € H g_l(Rd)
is possibly large. We consider a low-high energy decomposition: up = P,up + X, /=x>,u0
where we pick p = p,, large enough so that

1
”XMZPUOHH%*I < @
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Then by (9.5) we get

lef UOH sty = < et Xy=n>pl OH o %) + e pUOH o %) 056)
1 .
+ e Pyuol ,

80 OT]H )

where we made the high energy contribution small by the choice of p large.
We now exploit the fact that we have the freedom to choose T' small, in order to make the
contribution to (9.6) small too. Indeed we have

= [1€" X[0,0 (/=L )uo

La(o0,, )
1
Sk
2 ol

A oy /=l
= le X[O,p]( A)\/ﬁ \/ﬁ L4([0,T},H%71)
< \fHe X[0,0] (\/7) OHL4 (0B \ﬁ”etAPpuoHM([O LS

2 tA 1 27 & 1
< (P°T)ile Pouoll oz 8-1y < (P T IPsuoll gy < (0°T)¥ uoll g < g5

tA
e Ppuoll Lo, 1T

if we choose T' small enough so that the last inequality holds, that is if we choose T such

that .
1
T< | — , (9.7)
8P2CHUOHH%71

then all terms in the r.h.s. of (9.6) have been made small enough s.t.

1 1

tA
He uOH ([OT] d ) 40 = 4||BH

that is we obtained (9.4).
We have proved the 1st sentence in the statement of Theorem 8.1.
Now we turn to the proof that a solution u € L*([0, 77, H%) satisfies (8.3).
By (9.1) we have Qng(u,u) € L*([0,T], H’_Q). Then it must be remarked that by its
definition B(u,u) is a solution in the sense of Definition 4.1 of the Heat Equation written
above (8.2). Similarly, by Theorem 4.2 also e!®yg is a solution of the homogeneous Heat
Equation with initial value ug. Hence, since u satisfies (8.2), then u is the solution of the
Heat Equation (6.8), where the latter can be framed in terms of the theory in Sect. 4 for
s =% — 1. Then by Theorem 4.2 we have u € CO([O,T],Hg_l) and Vu € LQ([O,T],Hg_l).
This yields (8.3).
We turn now to the proof of (8.6). We consider two solutions u and v, and set w = u — v.
Then
wy — Aw = Qns(w,u +v)
{ w(0) = up — vo
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where we used the symmetry Qng(u,v) = Qns(v,u) and

Ons(u—v,u+v)=Qns(u,u) — Ong(v,v) + Ons(u,v) — Ong(v,u) .

~~

0

By the energy estimate (4.5) for s = % — 1 we have

t t
B = Oy, +2 [ IV gt = ol g, +2 [ (@nstw.u+).)

Claim 9.3. We have
(Qns(a,b),¢) gy < Cllall pasa [Ibl] asallell g -
Proof. Indeed, trading derivatives we have

<QNS(CL, b)? C>H%—1 < HQNS(av b)HH%—QHCHH%

and by (9.1) we have
1Qns(a,b)ll ;4> < Cllall ass[IBI] azs-

This proves Claim 9.3.

Now for N(t) := |lu(t)|| a1+ Hv(t)HH% by Claim 9.3 we have

H
) t
/ / / /
A < ol +2 /O lw(@)l| azs N Veolt)] g,
By the interpolation estimate in Lemma 2.20 we have

1 1
/ / 2 / 2
Il a2 < w7 o IV 4,

This implies
3
NEVwI 4, dt"

d
4 41

aaBNIE

t
2
B < ol +2 [ fut?)]

Using the inequality ab < %a‘l + %b%, which follows by concavity,

1 1
log(ab) = § log(a") + > log(b}) < log <4a4 ; jbé) |

we get

T

the integrand = Hw(t’)H% N(t") 3 % %HVU}@/)Hz %
5 141 4 3 fd

33

AN Ly |12
< @@ ¢ N7 (@) + Vw4,
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Then
A< 2 33 ! t/ 2 N4 t/ dt/ t V t/ 2 dt/
w S ol G [ @I N+ [ e
In other words, by the definition of A,
2 t 2
/ /
g, +2 [ ITu(Ey
2 33 t / 2 4 (41 / t / /
<lhoollgy+ 35 [ eI g N+ [ [Twte? e
so that, if we set
X(1) = )P, l/WwIP dt

we have

33 t
2 7\ 112 AN 341
X(0) < Junll g, + 1 [ Il g N

33 t
< HMOHZ%_l +44/0 X(t)NA(t)at'

So by Gronwall’s inequality

33 t
O g+ [ IV < a0 (35 [ V@0t )

This proves the stability inequality (8.6)
We now consider the blow up criterion (8.4). Suppose that u(t) is a solution in [0,7)
with

T
| IOl st < .
0
Notice that then u € L*([0,T], H 51) and

Cllull?,

||QNS(U,U)|’L2([07T]7H%—2 B a0, f % (9.9)
We claim that we can extend u(¢) beyond T'.

- d-1
Claim 9.4. There exists a 7 > 0 s.t. u extends in a solution in L*([0,T+7), H 2 (R4 R%)).
First of all we set
g(§) »= sup fa(t',¢)|-

0<t'<T

Claim 9.5. We have ]f|%*lg € L2(R%).
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Proof of Claim 9.5. By (4.15) for s = 2 — 1 and by (9.1) we have

1
2 2
d_ _ ~
€12 gl 2 = / I35 2<sup \u(t’,§)> dé
R4 0<t'<t

< lluoll ¢ Py HQNSIIL2 (011542

C 2
< < 00.
HUOH % 1 1 H H a((0,T), H . d )

This proves Claim 9.5.
Proof of Claim 9.4. Claim 9.5 implies

p——+00

[ ie2laode £ o
1€1>p
Thus there exists p > 0 s.t for any preassigned ¢ > 0
/ €972 a(t, €)|2dE < ¢ for all t € 0, T).
[€1>p

Now, recalling the splitting in high and low energies in the proof of the 1st sentence in the
statement of Theorem 8.1, there exists a fixed 7 > 0 s.t. the lifespan of the solution with
initial datum wu(t) is bounded below by 7 independently of ¢ € [0,T"). Indeed there exists a
¢1 > 0 independent from t € [0,T) s.t.

4
1

1
83 Cllu(®l ;-

>c; > 0.

This follows from the fact that
d_
lu()ll g1 < lIE[2 gl 2 < 00
So we can take 7 = ¢;. Then T, > T + 7 and this yields Claim 9.4.
Let us now discuss the blow up criterion (8.5). Suppose that T}, < co and that

Ty
Cia ::/ "IV, dt < . (9.10)
0 Hz

Since we have (8.4) and

LY([0, 7], 2" (RY, RY) € £([0, T], B2~ L(RE,RY) 1 L2([0, T], £% (R, RY))
it follows that since we must have (8.4), then (9.10) implies that

lim fu(#)]]

T—Tu, Leo([o,T), 31 o (9.11)
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For 0 <t <T <T,, we have, by (9.8) and interpolation,

H27!

@I, _1+2/ Va1, gyt = [lult)llo, + /0(Q(U(t')w(t/))vU(t’)%d dt’
<O 4, +Cé/0 [, s [Vt g2

t
<O, g, +Co [l oIV, g,
(9.12)

and so ) )
I gy sy < NI, g, + CaCzlul

But this means that

Lo (0,7, EHE 1)

2,2 2
Leo(0,7), 81 = QCdCL2 + 2\/0 Cro + 4[u(0 )H , <00,

contradicting (9.11). This contradiction proves the blow up criterion (8.5).
The proof of Theorem 8.1 is completed. O
Theorem 8.1 yields also an alternative proof of Leray’s Theorem 6.5 for d = 2.

Corollary 9.6. In the case d = 2, Theorem 8.1 implies Leray’s Theorem 6.5 for d = 2

Proof. By the Leray’s Theorem 6.3 we know that given a divergence free uy € L?(R?, R?)
there are weak solutions in the sense of Leray with u € L>([0,00), L?(R? R?)) and Vu €
L?(]0,00), L?(R2,R*)). Interpolating, for each such a solution we have

1 1 1 1
lull g < el Z2 Vel 22llzs < el oo ol Vel £ e

and so we obtain also u € L*(0, oo),H%(RQ,]RQ)).
By Lemma 9.2 we know that this implies

Ons(u,u) € LQ([O, 0), H_l(R2,R2)).

Notice that the right hand side of (6.8) satisfies the hypothesis of the force term in the
linear heat equation (4.1). As a weak solution of the Navier Stokes equation in the sense
of Definition 6.1, u is then also a solution of the linear heat equation (4.1) in the sense of
Definition 4.1. This means that it is also a solution of (8.2). Since by Theorem 8.1 such
solution is a unique, we conclude that the solution of Leray’s Theorem 6.3 in the case d = 2
is unique. Furthermore by Theorem 8.1 we know also that u € C°([0, 00), L?(R?,R?)).

We now turn to the energy identity. By Leray’s Theorem 6.3 we know that

t
nmm;wunlnwmwamﬁ@mméwy
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We want now to prove that < can be replaced by = in this formula. As we have mentioned
above, u solves in the sense of Definition 4.1 the problem

du — Au = Qng(u,u) with Qng(u,u) € LRy, H 1(R%,R?)),

Then, by Theorem 4.2 for s = 0 the identity (4.5) yields

t
0

t
lu(®)l7 + 2/ IVu(@)|72dt’ = [luol72 + 2/ (Qns(u(t), u(t)), u(t)) p2dt’.
0
By Lemma 6.6 we have the cancelation
<QNS(U7 U), u> = <]P’(d1v(u ® ’LL), ’lL> = <d1V(U ® ’LL), ’lL> = 0.

This completes the proof, by giving the energy identity. O

10 The case of initial data in L3(R?)

It is possible to prove the following theorem.
Theorem 10.1. For any divergence free ug € L3(R3,R3) there is a T > 0 and a unique
solution u € C°([0,T), L3(R3,R3)) of

u = e®ug + Blu,u). (8.2)
Furthermore there exists a €3 > 0 s.t. for |luo|[zs < €3 we have T' = oo. Furthermore, if
ug € H1/2(]R3,]R3), the life span is the same of Theorem 8.1.
Exercise 10.2. Prove that the mapping H'/2(R3, R?) — L3(R3,R?) is not surjective.

Exercise 10.3. Prove that the subspace of divergence free vector fields in HY2(R3, R3) is
closed in H'/2(R3,R?). Prove the same for with H'/2(R3, R?) replaced by L3(R3,R?).

Exercise 10.4. Prove that the Sobolev embedding from the subspace of divergence free
vector fields in H'/?(R?,R3) to the subspace of divergence free vector fields in L?(R3, R?)
is not surjective.

Exercise 10.5. Pick a divergence free ug belonging to L3(R3,R3) but not to H/2(R3, R?).
Show that there exists a sequence of divergence free vector fields {ugn)} in H'/2(R3 R3)
with uén) — up in L3(R3,R3). Show also that |]uén)\|H1/2 — 00.

Exercise 10.6. Show that it is possible to define divergence free sequences {v((]n)} in
HY2(R3 R3) with [[of" || 4172 — o0 and [|v8”|| 5 — 0.

Remark 10.7. For a sequence such as in Exercise 10.6, for n >> 1 the corresponding solutions
of the NS equation are globally defined in time by Theorem 10.13, while Theorem 8.1 is
able to guarantee only on short intervals of time.
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To prove Theorem 10.13 we will apply the abstract Lemma 6.9 in an appropriate
Banach space X. The striking fact though, is that the space X will not be of the form
CY([0,T), L3(R3,R3)). This because if X where this space, then the bilinear form B defined
by (8.1) is known not to be continuous. It turns out that to get the right Banach space X,
has required a certain degree of imagination and insight.

Definition 10.8 (Kato’s Spaces). For p € [d, o0] and T € (0, 00) we set

[SI[oH

(3 () < o0}

(10.1)

Ry(T) = {u € OO TL IV RR) - Jul o= sup ¢
t

)

and for p € [1,d)

d(1_1
K(T) 1= {u € C(0. 7], (B BY) ¢ Julsy i= sup #5(073) Ju)]r < o).
t€(0,77]
(10.2)
We denote by K,(oco) the spaces defined as above, with (0,7 replaced by (0, c0).
We recall that the solution of the heat equation u; — vAu = 0 is e!® f = K, * f where

2|2 22
K(z) := (4lrt)_ge_%. Notice that K (z) = t_%K(t_%x), where K(z) := (4m) " 2e” 1
and where K (¢) = e~ ¢
Notice that for uy € L4(R?) and p > d we have from (1.13),

d(1_1
le"®uo|l Lo (za) < (47775)2(” i) [uoll paray for all p > d, (10.3)
it can be proved that e®uy € C(Ry, LP), and so e®ug € K, (00).
Lemma 10.9. Let ug € LYRY,RY) and p > d. Then
lim ||e!® = 0. 10.4
Him {|e"uol| s, () = 0 (10.4)

Proof. For any € > 0 there exists ¢ € L4(RY, R%) N LP(R? R?) s.t. |ju — @] a < e. Then by
(10.3) we have
( 75)6.

[NJIsH
hSA

lu— Bk, ) < (47T)
Since [|e!2¢||r < ||¢]|Lr, it follows

1 1

d(1_1 d(1_1
"2l i, (r) = sup He ”>H€tA¢HLP < 7 ‘”>H¢HLp 25 0.
te(0,7]
O
Lemma 10.10. Let p, q and r satisfy
1 1
0<-+-<1
p q
1 1 1 1 1 (10.5)

-<-+-<5+-

.

i

Q
S
=



Then the bilinear map B defined in (8.1) maps Kp(T) x Ky (T) — K,(T) and there is a
constant C independent from T s.t.

I1B(w, )|k, 7y < Cllullg, ()l x, (1) (10.6)

To prove Lemma 10.10 we consider for any m = 1, ..., d the problem

(Lin.f)t — ALy f = POy, f
(o o (0
(Lm f is by definition the solution of the above heat equation). Then by (4.7) and (6.10)
for ¢;;i, the constants s.t. Pu’ = Z;l,k:1 cijk§j§k|§\*2ﬂk, we have
Lnfi(t,€) = Y cijn /0 e TIRE el 2R ()t (10.8)

J,k=1

This means, for I'ji, (¢, ) the inverse Fourier transform of e‘t‘5|2§j§k§m\§|_2,

d t
Lofit) = 3 e / Tt — &)  F*() . (10.9)
k=1 0
We claim the following.
Claim 10.11. We have for a fixed C' > 0

Tk (t, )] < O(VE A+ |2]) 7471 (10.10)

Proof. 1t is elementary that I'jp,, (t,z) = f%f‘jkm(t_l/%) with fjkm(:c) = e_|5|2§j§k§m\§|_2.
Then (10.10) is a consequence of

Tk ()| < C(1 + |a]) 4L, (10.11)

It is straightforward that T'jg, € C®(R¥1) N L>®(R4+1), because of the rapid decay to 0
at infinity of e_‘5|2§j§k§m|§|_2. Hence, to prove (10.11) it suffices to consider |z| > 1. For
X0 a smooth cutoff of compact support equal to 1 near 0 and with x1 := 1 — xo, we set

Ljim (@) = (27) 2 /IR L€ x0 () € gl 2
+(2m) 72 /R e (frl6) € rgml e
The 1st term in the r.h.s. is

5/ €] d ~ |24,
|€]< ]|~ T
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We next consider the other term, which we split as

d

(2m) 72 /R e (12l6) xo (€) ¢ Eukinl |2 (10.12)

d

+(2m) /R e () el ggmle] R (10.13)

Notice that the last line is O(|z|~") for any N. Indeed, x1 () e*|5|2§j§kfm\§|72 € S(RY),
and so also its Fourier transform (10.13) is rapidly decreasing.

Let us consider the term in (10.12). Set L := i# - V¢ and notice that Le 6% = ¢~ic,
Then, the term in (10.12) is

d .
n) [ L (v () G 6gnle ) d
Rd
The absolute value of the integrand is for fixed C
S O e e

Here we used that in the support of V¢ (x1 (|z|€)) we have |z]| ~ [¢|~!. So the last integral
is bounded

< Ja] 42 / €74 dE ~ [~ a] = |,
>|€1>]x| 1

This completes the proof of Claim 10.11.
O
Completion of proof of Lemma 10.10. By (10.10) we have by Young’s inequality for
convolutions and Holder’s inequality for the tensor product of u and v the bound (here
7—1+f—7a d i —l+l)

Bl <Y [ [imat =]

7,m.k

< Y [ Irsmate =],

7,m,k

u(t') @ o(t')|| s dt’

) o [lo@)]] o dt

t /_;_¢<;+;_1) /_g(z_l_l) .
S.;/O(t—t) 2 2\p g T (t) 2\d p a/(dt ||u||Kp(t) H’U”Kq(t) (1014)

where in the 3rd line we used

/ d—1 . /—dtl ’x‘ —d-1
IT5m(2 = HL“Rd><H b=t ) HL“(R‘i)_(t_t) 2 |<1+ t—t’>
La(Rd)
_d+1 g _dtl,d 1_;'_%_1_1
S R L (RN NI S sl

T G
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We then conclude

_d(1_1
1B, )|l < O 260 flull g 0] 0 (10.15)
where we used the fact that V «, 8 € (—o0,1) we have
t 1
/ (—t') (')~ dt’ = C(ar, B2 for all £ > 0 and for C(a, B) = / (1—t')=o ()Pt
0 0

(10.16)
and

Notice that in the inequalities in (10.5) we need:

1 1 1
o 5 := — + = < 1 in order for u ® v to belong to the Lebesgue space L5 (RY);
P q
1 1, . .y . .
e 0 < — + — is needed because otherwise in (10.14) we get (¢')”" and the integral is
p g
undefined;
1 1 1
e — < — + — is needed for a > 1;
r p g
1 1 1 1 1 d/1 1 1
e —+— < —+—isneeded toget —— —— [ =+ — — — | > —1 in the exponent of (¢t —t)
p q d r 2 2\p gq r
in (10.14).
O
We have the following fact.
Proposition 10.12. For any p € (d, 0] there exists a constant €, > 0 s.t. if
le"“uol k) < Epv (10.17)

then there exists and is unique u in the ball of center 0 and radius 2e,, in K,(T) which
satisfies (8.2).

Proof. Setting r = ¢ = p, we see that for p > d we have B : K,(T') x K,(T) — K,(T) is
bounded and with norm that admits a finite upper bound independent from T'. The proof
follows then from the abstract Lemma 6.9. 0

Theorem 10.13. For any ug € L4(RY,RY) there is a T > 0 and solution u € C°([0,T), L%(RY,RY))
of (8.2) which is unique. Furthermore there exists a €4 > 0 s.t. for ||ugl|p ¢ < eq we have
T = 0. In the case d = 2, in particular, all solutions are defined for all T > 0.
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Proof. We have e'“ug € K,(T) for any p > d, see (10.3). Furthermore, ||e"®uq|| k(1) =0

0 for p > d by Lemma 10.9. Then we can apply Proposition 10.12 concluding that there
exists a solution u of (8.2) in Koyq(T') for T > 0 small enough. Applying Lemma 10.10 for
p=q=2dand r = d we get B(u,u) € C°([0,T], L%), and so u € C°([0, T], LY).
We assume now that there are two solutions u; and ug in C°([0,T], L%). We already know
the uniqueness for d = 2, so we will focus uniquely on the case d = 3.

Setting u21 = up — u1 and w; = B(uj,uj) we have

{3tU21 — Augy = for
UQl(O) =0

fo1 = 2Q(e'Pug, ua1) + Q(wa, u21) + Q(w1, ug1).

with

By L%(R?’) — H_%(R?’), which is the dual of Sobolev’s Embedding H%(R:S) — L3(R3), we
have

Q)5
Then, by (4.5) and entering the definition of fo;

< HU®UHH*§(R3 < Hu®vHL2 (&) = < lullg3llv]| 3

t t
o (O +2 [ IFumn(@, gt <2 [ (@)@ 4t
t
S4/0 Qe u07u21)HH7%HVUQ1(t)|’H7%dt

t
+ 2/ 1Q(ws, uz1) + Q(wr, ug))ll ;3 I Vuar ()] -y dt'. (10.18)
0

We bound the last line with, for j =1, 2,
t t
2 [ 1@y ua)l g IV ()]3S Tl [ T ()] [V (€)1, -y
t
S sl | 19w )R,y ae. (10.19)
0

where in the last line we used Sobolev’s Embedding H %(R3) — L3(R3).
So, the last line of (10.18) is

¢
< (lwr ]l gy + ||w2||K3(t))/0 HVU21(t,)HZ_%dt,- (10.20)

We split now
ug = u(()l) + u(()Q) with Hu(()l)HLs < € and u(()Q) eLl’nr?

and we bound similarly to (10.19)

t
[ 10 2 4 IV Oy S 1P [ 1900 O,y
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Finally, we bound

t
A (2
e A )l g 1T 1y

t t
< / 1" 2u) @ unl| . 1 || Vuor (¢)]] 1 dt’ < / et 2ul @ ugn || g [|Vugr (¢)]] 1 dt’
0 0 H 2 H 2 0 0 L2 H 2

t t 1 3
2 2 5 5
A P e P e e Py R A A
So we get

t t
1
e (01, +2 [ 190 @)1yt S (ol + ol + 1 M) [ 19 ()12,

3

+
AC3

! N2 ar c! (2) 14 ! 2
| V2O, -y dt+ =g e |-zl -y dr

Taking C large, and t small, so that |lw1 || ) + |wall gy ) + ||u((]1) I3 < 3e with e sufficiently
small, we obtain

t 4 t
C 9
‘|U21(t)||i~[,% ‘1‘/0 ||VU21(75,)H2,%(#/5 o ||u(())||4L6/0 HumHiF%dt’-

Gronwall’s Inequality implies that wugy(¢') = 0 for all ¢’ € [0,¢] with ¢ > 0 sufficiently small.
The above argument shows that the set

{t €[0,T):up =0in [0,¢]} (10.21)

is open (and, obviously, non empty) in [0, T'). On the other hand, since ug; € C°([0,T), L3(R3,R3)),
the set in (10.21) is also closed in [0, 7). Hence, since it is non empty because if contains 0,
it coincides with [0,7).

Next we turn to the global existence for small data. This follows ||e"“ug||k, a(o0) <
Calluo|l La(re) and Proposition 10.12 when Cql|uo|| fa(ra) < €24

O

Remark 10.14. Let ug € H%(]R:)’,R?’). Then it can be proved that if 75 > 0 is the lifespan
of the corresponding solution u € C°([0,T3), L3(R3,R3)) provided by Theorem 10.13 and if
T, > 0 is the lifespan of the solution provided by Theorem 8.1, we have 13 = T,,,. We will
prove the simpler result in Proposition 10.15.

Proposition 10.15. Let ug € H%(R3,R3). There there exists €3, > 0 s.t. for |[uo||p3(r3) <
€3, and if Ty, > 0 is the lifespan of the solution provided by Theorem 8.1, we have T),, = 0.

Proof. Taking ez, > 0 sufficiently small we can assume by Theorem 10.13 that u € C°([0, 00), L?).
In fact, if it is sufficiently small we can prove ||u|| foc((0,00),23) < Colluol| s for a fixed Cp > 0.
Suppose that T3, < co. Then by Theorem 8.1 we have the blow up

T

lim [Vu(t)|? 1 dt = co. (10.22)
T,/Tug Jo H2
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By Theorem 8.1 and by (4.5), for 0 < t < T < T,, we have
2 ! 2 2 !
/ ’ N / / /
Hu(t)||H% +2/0 HVu(t)HH%dt = HUOHH% +2/0 (u(t) Vu(t),u(t))H%dt. (10.23)

By Sobolev’s Embedding H%(R?’, R3) — L3(R3,R3) we obtain
[(u Vi u) | = [ Vo, V) pa] < Jlull o[ Vul|7s < Cllullga| Vull? 4

Then
2 ¢ 2 2 ¢ 2
/ / / /
I +2 [ IOyt < ol + Cllul e [ IV,
t
< ol + CoClluolls [ IFult)IE v

So, for CoCl|ug||zs < 1, we get

t
2 N2 / 2
)y + [ IV, e < ol

which contradicts (10.22).
O
We will prove now the following.

Lemma 10.16. The solutions u € C°([0,T), L*R%, R?)) in Theorem 10.13 are in C>=((0,T) x
R%, RY).

Proof. A proof of this lemma is in [12, Proposition 15.1], but it uses Besov spaces so here
we modify the argument. We know the result already for d = 2, so we consider only d = 3.
We notice that e!“ug € K,(c0) for all r > d and e'“ug € C®((0,T) x R% R?). We already
know that, for S > 0 sufficiently small, we have u € Ks4(5), see the proof of Theorem
10.13. Then, using Lemma 10.10 we conclude that B(u,u) € K,(S) for any r € [d,o0)
(notice % + % < L +1in (10.5), where p = ¢ = 2d in our case). So u € K,(S) for all
r € [d,00). But then, applying again Lemma 10.10, we conclude that u € K, (S) for all
r € [d, 00, and in particular u € L>([to, S], L"(R?)) for any tq € (0,.9) and any r € [d, c0).
Let us fix an r € (2d,00) and let us prove by induction that u € L*([tg, 5], W§7T(Rd)) for
all kK € NU{0}. We have shown this for £ = 0, and let us suppose by induction that it is

true for some k. Then we will show u € L>®([t1, 5], W%’T(Rd)) for any tp < t; < S. We
can write
t
u(t) = ety (1) — / eU=I)APY - (u® u)ds. (10.24)
to
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k+1

We know that e(t=t0)%y(ty) € C=([t1,S], W 2
We write for k£ > 1

T (R%)) for all k, so we focus on the integral.

t t
I(=2)3 / APV (e uds| g, S [ II(=0)72V - IR i)l gy, ds
to

to

t
<Cur [ (t=5) B (e = ) 2) )l g d

to
/ ¢ 3 1" K 3 2
< — )71 < —s5) 4
_Cd7r757k/to(t s) 4|u®u||W§mds_Cd,,,757k/t0(t s) " tllull’ 5 . ds
— 40" t— o)1 ||ul?
arsk(t =)l b gay

where we exploited the Calderon Zygmund theory (for example, Theorem 3 at p. 96 in [18],
and the relation between the constants B and A, in that statement where, from the proof,
A, = Ay(B)). Next, for k =0 we use Holder’s inequality to bound

t t
_3 _3 1
Clrso [ (=) Hlu@ ullirds < gy [ (6= o) ullards < Clsiolt = )l 1,y
0 0
while for k > 1 we use the fact that W2 (R9) is an algebra to bound

t t
/ _3 1 _3 2
_ < _
Car.sk /to (t—s) 4\|U®U|’W§,rd5 < Caprsk /to (t—s) 4||“HW§,rd5

= 4CY o (t —to)3 |Jul)? :
st =)l

Now we use a general result of the theory of semigroups which guarantees that for f €

LY((0,T), X), where X is a Banach space where e!” is a contraction semigroup, then

t

v(t) == —/ =92 f(s)ds
to

satisfies Opv = Av + f(t) in D'((to,T), X), see [3, Proposition 4.1.6 (ii)]. In our case, since

u € L>®([tg, S], WF(R?)) for all k and appropriate r < oo, and f = —PV - (u ® u), we have

v = Av+ f(t) in D'((tg, T), WFT), since ! is a contraction semigroup in any space W""

for r < oo.

Furthermore, the Hille-Yosida—Phillips Theorem, see [3, Theorem 3.1.1], guarantees that

oretPu(to) = Aet®u(tg) in D'((to, T), WF") for all k and our r < oco.

Summing up, we obtain that

du = ANu—PV - (u®u) in D'((0,8), Wk (R?) for all k. (10.25)

Since the r.h.s. isin L ((tg, S), W*" (R9)) for all k, it follows that u € W1H>((tg, S), W (R%))
for all k, which fed again in (10.25) yields u € W2>((to, S), Wk (R%)), by applying Leib-
nitz rule like in Brezis [2, Corollary 8.10]. By induction, proceeding iteratively we get
u € Whe((tg, S), Whr(R?)) for all [ and k, and so the statement.

[
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11 Vorticity

We recall the following.

Lemma 11.1. Suppose that f € S(R?). Then u € S'(R3) satisfies —Au = f if and only if
1

4|z

u=Kx f+h with K(x) := (11.1)

and h(x) a harmonic polynomial.

Proof. Notice that —Ah = 0 requires |§]2ﬁ = 0, that is, supp/fz = {0}. But suppﬁ = {0}
implies 7 = E o<k aq 06, with k the order of U and a, arbitrary constants, see [8, Theorem
2.3.4]. Then h is a degree k harmonic polynomial. R

Next, let us consider the tempered distribution given by v = % f- Recall from Lemma
2.18, that

F( 16 = o 7) €[~
23T (3 +1)
So, for v = 2 and d = 3, using I'(2) = 1 and I'(1/2) = /7, we get F1(|¢|7%) = /3 = T
Recalling also the formula f/*\g = (277)%)?@\, we get

1 m 1 1

TtV E Tt

By linearity, u € S'(R3) satisfies —Au = f exactly if it is like in (11.1).
O
If we consider a field u € S’(R3,R3), then its vorticity is w := V x u.

Lemma 11.2 (Biot-Savart Law). Let u € WYP(R3, R3) with p € (1,3) and with divu = 0.
Then
u=Tw forw=V xu, (11.2)

where

1 T —y

Tw:= — x w(y)dy. (11.3)

4 e |z —yf?

Proof. First of all, for divergent free vector—fields we have the identity —Au =V x w.
Let us now assume w € C2°(R3,R3). Then we claim

1 1
m * jwk = <aj|$|) * Wi . (114)
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Indeed, by applying the divergence theorem, we have

1 1 o
— % djwy = — lim wi(y)0y, ——dy + lim T Y

‘x’ =0t J|z—y|>e v |.CU | =0T J|z—y|=e |$ - y|2

1 1
/Rg KWy, (Jm) )

Still for w € C°(R3,R?), from —Au = V x w, from Lemma 11.1 and (11.4) we have

wi(y)dS

1 1 1 1
— —

1 =z
— h=Tw+h
i ’$|3*wk+ w + h,

_>
— €€k

where the components of h are harmonic polynomials. From the Hardy-Littlewood-Sobolev
1

inequality, we have ||[Twl||pqms) < cl|lw|[zpms) for % =5 - 1, if 1 < p < 3. Since also
u € LI(R3,R3) it follows that also h € L4(R3,R3) which, given that the coordinates of h
are polynomials, implies u = K * (V x w) = Tw in the case w € C°(R3, R3).

Let us consider a general u like in the statement, with w its vorticity.

Let C°(R3 R3) 3 &), —=% w in LP(R3,R3). Then u, = T@, — 0 € LI(R3 R3),
with © = Tw. We need to show that u = w.
Notice that

Vo=V Tuy = V- [(~8) NV x B)] = (~4) 7 [V (V x B)] = (~4) 0 =0.

This implies, in particular, since u, ———> @, we have V - = 0.
Next notice that P, which is a Calderon—Zygmund operator, is a bounded operator inside
LP(R3,R3). Thus, for

T =M + 3P with &M = PG, and 3@ := (1 — P)&,,

we have &5 222 w and @YY 22°% 0 in LP(R3,R3).

Fromun:K*(wan):K*(warg)), we have

— Auyp =V x o,
and for wy, := V X u, and u, = Pu,, = —A"'V X w,,, we also have
— Auy =V X wy,.
Then (:)7(11) = wy, by
) =Pl = — ATV x (Vx o)) = —A7IV x (V x wp) = Pwy, = wy. (11.5)

Hence we have proved that V x u, = @7(11).
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Now we show V x % = w. Indeed this follows from u, ——— @ in LI(R3 R?) and from
V X up = 05 222 w. Hence we conclude that V x u = V x . Using again formula (2.9)

and proceeding like in (11.5), we conclude u = Pu = Pu = w.

Notice that for any u € S'(R3,R3) we have V - w = 0. Indeed N
V- (V x u) = (€;1,0i05)u, = Oug, = 0
by 0;0; = 9;0; and by €;r = —€j;.
As we know, a solution of NS formally satisfies
ur — Au~+u-Vu=—-Vp.
Notice that if u is regular,
(u-Vu=2"1Vu> —ux w, (11.6)
since indeed (u - V)u = €u;dju; , 27 'V|u? = € u;du; and
ux (Vxu)= ?ieijkuj(v X u)p = ?isijkai/j/kujai/uj/ = ?i(éii/@-j/ — 041040 )ujOyr
= ?iujaiuj — ?iujajui.
Summing up, we obtain (11.6).
From (11.6) we obtain
VXx((u-Vu)=-VXx(uxw)=(uVw—(w-Vu, (11.7)

from div v = div w = 0 and

V x (u X w) = ?ie’fijkaj(u X w)k = ?ieijksi/jrk(wjlﬁjui/ + Uy jwj/) (52‘2"5]']" — (5ij/6jif)(wj18juir + uy dej/)

= ?i(wjé?jui + uiﬁjwj) — ?i(wiajuj + ujﬁjwi) = ?iwjajui — ?iujajwi.
Then, applying VX to the NS, we formally obtain
wt—Aw~+ (u-Vw = (w- V)u. (11.8)

If we apply (-, (;5>L% to (11.8) with ¢(t, z) a function in C2°((0, 00) x R3,R3), then, exploiting
Vi -u=V, -w=0, (11.8) implies

/OO ((w, D) + (w, AP) + (w,u - V) — (u,w- V) dt' = 0 for all ¢ € C°((0,00) x R} R3),
0
(11.9)

which is the weak form of the vorticity equation. The above discussion is purely heuristic,
but we have the following.
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Lemma 11.3. Let u be Leray Hopf solution of the NS, in the sense of Definition 6.1, with
u € L®Ry, L?) and Vu € L?(Ry, L?) and consider the vorticity w. Then, the pair (u,w)
satisfies (11.9).

Proof. For ¢ € C2°((0,00) x R3R3) we have V x ¢ € C2((0,00) x R3,R3). So, by (6.4),
we have

/R ({1, AV X 6) — (0, V x ) + (- V)u, V x @) dt’ = 0.

Integrating by parts, we have (u, AV x ¢) = —(w, A¢) and (u, V x 01¢) = —(w, 9y¢). Notice
that the fact u(t) € C°(R3,R3) for a.a. t implies that formulas (11.6)—(11.6) are for a.a. t.
This yields (11.9).

[

Lemma 11.4 (Local Biot-Savart Law). Let B be a bounded open subset of R3, consider a
divergence free vector—field u € LT(B,RE) with Vu € LP(B), where r € [1,00] and 1 < p <
oo. Let Q be an open subset of B with Q0 CC B and with boundary . Then

u(x) = T(xaw) + h(z) for all x € Q, (11.10)
where h is a harmonic vector—field in Q.

Proof. We can start by defining h by formula (11.10). We return to h later. Let us consider

an open ball By in Q, and another ball B CC By C Ba CC €. Then let p € C2°(Q, [0, 1]),
with ¢|p, = xB,. Then we write

u:=TV x (pu) =T (pw) + T (Ve x u)
= T(xaw) + h where h = T((¢ — xo)w) + T(V x u).

Notice that h is harmonic inside B;. Indeed, inside Bo

- vy . oy
Ah:—A/ == xw(y)(e(y) — xa@))dy — —A TY L (Voly) X uly))dy = 0
47 B\Bs |x_y‘3 ( )( ( ) Q( )) A B\Ba |$_y|3 ( ( ) ( ))

by Az 2% = 0 (this follows from Ar—! = (9% + %)ril = 0 for r # 0, and then applying

Tla—yl®
V to this equation), for x # y and by differentiation with respect to a parameter in an
integral. In By we have

VXx(u—u)=VXx(pu—TV x (pu)) =0, (11.11)

where the 1st equality follows from u = ou in Be and from the definition of u, and where
the 2nd equality follows from

P(pu) =TV x P(pu) =TV x (pu) (11.12)
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where for the 1st equality we apply the Biot Savart Law, Lemma 11.2, to P(pu), as we
show now. Indeed we claim u € W1P(R3 R3). Then, for p € (1,3) the Biot Savart Law
Lemma 11.2 applies to P(pu) € WIP(R3 R3). If p > 3, notice that pu € WIP(R3 R3)
is equivalent to gu € WHP(B,R3). The latter implies pu € W1(B,R3) for any a < p,
which again is equivalent to pu € WhH4(R3 R3) for any a < p, and in particular implies
P(pu) € WH(R3,R3) for any 1 < a < p.

Now we need to prove the claim pu € WHP(R3 R3). By u € L"(B,R?) with Vu €
LP(B), if the boundary 0B is smooth, by Poincaré~Wirtinger inequality we have

uu—w|{éummﬂgcmvwmwy

If the boundary OB is not smooth, we can simply replace B by another open domain B’
st. Q cc B' ¢ B’ cC B with 9B’ is smooth. With this we have completed the proof of
(11.12) and of (11.11).

From (11.11) and from the usual identity

Au—u)=V(V:-(u—1) -V x (VX (u-—1u))

we obtain A(u — ) =0 in By. So u —u = hy with h; harmonic in By. So u = @ + hy Thus
we conclude that w = u + hy = T'(xqw) + h with h = h + hy harmonic vector—field in B;.
This implies the statement of the lemma.
L]
Recall that, for € an open subset of R?, the space C*(Q) with o € (0, 1) is the subspace
of CF(Q) N WH°(Q) defined by the functions f satisfying the additional conditions
0" f(x) — 0" f(y)]

sup sup > < 00
|p|=k z#y in Q [z — |

Let Bg a ball of radius R and a fixed center(which we can take to be 0) in R3.
Lemma 11.5. Let u € L*°((0,T), L>(Bgr)). Then, for any R’ < R we have:
1. forB € [2,00] and k € {0,1,...}, w € LA((0,T), Wk (Bg)) = u € LP((0,T), W*>(Br/));

2. fora € (0,1) andk € {0,1,2,...}, w € L5((0,T), C**(Bg)) = u € L?((0,T), C*1(Bg))
for any o € (0, ).

Proof. The proof of the first statement is elementary. We consider only case k£ = 0. We fix
R"” € (R',R). Then, by Lemma 11.4 we have

1 T —y

u(r) = X w(y)dy + h(x) for all x € Brn,

4 Bgrn ’.T - y’3

Since h is harmonic in Bgw, it follows that h € L?((0,T), W™ (Bgn)). Next, for z € Bg
we have

r—y
/ 5 X w(y)dy
Bgn |z —y|

1 1
<[ el s/ L gyl sy = s
/BR,, |z —y[? (Br) yl? (Br)

B2Rl/ (I) ":U -
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The 2nd claim in the statement of Lemma 11.5 is more delicate. It is not restrictive to
consider only k£ = 0. Using the above discussion, we do not need to worry about h. We
consider ¢ € C2°(Bg, [0,1]), with ¢|p,, = 1 in a slightly larger ball than R’. Then is

u(z) = /B ;__5‘3 x w(y)dy = /B I < w(y)e(y)dy +/ T < wl(y) (1 - p(y))dy

_ 3 _ |3
R” R// ‘x y’ BR// ’x y|
and it is elementary to see, that the 2nd integral on the r.h.s. is harmonic in Bg/. We look

then at the 1st integral on the r.h.s. and we absorb ¢ in w, simply assuming w € Cg’a(BR)
and let us consider

v(z) = /R TTY w(y)dy.

s |z —y[?

We have the following lemma.

Lemma 11.6. Let K be smooth in R¥\{0}, homogeneous of degree —(d —1). Then

0,0 = PV. [ 0K (bu)dy = c0(0) for all b€ CEX(RY) (11.13)
where ¢j = flml=1 K(x)z;dS.
Proof. We have
— (K 0p) =~ lm [ K@owdy = lim | 9K@w@)dy+ lim [ K(y)py)Lds
=0 Jy|ze =0 Jiy > =0% Jyy|=c vl
=PV [ oK@y +00) [ Kgupds
R4 lyl=1

O]

Exercise 11.7. For K like in Lemma 11.6, that is smooth in R*\ {0} and homogeneous of
degree —(d — 1), we have f|a:\=1 0;K(x)dS = 0 for any j. Show this in two ways. First way,

by using the information that P.V.9;K € S'(R%). Second way, by a direct computation of
the integral [ _; 0;K(z)dS.

ANSWER. Let us look only at the 2nd approach. It is enough to consider j = d. Let
us consider cylindrical coordinates

Tq= T4
(21, ..y Zg—1) = rw with r > 0 and w € §972

Then, for x4 = pcos ¢ and r = psin ¢,

/ 04K (x)dS = dS(w) / ., RO KAl = / dS(w) / sin?%(¢)(cos ¢p8,K — sin pdyK)d¢
lz|=1 gd—2 xgtro=1 gd—2 0

>

= — / dS(w) / W((d — 1) sin?%(¢) cos 9K + sin® ! (¢) 0y K )do
Sd—2 0

=— /sd—2 dS(w) sindﬂ(qg)[(]iig =0 by sin(0) = sin(7r) = 0.
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Here we used 9,,K = cos 99, K — Sir;¢8¢K. O
Returning to the proof of Lemma 11.5, we can assume initially that w € C°(Bg, R3).
Then, for a test field 1 € C°(R3, R3),

<@uw=~wu@w=—<4 b i 0) = [ )0, 0 w)dody

s |z —yl? |z —

= — lim Embwb(y) Y Yi(z)dzdy

e—0t Ix_y‘ZE | |3 T

. Lo — Ya Tj —
= lim ciaion(y)0n, T Y viw)dody + i [ dyein(y) [ $i(x)dS (z
L P ( S oo W) o T =l fo=y] P 95@)
. Ya — (xa ya)( yj)
— lim € iasion (4)0 soiCo)dzdy + [ 05@) [ dyeran(w)bity
. (y) Zip—e |3 (z) et ’x_y|4 (z) » (¥)Yi(y)
. Ya — Tq
=-—1 iabOu. i(z)dxd
T beon(y) Ix—yl3w o)y
r—yYy
= —_— : d .
(L= x o)
So we conclude
T —y
8-v$:/x8-wydy.
o) = [ =l < ot)
On the other hand, by Lemma 11.6
Vo(z)=PV. | V. ]a; y|3 w(y)dy + Lw(z) = P.V. Vyﬁ w(y)dy + Lw(x)
R3 - —

with L some fixed linear operator in R3. Obviously [Lwllcoa(y < LI lwllcoazy), so
the key term we need to bound is the P.V.
Let us define H;,(y — ) by

i — 1
@ H(y — z)wi(y) = ?igijkﬁwk(y)'

Then
y—= _ >
P.V./ Oy, ———3 X w(y)dy) = ¢ iP.V./ Oy Hir(y — )wi(y)dy.
R3 ly — | R3
An elementary computation shows that

1 XTiT
Ki(g) (x) = amaHik(l') = Eiak7T 2 ‘x|3 3513k ‘J |5a
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These functions are homogeneous degree —3 and satisfy

a 1 1 La
/ Kz(k)(x)ds = 5iak/ —| ‘3dS — 35ijk/ TJT5 ds = 4775z’ak — 35iak/ l’%ds
|z|=1 lz|=1 [T lz|=1 | |z|=1
cos’(¢)

T 2
= 4ATEiqk — 67reiak/ cos®(¢) sin(@)do = 4me;ar — 6TEian 10 = —4meiar — 6TEak <—> =0.
0

3

We claim now that for any o/ € (0, «) there is a constant C, s.t. for all z,2’ € Bg/

!
< Corllwll g gyl — /I

(11.14)

‘P.V. /R3 KI(Z) (y)w(z —y)dy — P.V. /]R3 KZ(,?) (y)w(z' — y)dy

This will prove the second claim in the statement of Lemma 11.5 for w € C°(Bg), but in
fact by density this will extend to all w € Co**(Bg).
The Lh.s. of (11.14) can be written as

‘P.V. /]R3 Kl(,?)(y) (w(a" —y) —w(@’) —w(z —y) + w(x)) dy’
by the cancelation flrl=1 KZ(,?) (2)dS = 0. It is elementary that

(@ —y) —wia) —wlz —y) +w(@)] < 2Alwllgoags,, minglyl, [ — ).

Then

‘P.V. /R3 KZ(Z) (y)w(z’ — y)dy — P.V. Ki(,?) (y)w(z — y)dy’

RS

1 .
S lllopesyy [ o minlyl®. [’ = ol"}dy
2R

|z’ —z| 2R
5\Mbwwm<A \w%wwuﬁﬂ—M{L_xwrwm)wwwﬁq&yﬂ—ﬂammf—xw

O
The following result will be useful in the sequel.

Lemma 11.8. Given a field u € L"(R3 R3) for r € (2,00) there is a unique solution
p € Lz(R3) of the equation

— Lp = 9i09;(uiuy) (11.15)
which is given by
0 0
p= \/j\/jj(“i“j) = RiRj(uiuy). (11.16)
It satisfies
Ipll, 5 < C > llususll 5 < Collull?o. (11.17)
1,J
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Proof. The discussion is similar to that in Lemma 11.2. The estimates follow by the esti-
mates on Rietz transformations. O

Proposition 11.9. Consider a weak solution u of NS in d = 3 with u € L>®(R,y, L*) N
L*(Ry, HY) and define the pressure p € L'(Ry, L3) by the equation (11.15). Then u is a
distributional solution in Ry x R3 of the equation

u+u-Vu—Au=—Vp (11.18)

Proof. Recall that u satisfies equation (6.4), and thus, in particular,
/R ((u, AW + (u, 03 T) — (div(u @ u), ¥))dt’ = 0 for all ¥ € C2(R, x R3, R?).
+

Exploiting Remark 2.3, which states that CS2(R?,R?) is dense in V, we claim that
for any T > 0 the space C2((0,T) x R? R3) is dense in CL((0,T),V). (11.19)

To prove (11.19), consider ® € CL((0,7),V) and its derivative ® e CY%(0,T),V). For
any given € > 0, let 0 < top < &1 < ... < ity < T, with & = 0 outside [to, tar], and
|®(t) — ®(s)||gr < € for t,s € [tj_1,t;], for any j = 1,...,M. For a § > 0 to be fixed
later, let \i/(tj)Ne C2(R3,R3) s.t. |W(t;) — ®(t;)||gn < 0 for all j = 1,..., M and define
: t—t 3 t—t; 1 o . .

U(t) = tjiﬁ‘l’(tjq) + tjftjj,ll\lj(tj) for t € [tj_1,t;] and ¥ = 0 outside [to,trs]. Then

||El(t) — ®(t)|| g2 < 6 for all t € [0,T]. We also have

For 0 € C%((0,7),[0,1]) a cutoff with fol O(t)dt =1, let

T ~
/ \if(t)dtH <Té
0 H!

B(t) = B (1) — 0(1) /OT b (1)dt
Then
[9() — (@)l < 6(T +1)
and for U(t) .= [ W(t)dt' € C1((0,T),V) we have U(t) € C%(R?,R?) for any ¢ and
1W(t) — @)l < 6(T + 1T,

Next, taking a cutoff p € C°(R, [0,1]) with [ p(t)dt = 1, we can assume that W(t) := pj *;
U(t) is in C°((0,T),V) and that

1 (t) — V() e om,vy <6
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Then [|®(t) — Y (t)|caory,v) < 6(T + 1) +6 < ¢ if we pick § > 0 small enough. This
completes the proof of (11.19), since clearly ¥ € C2((0,T) x R3,R3).
By (11.19), we claim that

/ (—(Vu, V) + (u, ) — (Pdiv(u® ), B)) df’ = 0 for all @ € CL(R,, V),  (11.20)
R+
which, in particular, implies

/ (1, AB) + (u, 8,®) — (Pdiv(u @ u), BY) dt’ = 0 for all & € C2((0,T) x RS, RY),
Ry

(11.21)
To get (11.20) consider a sequence C22((0,T) x R3,R3) 3 &, =2 & in C1([0,T],V), for
T appropriately large s.t. supp® C (0,7T) x R3. Then, obviously

T T
/ (—(Vu, V®,) + (u,,®,)) dt’ == / (—(Vu, V®) + (u, 0;®)) dt’
0 0
and, from H3/4 (R3) — L* (R3) by 1 = 5 — %7

T
/0 [(Pdiv(u @ u), ® — )| < [lu® ull g0, 10 = @llcoqomvy < Nullizory.ol®n — @llcoomv)

)||‘I)n — @[ coo,71,v) =550

3 1
< HVU”?ﬁ((o,T),L?)||u||22((07T)7L2

So, by taking the limit with n  co, we obtain (11.20).
Now, looking at (11.21), we can write Pdiv(u ® u) = div(u ® u) — (1 — P)div(u ® u). So, by

a direct computation which uses Pv = v + ?iRiijj, we have

(Pdiv(u @ u), ®) = (div(u @ u), ®) + (R; R;jOk (uFu?), ®;) = (div(u @ u), @) 4 (9; R; Ry (uu?), ®;)
=div(u ® u), ®) + (Vp, D).

So, plugging in the previous equation, we get the desired result:
/ ((u, A®) + (u, 9 ®) — (div(u @ u), ®) — (Vp, ®))dt’ = 0 for all & € C°(R, x R? R3).
R

Remark 11.10. Notice that the related remarks at the bottom of p. 116 [14] are based on an
incorrect Helmholz-Weyl decomposition of vector fields in S(R% R?). Notice in particular
that the solution of exercise 5.2 in p. 429 is wrong.
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12 Local Serrin regularity

In this section we will prove the following result.

Theorem 12.1. Consider u, a Leray-Hopf solution of NS in d = 3 with u € L>®(Ry, L*)N
L*(Ry, HY) and suppose that, for an open subspace U C R3, we have

2 3
we L"((0,T),L°(U)) where —+ — =1, withr > 2 and s > 3, (12.1)
r s
excluding case (r,s) = (0,3). Then for any open Q C Q CC U and any ty € (0,T]

u e L= ((to, T), H*(Q)) for any k = 0,1, ... and u € C([to, T], CO(Q)) for any ~ € (0,1/2).

The case (r,s) = (0, 3) is also true, but is not discussed here.
Theorem 12.1 will be obtained as a consequence of Theorem 12.6, see below, which
requires a definition.

Definition 12.2. We say that u is a local weak solution of NS in (a,b) x U if
1. u € L*®((a,b), L*(U)) and Vu € L?((a,b), L>(U)) and

2. wu satisfies

/b ((u, AW 4 (u, 03 0) — (div(u @ u), ¥)) dt’ = 0 for all ¥ € C°((a,b) x U, R?).

Notice that weak solutions in [0, 00) x R? are local weak solutions in (a,b) x U for any
a > 0. The viceversa is not true.

Example 12.3 (Serrin’s example). Notice that u(t,z) = «o(t)Vi(x), with ¢ : U — R har-
monic and a € LY (R, ) N L*®°(R,) is a local weak solution of NS. Obviously (aVi), AW) =
(aV AP, ) =0. Also

(div(u @ u), U) = o*(0;90;0k), Uy = 27 10® >  (0e(0;9)%, U1) = = (|VY[*, V- T) = 0.
J

Finally, by V- ¥ = 0,
(u, 0,¥) = a(Vp, 0,0y = —a(Ve), 0,V - ¥) = 0.
Remark 12.4. In view of Serrin’s example, for Theorem 12.1 it is crucial equation
ut +u-Vu— Au= —Vp. (11.18)

Notice on the other hand that, since p = R;Rj(u;u;) and the Riesz Transforms are non
local operators, the regularity in « of u in U x (a,b) does not lead in an obvious way to
regularity of p in U x (a,b).
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Remark 12.5. Since equation (11.18) contains a non-local term like the pressure p, while
the results of this section involve local properties of u, it is natural that in the literature
the proofs are based on the equation for the vorticity

wt—Aw~+ (u-Vw = (w- V)u. (11.8)

Indeed (11.8) has the advantage, over (11.18), of containing only local terms.

In this section we will use pairs (¢, ¢) of indexes, where ¢’ is not the dual index of g.
The main technical result of this section is the following.

Theorem 12.6. Consider a local weak solution u in a parabolic cylinder Qg(to,xo). Then,

if
, 2 3 ,
u € LT LYQRg(to, x0)) where — + = <1, forq >2 and q > 3, (12.2)
q q

w is smooth in the x variable in Qg (to, o) for any R’ € (0, R).

We will not prove the case (¢’,q) = (00, 3), which is more complicated and was proved
in [5] some time after the other cases. Notice that, in view of Example 12.3, we cannot
get any regularity in t. On the other hand, we will see later how to recover the Holder
regularity for the weak solutions of the NS in Theorem 12.1.

Theorem 12.6 is, in the case (¢, q) # (00, 3), a consequence of the following theorem.
Indeed given any point (a,s) € Qr(to, zo) we have for Q,(s,a) C Qr(to, xo)

p—0

ull Lo L@y s,y < Nl Lot La((s—p2,9)x Brto)) — 0

for ¢ < oo when %—l—%: 1, while if ¢ = oo and ¢ > 3, we can use

a=3 a=3 =3 p—0
[l oo £3(Q,(s,)) < NullLoora(@,(s.ap|Bla, p)| 30 = (47/3) 3¢ [Jull e La@,(s,appp @ — 0.

Theorem 12.7. There exists an g4 > 0 such that if u is a local weak solution in a parabolic
cylinder Qgr(to, xo) s.t. u satisfies (12.2), with

1l ot La(@p(to,ze)) < Ea'a> (12.3)

then u is in L HF(Qri (to, 20)) for any R’ € (0, R) and k € N.

Considering that the condition of v being smooth in Theorem 12.6 is a local condition,
it is natural that, in the case (¢, q) # (00, 3), around each point of the cylinder in Theorem
12.6, we can consider a sufficiently small cylinder where (12.3) is satisfied, etc.

We will prove Theorem 12.7 also in the case (¢, ¢) = (00, 3). The proof will exploit the
vorticity Propositions 5.1-5.5.

The proof of Theorem 12.7 is divided in two parts. The first is the following.
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Proposition 12.8. Consider a local weak solution u in a parabolic cylinder Qg (to,zo)
Then, if

/ 2
w e LY L(Qplto, 20)) where = +° < 1, (12.4)
q q

u is smooth in the x variable in Qg (to,xg) for any R’ € (0, R).

Proof. Tt is enough to prove that u is smooth in the x variable in Qp /Q(to, xg). To proceed
we observe that an analogue of Lemma 11.3 shows that the pair (u,w) satisfies the following
analogue of (11.9):

/OO ((w, 0 ®) + (w, A®) + (w,u - VO) — (u,w - V®))dt' = 0 for all & € C(Qr(to, z0), R?).
0
(12.5)

We define W = ¢w with a cutoff ¢ € C2°(R%, [0, 1]) with suppp N (Qg(to, z0) € Qpr(to, o),
with ¢ = 1 in @Pi r(to, o), where p; and p; will be chosen later, they depend on the pair
(¢, q) and satisfy 1/2 < p; < p; < 1. Then, in a weak sense, the weak formulation of (12.5)
implies a weak form of

Wy =AW = (W -V)u—¢(u-Vw+ (¢ — Ap)w — 2V¢ - Vw.

Writing —2V¢-Vw; = —20;(w;0;¢)+2w; A¢, the above equation can be conveniently written
as

atWZ' - AWZ = @(Wjui - I/V,u]) - 28j(wi8j¢) (12.6)
+ ((bt + A(ﬁ)wz — 8j¢(wjui — wiuj)). (12.7)

The proof of Proposition 12.8 is divided in two parts. In the first, we will prove that
w € L¥L>*(Q3p/4(to,70)). Let us assume this and see the conclusion of Proposition 12.8.

The rather standard second part of the proof of Proposition 12.8, starts by noticing
that Lemma 11.5 implies, for k = 0, u € LWy (Qp, (to, z0)) for any R}, € (R/2,3R/4).
Having u,w € L?Wﬁm(QR; (to, o)) we can fix an arbitrary R} € (R/2, R}). Then let us
consider a cutoff ¢ € C°(R%, [0, 1]) with suppgbﬁ@33/4(to, x0) C @R; (to, o) and with ¢ =1
in Q R (to, o). For W = ¢w we have the above equation. Applying Propositions 5.4-5.5
in Qg (to,z0) we obtain W € L?OC;?’O‘(@RZ (to,z0)), that is w € L;’OCZE’O‘(QRZ (to, zo)) from
¢=1in Q Ry (to, xo), for any a € (0,1). Then Lemma 11.5 implies (in fact, more regular-
ity than) u € L?Cﬁ’a(@Rg/(to,mo)) for any R}" € (R/2,R]) and for any a € (0,1). Now
we fix Rl(f) € (R/2,R}) and a cutoff ¢ € CZ(R%,[0,1]) with suppe N @3R/4(t0,x0) -
QRZ/(tO,xO) with ¢ = 1 in QRI(:;) (to,zo). For W = ¢w we have the above equation.
Applying Propositions 5.4-5.5 in Qg (to,zo) we obtain VW € LfOL%O(@Rf) (to, o))

103



combined with W € L¥CP*(@Qpw (to, z0)). Thus VFHlw e LPLX(Q

w € L?Cﬁ’a(éRu)
placed by k + 1. kBy induction there is a decreasing sequence {R,} with R, > R/2 with
u € LPC™(Qp, (to, x0)) for any n € N.

We now start the proof of w € L*L*(Q3p/4(to,z0)). We start by assuming w €
L™ L"™(Qg(to, x0)) for some (m’, m). This is certainly true for (m/,m) = (2,2). Obviously,
we assume (m',m) # (0o, 00), since otherwise there is nothing to prove. As we did above,
we consider W = ¢w with a cutoff ¢ € C°(R%, [0, 1]) with supppNQr(to, o) C Q,r(to, o)
and with ¢ = 1 in Q,,r(to, xo). Notice that W € L™ L™ ((tg — R?, to) x R?).
Using Propositions 5.1-5.2, we have

Ri(f) (to, .%'0)) and

(to,wo)). For R, = R](j), we can repeat the argument with k re-

HWHLT’LT S ”WU”La’La + ||WV¢HLm’Lm + (o + AQb)W”Ll’Ll + HUJUquHLz/Lz (12.8)

where
{1§a§r§007 1<d <r'<oo {1<m§r§oo, 1< m/ <1’ < oo
3,2 3, 2 ; 3,2 3,2
E+?<F+W+1 E+W<;+W+1
1<i<r<oo, 1<I'<r <o
{ 3,283,249 (12.9)
l U r r!

Now we have to choose the indexes. Recall that u € L9 LI(Q,,r(to, o)), see (12.2). We
consider

1 1 1 n 1 d 1 1 1 n 1 (12.10)
- =—-=-4+—and - =—=—+ —. .
I a q m U d g m
Here notice that from % + % < 1 obviously we have ¢ > 2 and ¢ > 3, to that from m > 2
and m’ > 2, we have [ > 1 and I’ > 1.
Inequalities (12.9) become

m m T /

3 3 2 2 3 2
—t -+ —F+ =< -4+ —=+2
m qg m ¢ r /

where obviously the 1st implies the other two. Then we have
Wz e S MWl ol o o + 0ll por pollwll s o + ol o pon- (12.11)
In fact we get HWHLT'LT((tO—RQ,tO)XR?’) < HwHLm/Lm(QR(tO@O)), where

3 3 2 2 3 2
_—— -t — <1l - — —. (12.12)
m r m q q
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Since by hypothesis the r.h.s. in (12.12) is strictly positive and (m/,m) are given, we can
find m <7 and m’ <7/, not both equal, so that (12.18) is true. In fact this can be written

in a systematic way, setting y := % (1 — g — %) and defining
o if my < 1 iy < 1
p = Toam 1 X and 1/ = { Toxm’ 1 ITXS (12.13)
oo if my >1 oo if m'xy > 1.

With these choices we have % —% < 3x and % — % < 2y, so that % —34 2, 2 <5y <

3 2 ] r m r =
1-— 1T Then we have obtained

we L™ L™(Qr(to, 0)) = w € LTxw’ LTxm (Q,,r(to, 70)).
We repeat this argument until both exponents are (0o, 00). Notice that if we repeat the

procedure k times, we reach w € LT1-Fxm/ [[T=kxm (kaR(to,mo)), since, for km < 1,

____m
1—(k—1)xm m m

L= X 1= (k—Dxm—xm 1—kxm’

It is clear that, after a finite number k of iterations, with k dependent on the initial
pairs (m/,m) and (¢, q), the procedure has to stop because, for example, either we get to
X% >1lorl—Fkym <0. But 1—kxm<0cannotoccurif0<x% < 1in
the previous iterate. Hence at some point we get to X% > 1, so that from that iterate
on, we have r = co. For 7’ the same argument is true. So, after a finite number of iterate,
we obtain the pair (00,00). We also choose 3/4 < p; < p; < 1 so that pF > 3/4 for all the
finitely many iterates.

O

Now we consider the 2nd part of the proof of Theorem 12.7.

Proposition 12.9. There exists an ey, > 0 such that if u is a local weak solution in a
parabolic cylinder Qg(to, zo) which satisfies (12.2) with % + % =1 and if

ll Lot La(Qn(to,20)) < Ea'a> (12.14)

then w is smooth in the x variable in Qg (to, zo) for any R' € (0, R).

The proof consists in finding 3’ > 2 s.t. u € L¥ L®(Qp/(to, o)) for any R € (0, R).
Then we can apply Proposition 12.8.
Notice that we can normalize and consider R = 1, thanks to scaling. It would be reasonable
to proceed as in the proof of Proposition 12.8, starting with w € Lm/Lm(QR(to,xo)) and
then reaching w € L% L>®°(Qp/(to, x0)), and then to apply Lemma 11.5.

So we could consider (12.8)

||W||LT’LT = HWUHLa’La + |’WV¢HLm’Lm + (¢ + A?b)WHLm’Lm + HWUV¢HLZ’LZ (12.8)
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with

{1§a§r§oo, 1<d <r' <
3,2 3, 2 _ 3.2 ,.3,.2
a+y—;+ﬁ+l—;+p+a+?
1<m<r<oo, 1<m'<r <o
32 3.2
m m’ = r r/
1<i<r<oo, 1<l'<r <
T T3.2_.3,2 -« (12.15)
{ Ttrsrtat2
Next, in analogy to (12.10) we could consider
1 1 1 1 1 1
e - 12.16
l q+m e q’+m’ ( )
while we will take
1 1 1 1 1 1
Loty lado =142, (12.17)
a q T a q
(notice that here %—k% <1 (because r > 3 and ¢ > 3) and %4—% <l,soa>1landd >1).

Here the point is that if we chose exactly (12.10), we would be forced, from

3 3 2 2 3 2
n<———+—--=-=<1---==0
m r m qg ¢

and from m < r and m’ <7/, to have exactly (m,m’) = (r,7). So (12.16)—(12.17), gives us
a little more of flexibility. Indeed (12.15) reduce to

1<m<r<oo, 1<m'<r <
{ iU e (12.18)

— A

3
m

and we can certainly pick m < r and m’ < r/ appropriate and not both equalities if (m’, m)
is not of the form (f’,00) with 5’ > 0.
Then we obtain, in Qgr(to, xo),

||W||LT’LT N ||W||LT’LT”uHLq’Lq + HUHLq’LqHWHLm/Lm + ||W||Lm’Lm N ||W||Lr’Lr”uHLq’Lq + HWHLm’Lm-
(12.19)

Then, from |[ul|, 44 < €gq, for ey4 small enough we would absorb the [|[W{| .. |lull ;¢ 4
into the Lh.s., obtaining

HWHLTlLT(QR(tOJ?O)) S HwHLm/Lm(QR(tO,m()))' (1220)

Then we could improve until we get to the desired (8’,00). In fact, for x = 1/6, we can
proceed like in (12.13) obtaining % — % < 3x and % — % < 2y, so that % — % + % — % <

5x < 1. After a finite number of iterates, we would get to (8, 00) and stop.
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However, the above argument is formal only, because it assumes implicitly that |[W ||/, . <
oo. To perform rigorously the argument, we consider a mollification, both in space and time.
We still can consider the equation (12.6)—(12.7) for W.

Now consider

KW — AW = 0;(Wiug — Wius) — 205(wi0;0)

+ (¢ + Ag)w; — djp(wjui — wiuj)), (12.21)
where W is an unknown, we set (uf,w®) = pe * (u,w) and Wf (to — R?) = 0, where we

extend (w,u) = 0 in RN\Qg(to, o).
Now the previous argument works, and we obtain for a fixed ¢ (notice that in the equation,
w® appears with factors involving ¢ which live in Qr(to, zo))

HWEHLT'LT((to—RQ,tO)XIR{3) < CHWEHLW'LW((tO—RQ,tO)XR?’)'

There exists a sequence €, —— 0, such that W — W in L™ L"((to — R2, to) x R?)), and
we have

W o 1 (10— B2 10) %) < @l ot L (@ (0 20)) - (12.22)

Now we have to establish that W = W in L L"((to — R?,to) x R3) to obtain

HWHLT/LT(QR(to,wo)) S CHWHL’",U"(QR(tO,wo))'

and so, restricting the domain in the left

||W||LT/LT(Q,J¢R(7507I0)) < CHwHLmILm(QR(to,xo))'

Once we do this, we conclude that the formal argument leading to (12.20) is correct.
The first step to prove W = W, is to show that W is a weak solution of (12.6)—(12.7).
Taking a test function 1 € C° ([to — R?, o) x R3,R3), from (12.21) we have

to to
0= / (W, D) + (W, D)) dt! — / (Weruge = Winase, ;0 ) dt
to—R? to—R2
to to to
i 2/ (wi" 06, Oji) dt’ + / (60 + D), 09} dt’ + / (Oo(efrugn —wimusr), i) dt'
to—R?2 to—R?2 to—R2

Taking the limit n — oo we get

t t
0= / O (Whaw) + (W At — tim [ (W W g0 ) i
t

0—R2 n—+00 to—R?

to to to
+ 2/ (wi0;¢, 051y dt’ +/ (¢ + Dp)wi, D) di’ +/ (0j(wju; — wing), ;) dt’.
to—R?

to—R? to—R?
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Now we show that

to to
lim (Wimur = Wenusr, o0, ) di! = / (Wiu; — Wiz, 0p;) dt’. (12.23)

n—+00 Jy _ Re to—R?

We have

to to

/t:O—R2 <Wj€nu§n’ ajwi> at' = /to—R2 <W;nu"’ 8jwi> i+ /tO_Rz <Wj€n (u" = ui), 8ﬂ/’z’> '

But now

to . ; m—00 to =7 /
/t <Wj"ui,8j1bi> dt —>/ <WjUz‘,aj1/Ji> dt

0—R2 to—R2
while
to
n n / n n
L (e e ). 050) @) < CIWS 1 = 6 -
.

< CMw™ | L (1o — B2 20y xE) 18" = ill Lo Lt R2.10) xR®)
n—o0
< C/”wHLT’LT((to—R2,tO)xR3)Huze'n - uiHLq’Lq((to—RZ,to)xR?’) —0.

Notice that here % + % <1 (because r > 2 and ¢ > 3) and % + % <1 (because v’ > 2 and
¢ > 2) justify the above use of Holder inequality. Proceeding in this way we obtain the
proof of limit (12.23).

So we conclude that for any ¢ € C2° ([to - R?, to) x R3, R3)

t to
0= / ’ (<qu at¢l> + <Wz, sz>) dt/ - / <Wj, U; — Wiuj, aj”l/}z> dt/
t to—R2

o—R?

to to to
- 2/ (wi0p, Djaby) dt’ + / (¢ + DP)wi, O¢0;) dt' + / (0jd(wju; — wing), 1) dt’.
to—R?

to—R? to—R2

This implies that W € LT/LT( [to — R?, to) x R3,R3) is a distributional solution of (12.6)—
(12.7) with initial datum W (tg — R?) = 0, see Takahashi [20].
Then, taking the difference between the equations of W and W, we have
O(W; —W;) — AW, = W,) =9 f; (12.24)
with fj = (Wj — WJ)UZ — (I/VZ — WZ)UJ
and initial condition (W — W)(tg — R?) =0
in a weak sense, that is for any ¢ € Cg° ([tg - R?, to) X R3,R3)
to o _ to o .
0= / (Wi = Wi, 00 ) + (Wi — Wy, Ay )) dit’ — / (Wj = W)u; — (Wi — Wiy, 05¢;) dt'.
to—R?2 to—R2
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We claim that

t
Wi - Wz == / €(t_t/)Aaj((Wj — WJ)UZ — (Wz — Wi)uj)dt’ (12.25)
to—R2

Indeed both sides are solutions in L%((tg — R?, o) x R3,R) of the equation (9; — A)w = 9; f;
with initial condition w(ty — R?) = 0. So their difference, is a solution, which we again
denote by w, with w € L?((to — R?,tp) x R3, R) with

(9 — A)w = 0 with w(tg — R?*) = 0.
By scaling and translation we get a solution w € L?((0,1) x R3 R)
(0 — AN)w = 0 with w(0) =0,

which satisfies
1
/ (w, (B + D)) dt’ = 0 for all o € S([0,1] x BY,R).
0

But for any F € §([0,1] x R3, R) with F,.F' € C°([0,1] x R3, R) it is possible to define such
a ¢ with (0, + A)y = F proceeding as right under (1.10). Then by density of such F' ’s in
L?((0,1) x R3 R), we conclude w = 0.

Having established formula (12.25), we can apply Propositions 5.1-5.2 to W — W. For

3 2 3 2 3 2 3 2
-+ -<-+—-—F1=—-4+=4+ -4+ -,
l U ror r r q ¢
we have

W =Wz e @nttoon) S NW = Wl pv L@p(eoan

Sl WHU’LT(QR(%@O)) HUHL‘IILQ(QR(to,Io)) < eqqW - W”L’"/L’"(QRUO,:BO))’

where we are free to choose a L L"(Qr(to, o)) s.t. both W and W belong to it. We
exploited the fact that HuHLq’LQ((tO—R2,t0)xR3) = Hu||Lq/Lq(QR(t0’x0)) and, in the left hand

side, that [W =Wl 1 @uton)y < W = Willie Loty r2.to) ey

Now we exploit that ey, is small, to conclude that W = W in Qr(to, o). This completes
the proof of Proposition 12.9.
O
End of the proof of Theorem 12.1. By Theorem 12.6, in particular by its proof, we
know that Au € L®[tg,T], L>(2)) for Q@ C 2 CC U and for any ¢y € (0,7). Next, we
claim that

w-Vu+ Vpe Lu3((0,T), L7 (R%)) for all 1 < r < 3/2. (12.26)
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Assuming (12.26), it follows from (11.18) that u € Wl’%(to,T),LT(Q)). We know that

elements of W13 ((to,T), L"(2)) are classes of functions and that, by Sobolev’s inequality,

one of the elements of this class is in C%%([tg, T], L"(2)) for a = 1 — 42;3 = 3520 In fact,

by u € C°([0,T], L2 (R3)), it is easy to conclude that u € C%([to, T], L"(£2)), so that

u(t) — u(s)lzr) <cft —s|* fortg <s <t <T. (12.27)
Next, by the variation of Agmon’s inequality in (2.41), for almost any pair (¢, s) in (tg,T)
we have
0 1-6 . r(k—3)
(0 360 < Cotser8) ) s 6) — )l with 8 = L 520
a2 (k-3) smor (=3)
T 3.4 N 2 3 5
<Cp =5 =Cp lt—s| 2 FHHED —f jt—s © (R (12.28)

Then, for any v < 1/2 we can find r € (1,3/2) and k € N s.t. v = af so that
lu(t) — u(s)||Loe () < Cylt — 5|7 for almost any pair (¢, s) in (to, T). (12.29)

Notice that (12.27) and (12.29), together imply that (12.29) must be true for all pairs (¢, s)
in (to,7) and on . Hence we have proved that u € C’?’W([to,T),Cg(Q)). In fact, this
extends to an element of C{"Y([to, T], C2(Q)), and by the continuity u € C°([0, T}, L2 (R?))
we conclude that the extension in C’S T([to, T], CL(RY)) is exactly u. With this the proof of

Theorem 12.1 is completed except for (12.26).
To prove (12.26) notice first of all that a weak solution satisfies

2
u € L*((0,T), L"(R?)) for all s % =3/2. (12.30)

Indeed the case (s,7) = (00,2) follows from u € L>®°(Ry, L?(R3)) and case (s,7) = (2,6)
from Vu € L?(R,, L?(R3)) and Sobolev’s embedding. The intermediate cases are obtained
by Holder inequality. Next, by Holder inequality we get

lu- Vull, < [[Vull2|ul| 2,

where QQT’"T < 6 < r < 3/2. Now, since the pair <3fi3, %) satisfies the condition in (12.30),

we obtain

< |IVullzz@, ollull 2

”u : VUH 2r 2r .
Lar=3( L3r=3((0,1),L2—T)

(0,7),L

The same is true for P (u - Vu) and for Vp = (1 — P) (u - Vu), proving (12.26). This proves
u e CP7([to, T), CO(2)) for any ~ € (0,1/2) and any to € (0,T) and any open 2 C  cC U.
O
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Remark 12.10. Notice that it is easy to prove

IVfllpe() < CHfH%T(Q)HfH}_I_kQ(Q)

for appropriate # and in fact more generally
0 -0,
IV fll o) < CIF I 1 ey

for appropriate 6; with [ < L and k— L sufficiently large. Then, one can repeat the argument
and prove u € C,? V([to, T], CE=2(Q)) for L arbitrary and appropriate v € (0,1) and for any
to € (0,T) and any open 2 C Q CC U. This yields the result stated in Remark ?7?.

13 Local energy inequality

We will later need suitable weak solutions.

Proposition 13.1 (Global suitable weak solutions). Consider ugp € L?*(R3,R3) and a
Leray—Hopf solution u proved to exists in Sect. 6. Then u satisfies the following Local
Energy Inequality:

T T
2/ / |Vu|*pdrds < / / lu?(p¢ + Ap)dxds (13.1)
0 R3 0 R3
T
+/ / (Jul®* 4 2p)(u - V)dzds for all ¢ € C°((0,T) x R3, [0, 4+00)),
0 R3

where p is defined by (11.16).

Proof. Consider the sequence

(O — D) + pe,, * Up - Vup, = =V R R;(pe, * ulud)
un(07 l’) = uO(ZE)

We apply to the above equation (-, pu,). Then, for p, := R;R;(pc, * ubud),
iy
2dt

We have

1
Up, PlUn) — 3 {Jun|?, 0up) — (D, pun) + (per * Un - Vg, uin) = — (Vpn, ouy) -

- <Auna @un> = <‘vun‘2> (10> + <6juna Unang> = <|vun|27 90> + 2_1 <aj’un|27 8]g0>
= (|Vun|*, @) — 27" (Jun|?, Dp)

(Vpn, pup) = <8jpna (pu%> = — (Pn; (un - V)p)
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and

(Pen * Un - Vg, Qup) = 27! <Pen *Up - V|un|27 (P> =271 <’un|27p€n * Up V‘P>
So, integrating, we obtain
T T T
2/ <\Vun\2,<p>dt:2/ <]un]2,8tg0+Ag0>dt+/ <\un\2+2pn,un-V<p>dt
0 0 0

T
+/ <‘Un’27 (Pen * Un — Up) - Vg0> dt
0

which, up to the term the last line, is formula (13.1) for the solutions of the truncated
problems. So now we will take the limit for n 7 co in this equality.
We have

T
/ {un|?, 0rp + D) dt == | {Jul?, dp + L) dt
0 Ry

because u, —— u in L((0,T) x K,R?) for any compact set K cC R? and any T > 0.
We have

T T
/<wu|2,<p>dt§nminf/ (|Vun|?, @) dt
O n—oo 0

by Vu, "= Vau in L2(Ry x R?), which in turn implies Vu,/@ "= Vu /@ in L2(Ry xR?),
and by Fathou’s Lemma. Next, we claim

(<\un|2, (un - V)p)dt — <|u|2, (u-V)p))dt=0. (13.2)

lim

T
n—-+0o00 0

Indeed, the difference of the two terms is a sum of various terms. We bound a typical one:

T
/0 (Un — u, un(un - V)p) dt‘ S llun — U||L§L;§(Q)||UnHL;>OLg(Q)||UnHL%Lg(Q) < Collun — UHLng(Q)

for © =suppy and where [up|/roor2(0)llunllr2zia) < Ca by the energy equality (4.5),

satisfied by the un. By (6.37) we have [jun —ul|z211(q) 7%, 0 and so, treating analogously

the other similar terms, we get the desired limit (13.2) Similarly, for the pressure we have
T
lim [ (b, (- V) dt — (p, (u- V))) dt = 0. (13.3)

n—-+o0o 0

Next we show

T
lim / {Jun|?, (pe, * un — un) - Vo) dt = 0.
0

n—-+o0o
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Like above, we have

T
'/0 <‘un|2a (Pen * Un — up) - VSD> dt| < || pe, * un — unHL?Lg(Q)||un||L,?°L§(Q)”UnHLfL;g(Q)
S pey * un — UnHLng(Q) < lpe, *u— UHLng(Q) + | (e, * —id ) (u — uy) HL?L%(Q)

n—oo

S pe, xu—ullp2pa) + lv —unllp2pa@) — 0

O

Proposition 13.2 (Alternative local energy inequality). Suppose thatu s.t. u € L°((a,b), L*(U))
and Vu € L*((a,b), L*(U)) satisfies also the Local Energy Inequality

b b
2/ / \Vu|?pdzds S/ / lul?(ps + Ap)dads (13.4)
a JR3 a JR3

b
+/ /3(|u|2 +2p)(u - V)pdzds for all ¢ € C°((a,b) x U,[0,+00)),

where p is defined by (11.16). Then u satisfies for almost all t € (a,b) also

/\u 2t da:—l—Q// vl qbdxds<// (s + Ad)dads (13.5)

+/ / (Ju? + 2p) (u - V)pdxds for all ¢ € C((a,b) x U, [0, +00)).
a JR3

Proof. We start from (13.4) and we consider (s, z) = ¢(s,z)x (:=2) where x € C*(R, [0, 1])
satisfies x =0 in R_ and y = 1 in [1,00). Notice that

_ t B _
X’<t €s> =0fors<t—eands>tand / ey (t S) ds = —x <t s>]§_t_ezx(1)x(0):1.
t—e

€ €

We have

Oupets.) = 0.0t (10 olsre v ()

So when we enter this information in (13.4) with ¢ = ¢, we obtain

[ [y (52 )as ez [ wuro (S Yavas < [ [ i (5
v ’ [0+ 20 () - Dy

Taking limit € \, 0 we get

21\1}] 8 lul?¢(s)e? ’( — >dsd:1:+2// |V <Z>dxds<// [u? (s + A¢) dds
2 .
—i—/o /RS(|Vu] + 2p)(u - V)pdxds

> (s + A¢) dxds
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where we have applied dominated convergence, leaving aside the most crucial limit. We

have
b
/a /RB lul?¢(s)e 1y’ <t;S> dsdx = /ttE dse ty/ <t ; 8) /RS lu(s, z)|>p(s, z)dz.

Now, we have

e €

/t dse ty/ (t — 8) / ]u(s,x)\2q§(s,x)dx % / \u(t,x)]2¢(t, z)dz in LP(R)
t R3 R3

for any 1 < p < oo, by u € L*((a,b), L2(U)), ¢ € C((a,b) x U, [0,+0cc)) and, finally, by
Theorem 1.6. Then, there is a sequence €, \ 0, s.t. for a.e. ¢t we have

¢ _
dse; 1y <ts> / lu(s, z)|>p(s, x)dx n/—oo>/ lu(t, z)|>¢(t, x)dx for a.e. t € R,
€n R3 R3

t—e

see in the proof of Theorem A.19.

14 A first result of Caffarelli, Kohn and Nirenberg
Definition 14.1 (Suitable pairs). A pair (u,p) is suitable in (a,b) x U if:

1. u € L*((a,b), L>(U,R?)) and Vu € L?((a,b) x U) and is divergence free, and p €
L32((a,b) x U, R);

2. —Ap = 818](uzu]),
3. u satisfies for all t € (a,b) the local energy inequality
t t
/ lu(t)|>p(t)dx + 2/ / |Vul|?pdzds < / / ul*(¢¢ + Ag)dads (14.1)
R3 a JR3 a JR3

+ /t/ (u|? + 2p)(u - V)pdads for all ¢ € C°((a,b) x U, [0, +00)).
a JR3

In this section we will prove the following theorem.

Theorem 14.2. There exists absolute constants € > 0 and cpr > 0 s.t. if (u,p) is a
suitable weak solution of the NS with

R_Q/ (IUI3 + Iplg) dtdz < € (14.2)
Qr(to,zo)

1

3

0

for an R>0 and for a eq € (0, €p], then [[ul|Loc(qp o (to,m0)) < CME -
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Notice that, in view of Theorem 12.1, u would be smooth in x and Hélder continuous
in ¢ inside Qp/2(to, o). The proof of Theorem 14.2 is rather articulated. Before proving it
we will discuss a consequence. Notice that Theorem 14.2 says that for an R > 0 and for a
€0 € (0, &g

-2 3 3 %
R /QR<tO+1§2»wO> (!ul + |P!2) dtdr < eg => |IUHLOO(QR/2(tO+%2@O)) <emed.  (14.3)

Notice that Qp/s (to + %2, m()) = (to + %2 — RTQ, to + %2) X Bprj2(xo) is a neighborhood of
(t(]a .’I,'O)

Definition 14.3. A point (t,2) € Ry x R3 is called a regular point of a weak solution wu if
there exists a neighborhood of (¢,z) in R, x R? such that v € L>(U,R?). If not regular, a
point (t,x) € Ry x R3 is called singular.

A simple consequence of Theorem 14.2 is the following result.

Proposition 14.4. Given a suitable Leray—Hopf weak solution u, then the set of singular
points S of u is bounded in in [0,00) x R3.

Proof. We already know that there exists T s.t. u € C®((T,00) x R3 R3). Now we will
show that there is an Ry > 0 s.t. S C [0,7] x B(0,Ryg). Theorem 14.2 implies that if
(t,x) € S, then

R™? <|u]3 + ]p|g) > ¢ for all R > 0 and for 5 € (0,1) such that ¢ +nR? — R* > 0.
QR(tJrTIRQ@)

From

2 1
Jullzs@nternmean < Nl 3 oo o |@n (0B 2) 130 =l g o (3

and

2 L 4£ P ot
) < el |Qr (t+ R, ) |15 —||p|L1r9<QR<t+nR2,m>>( ) 2o

||pHL%(QR(t+7]R21$ L%(QR(t+nR27I))

we get,
10 5 19 5
/ (\ul? + ]p|§) > Cey R™s for all R > 0. (14.4)
QR(t—i_nRva)

But we also know that u € L%((O,T) x R3,R3) and p € Lg((O,T) x R3,R3). If S is
unbounded, then for any R there is a sequence (t,,z,) in [0,27] x R? and corresponding
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Mn € (0,1) where (tn + nnR2,a;n) N (tm —|—77nR2,a:m) = (), we have Qg (tn +77nR2,xn) C
[0,2T] x R3 for any n and, for any fixed R > 0 with ¢, — 7%R2 >0,

10
/ (juf¥ +1pl?) = e RS,
QR(tn+nnR2awn)

But then we get a contradiction

10 5 10 5
ox [ ()2 Y (1ul® +1915) = +oc.
[0,2T)xR3 n JOQR(tn+mmR2,xy,)

O
Another corollary is the following.

Proposition 14.5. Given a suitable Leray—Hopf weak solution u and any compact subspace
K CC Ry x R3, then the set of singular points S satisfies dimpg(S N K) < 5/3.

Proof. Suppose this is false, so that we have that dimp(S N K) > 5/3 in a case, and
let dimp(S N K) > d > 5/3. Then, by Lemma 7.11 there is a sequence ¢; — 0 s.t.
M(SNK,e) > e;d, where M (SN K, e¢j) the largest number of disjoint open balls of radius
€j with centers at points of SN K. Now for € € (0,1) we have

. €2 €2
Be(tv l’) ) Qe/z(ta x) = Qe/Q(t + 62/8,1') = (t - Z7t + 4> X Be/Q(x)a
indeed, for any (s,y) € Q:/2(t, x) we have for
et €2 et €2 1
t—s)? — )2 — 4+ — <=+ = <2 26
ViE—95)2+y—x)2< wt TSVt <2

For any j, fix M; := M(S N K, ¢;) open balls of radius €; with centers at points of SN K.
Then, we get a contradiction:

M; 5
oo>/ (ll¥ + 1pl) 22/ (1l + 1pl7) = e} 225 oo,
[0,2T] xR3 1=1 Y Qc; j2(ti+€*/8,z1)

O

We now turn to the proof of Theorem 14.2. Following [14] we proceed by outlining

twice the argument, with increasing precision, before giving a full proof in the third try.

First of notice that, by scaling invariance of the NS and of the estimate (14.6), it is enough
to take R = 1. Furthermore, we can take tg = 0 and xg = 0.
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14.1 First outline

We oversimplify and we assume that there is no pressure in the local energy inequality
(13.5), so that the latter is for s € (a,b) of the form

/yu 2e(s dx—|—2// |vuy¢<// ul2(8; + A)o (14.5)
+/a /R luf2(u - V) for all ¢ € C2((a,b) x U, [0, 450)).

Then using (14.5) it is possible to prove the following.

Proposition 14.6. There exists absolute constants € > 0 s.t. if u satisfies (14.5) and

R™2 lu3dtdz < e (14.6)
Qr(to,z0)

2
for an R>0 and for a eq € (0, €p], then [[ull Lo (Qp s (t0.00)) < €6 -

First we give a heuristic argument picking R = 1 and (tg,z¢) = (0,0). We will prove
that for any (s,a) € Q1/2(0,0) we have

2
251 / luPdtdz < €} for all n € N (14.7)
Qy—n(s,a)

2
Then by Lebesgue’s Differentiation Theorem, this will imply ||u|| 7, ) < ¢ for a.a.

(to, xo) .

We will consider an appropriate sequence of cutoffs ¢,. They are chosen so that (9; +
ANy, = 0. Here let us assume (9, + A)¢p, = 0. In fact the ¢,’s will be almost fundamental
solutions of the backwards heath equation, but not quite. They will satisfy estimates of the
form

(Qry2(to,zo

¢n ~ 2" in Qy-n(s,a) and
C2%" in Qy-n(s,a)

n| < _ . 14.8
Von| < {CQ n9dk in Qo1 (5,a)\Qy—k+1) (5, a). ( )
We assume by induction that
2
92k / luPdtde < €327 for all k < n. (14.9)
QQ k(s a‘)

Using (14.5) we have for t € (s — 272" s)

/ \u(t)]22”dx+2// \Vu|22”dxdt’§// |V | dadt’
2 ’ﬂ(a) Q2,n(s,a)ﬁ{t’<t} Q2—1(87a)

= Z// [ul?|V | dxdt’ + // ul?|V éy,|dxdt’
QQ k 5,a \Q2—(k+1) (Sva) Qg—n (S’G)
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where we decomposed the domain of integration on the r.h.s.
@2-1(s,0) = (Q2-1(s,a)\Q2-2(s5,a)) U (Qa-2(s,a)\@2-3(s,0)) U ... U (Qy-(n-1) (8, a)\@Q2-n (s, a)) U Q2-n (s, a).

Now, using (14.8) we obtain for ¢t € (s — 272", 5)

2 [ juPde e [ Vel ded’ <
32 n( ) Qy—n(s,a)N{t'<t}

< 022—2”24’f / / luPdzdt’ + C22" / / |u|3dxdt’
Q,—k(s,a) Qy—
2

2 2
=027 g B <027,
k=1

Ow\w

2
<C27m Z 27Fed + C27"e

From this, for ¢t € (s — 272772 5) we get
2
g / |u(t)dz + 2712 / / \Vul?dedt < 220272 Ded . (14.10)
By,—n-1(a) Qy—n-1(s,a)

So far we have shown
(14.7) for n” = 7(14.10)
using heuristically inequality (14.5). Now we show rigorously
(14.10) = (14.7) for n+ 1,

using Sobolev’s Embedding and, specifically, the following lemma.

Lemma 14.7. There exists a constant Cy > 0 such that for any s € R, r > 0 and a € R?
and any u s.t.

u € L™ ((s —r? s) L*(B,(a ))) and Vu € L*(Q,(s,a)),

then

7"_2/ lu|?dz < Cj
Qr(s,a)

Proof. By scaling, it is sufficient to consider » = 1, and by translation invariance we can con-
1 1

Njw

r~t sup / |u(t)|2dx—|—7“_1/ |Vu|2dtdm] . (14.11)
By (a) Qr(s a)

5—r2<t<s

sider (s,a) = (0,0). By Holder inequality |ul[zs(p,) < HUHEG(BI)HUHI%Q(BQ and by Sobolev’s

1 1 1
mequality Jul s,y < collllzasy ol Vul o,y Then ooy < (eliacsy + 190l b il )

118



and so, by (a+ B)? <2971 (a4 + 39) for ¢ > 1 and for a, B € Ry (this by the convexity of
t— t9)

3
3 1 1
[ s < (Wulai + 190l g o
B1

3 3 3
< c§ (Il + IVl gl ooy ) -

Then, by Holder,

3 [0 3 3 3 [0
/ ]u|3dmdt < dcg /1 HVUHEQ(BI)||u]|22(31)dt +4c§ /1 ||uH%2(Bl)dt
L _

Nlw

3 3 3 0
<A IVl ) 4y g 10022, a0y + 465 / Il

3 3 3 3 0
= 46 11l s 2l +468 [ Tl

w

] 3 ) 3
3 3 2 3
= 4dcj HV“sz(Ql) (_131<1F<0 HUHL2(31)) + 4 <_151<1P<0 HU”L2(31)>

w

3 3 4 2
19 (gt I )0 (g I )

3

Nl

3 3 2 3
< 26§ IVl + 065 (_sup Nl ) <00

3

3
2
Vull} +< : >
| u||L2(Q1) 7152&0”“”1;2(31)

3 2
< 6cg [HVuH%g(Ql) +152?<0||u”%2(31):| ;

where in the last step we use a9+ 37 < (a + 8)? for ¢ > 1 and for «, 3 € R, which follows

a q 8 q a B
from (M) +<a—i—ﬂ> §a+ﬁ+a+6—1f0rq21.

Then we are done, for Cy = 603 .

w

Then, applying the lemma, for ¢y < (2%0()0%)_3,

22n+2 // |’U/’3 S CO [23022(TL+1)6§:|
Qy—n—1(s,a)

where C' is a fixed constant, dependent on the ¢,. Notice that (14.12) yields the induc-
tion (14.9) with n replaced by n + 1. Notice that here the nonlinear structure is crucial,
specifically the fact that we have taken the 3/2 power of (14.10).

3

2

Swli

_ 22000’3273(7%1)60 < 97 3(n+1),

(14.12)
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14.2 Proof of Proposition 14.6

It is worth, first of all, to see the definition of the cutoffs ¢,,, in order to make sense of the
bounds in (14.11).

Lemma 14.8. There exists a constant C1 > 1 and for any fized (s,a) € R* a sequence
¢n € CX((s—1/9,s+ 2_(”+1)) X Bl/g(a)) such that for all n > 2 we have the following
facts:

(i) C712" < ¢, < C127 and |Vn| < C12%" in Qy-n(s,a);
(ii) ¢n < 0127223 and |V, | < C127272% in Qy—r-1)(s,a)\Qa-k (s, a);
(i) suppén N (=00, 5] x R?) C Quys(s,0);
(iv) |(0r + DN)gn| < C1272" in (—00, 5] x R3.
Proof. 1t is enough to consider (s,a) = (0,0). Then
On(t, ) = 2720, (t, ) = 272" xn (L, )Y (¢, 2). (14.13)
Here we choose 1, such that
(O + A)app(t, ) = 0 for t < 272" and with initial value ¥, (272", 2) = 6(x).  (14.14)
Recall that Ki(x) = (47rt)_%e_%2 satisfies (0y — A)Ki(x) = 0 for t > 0 and Ki(x)|i=0 =

d(z). Then K_;(x) solves the analogue of problem (14.14) but with the condition K_;(z);—o =
d(z). Finally, by translation invariance we find
‘2

() = Kyan_y(3) = (4m(2~2" — 1)) ~3e 16210 (14.15)

3
2

Notice that the constant factor (47)~ 2 is not important in the discussion. We have

Pn(t,x) = (4r(27" — t))*%e‘#‘jm < (4r(27 1)1
< (4n272) 73 = (4m) 7225 in Qgon = (—272,0) X By (14.16)
Ynlt,2) = (4m(22" + |¢))Ee" T
> (4m(272" 4 2*2”))*%{@%% = (87) 2e 523" in Qyon. (14.17)
Next,
Vi (t,2) = —2 tn—2(4(272 — t))—%e*#‘i-n x
so that

Vb (£, 2)] < 276722527 = 2767=394 i Q,_,. (14.18)
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Keeping in mind the factor 272" in (14.13), (14.16)—(14.18) explain (i). We will see of course
the full estimate of ¢,, shortly.
Next, still focusing on Vi), (t, x) only, observe that

Qo -1 \Qa-k = (—Q_Q(k_l), —2_%) X By (k-1) U [—2_%,0) X (By-k-1)\Ba-&) .

Now, in (—272(:=1) _2=2k) B, (1) we have

2
=]

Yn(t,2) = (4m(2720 4 |t])) "2 10D < (4m(2720 4 2773
< (4727 %)"3 = (4r) 223k, (14.19)

while in [-27%%0) x (B,-(x-1)\By—k) we have

B |z‘2 _ o—2k
Yalt ) = (w2720 4 t]))"Be T < (4n(272 1 |t]))~Fe T T
3
3 2’2’“ 2 92k 3 3 p
= (47) "2 23k <> e 1) < (47) 2 2% supaze 1. 14.20
(1w (g < (4m) 3 2% sup (14.20)

Turning to Vb, (t,z), in (=221 272k} x B,_._1) we have
__l=?
IVabn (£, 2)| = 2710~ 2 (4(272" + [t])) 3¢ 1@ 27700 || < 2 (827 2K)~32F
= r72(8) 32, (14.21)

and in [-272,0) x (By—(k-1)\By—+) we have
1 -3 2 5~k 1 -3 2 5 —tmer o (k-1
Vit )] = 27 (4272 4 t])) e T fo] < 27 r (422 4 o)) Ee T T (D)
_ok 5 —2k
—udadon (27 VY i@ mhm < a-dr o eupade (14.22)
2—2n 4 ‘t‘ - a>0
Keeping in mind the factor 272" in (14.13), (14.20)—(14.22) explain (ii).
If we chose x,,(t,z) = 1 in (14.13), that is if we chose ¢, (¢, ) = 272", (¢, z), we would
then have (i),(ii) and (vi), but obviously we would not have (iii). We define

Xn(t,z) = X ()T, (t) where

1in By 1 for t € (—1/16,0)

X(@) = {O outside B3 and Tp(t) = {0 fort < —1/9 and t > 27271, (14.23)

with T, |(_ee,0) = T independent of n, and they are X € C2°(R?, [0,1]) and T,, € C°(R, [0, 1]).
Now suppx, € @1/3UI0, 2721 x Bj 3, and so clearly the ¢,, in (14.13) satisfies (iii). Notice
now that

VO, (t,x) = p(t,z)Vxn(t,x) + xn(t, ) Vb (t, ).
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Then |x, V| < |Vi,| and the previous estimates apply, while |1, Vx| < |[¥nVX]| < by,
is smaller. Hence our ¢, in (14.13) satisfies (i) and (ii).
Finally, we have

(O + D) pu(t, ) = 272y (8, 2) (0 + AN xn(t, ) + 2 272"V xn(t, ) - Vi (t, ). (14.24)

Here is important to observe that x, =1 in Qy/4 and x, = 0 in (—00,0] x R? outside Q13-
This means that the terms in (14.24) need to be bounded only in Q;/3\Q1/4 C Q1/2\Q1/4,

where ¥, < (47)7225, by (14.19), and where |Vib,| < 028, by (14.20)-(14.21). From
IVxn| < |VX]| <, it follows that the 2nd term in the r.h.s. of (14.24) satisfies the desired
estimate. The same is true for the 1st, since

(O + D)xn(t, @) < T + [AX| < T+ [AX| < e
and so

3
|’¢n(at + A)Xn| < Cl|¢n|Q1/2\Q1/4| < 01(871-)_226'

O
Proof of Proposition 14.6. We proceed proving by induction
A,
2
25m / lulPdtdr < €} for all n > 4 (14.25)
Q2_n(8,a)
By,
2
" sup / u(t)|?da + 2" / / Vul? < Cp22el.  (14.26)
s—272n<i<s J By pn(a) Qy—n(s,a)

We already saw how B,, = A} by Lemma 14.7. Now we prove A} and how A4/, ..., Al —

By
We start with A/, for n < 4. We have the following, which uses the hypothesis (14.6) for
R =1 and (to,z0) = (0,0) and which proves Aj, for n < 4: for any (s,a) € Q/2(0,0)

2 1
25'"/ |u]3dtdx < 220/ \u|3dtd:v < 2% < e; for 22065’ < 1, that is for ¢y < 2715,
QQ,n(S,G/) Ql(ovo)

Now we show that A, ..., A}, = By4+1. We consider, for t <0,

[ ope+2 [ ¥ (Vuton < | tl/g / s sy,

t
+/ / uf2( - V),
~1/9/By 3
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where we exploited that suppe, () CsuppX C El/g and supp¢y, (t) CsuppT, C (—1/9,272771).
Let us focus now on one term of the L.h.s. at a time.
For s — 272" < t < s and restricting to a = 0, we have

0—12"/ |<>\2/ (1) / / fu? atmqsn/ / ul?(u- V)
1/9 Bl/3 1/9 Bl/3
<o / / ul? + / / [V bl
1/9 B1/3 19 B1/3

and similarly

2CT7 12"/ / ]Vu\z < 2/ / |Vul>pr, <C’12_2"/ / |u? +/ / |V nl,
s—2-2n 1/9 J B: 1/9J B3

so that

crt2m sup / lu(t)|* + Cy 12”/ / ]Vu\Q
s—272n<i<s J By s—272n

3012—2"/ / uf? + / / P [V . (14.27)
— 2 1/9J By 5 1/9

Now we examine the 1st term in the r.h.s. of (14.27), for which by s < 0 we have

3 —2n * 2 3 —2n 2
—(C42 lu|* = =C12 |ul
2 ~1/9 By 3 2 Q1/3 5,0)

< 50127 2n|Q1/3\1/3HUHLs (Qu/3(5,0) = 012 2n’Ql/3|1/3HuHL3 (Q1(0,0)) (14.28)

N W

—on3 _sdm e —on 3 —2n —2n
<272 3 (3 53> 6(2)/3:012 2 ﬁ(47r)1/36(2)/3<012 2 63/3 < 272 6(2)/3,

where we used [|ul|z3(g,(0,0) < 60/ from hypothesis (14.6) for R = 1 and (¢g,z9) = (0,0)
and V47/6 < 1.
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We consider now the 2nd term in the r.h.s. of (14.27). We have, by s <0

/ / [V én] < / / [ Vbn| < / / * [V 6]

1/9 B3 Q1/3(5,0) Q1/2(5,0)

- Z / / ¥V 6] + / / w6
Qy—(k—1) (5,0\Qy—£ (s,0)

Syl uf? + G2 / [
ng(k71)(s’0>\Q2_k(s,0) _n(s,0)

k=2

n
< 2012—2n24k // ’u|3 + 012271 // ‘u|3 ZC 2—2n24k // ”U,|3
QQ—(k—n(. 0) n(5,0) 9=k (5,0)

k=2

2 I 2
<Ci27e Y 27F =27 i1 22— < 01272 2 12 = 127273,
= k=0

So, returning to (14.27), we have proved

s 2
" sup / () + 2" / / Vuf? < 30222,
s—272n<it<s /By -1JB,

Then

2+ sup / [u(®)f +2+ // Vul® < 230272 e
s—2-20t D) ct<s J By Qy—n—1(5,0)

and this proves the induction argument for Cz = 24C%.

D win

14.3 Proof of Theorem 14.2

In the proof of Theorem 14.2, the presence of the pressure complicates the discussion. As
before, we normalize to the case Q1(0,0). We proceed by induction proving the following:

22n /
Q

Ap

. 3 2
" Jul® + 23”/62 . D~ (D), (|2 <2777} forallm € N; (14.29)
s,a 2—n (8,0

2—n

2
" sup / u(t)|2dz + 2" / / Vul? < Cp2 2. (14.30)
B,_n(a Qy—n(sa)

5—272N<t<s
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We prove Ap, then Ay, ..., A, = Bp+1 and, finally, By, ..., B, = A,. The first of these
two implications is based on the local energy inequality (14.1), while the last of the two
implications follows essentially from Sobolev’s Embedding and like in Lemma (14.7), exactly
like in the proof of Proposition 14.6, and estimate on the pressure, see Lemma 14.9 below,
which essentially bounds p in terms of |u|?.

Step 1: proof of An for n < 4. We use, for (p)p,(,) =average of p in B,(a) =

a)| =t fBr(a)p

S Ar
/QT‘(S a) ‘(p)BT(a)‘q = /Qv-(s a)(|p’)?9T(a) - /5—7«2 3 3(|p‘)Br dr

)

q
S Ar 1 S 4w’ 1
[ e (e [ ot} ars [t [ = [
s—r? 31 JBr(a) s—r? 37° JBr(a) Qr(s,a)

where in the 1st inequality we used the obvious fact that |(p)g, )| < (|pl) B, (a) and the 2nd
inequality follows by ¢ > 1 and the Jensen inequality. Using (o + 3)? < 2971 (a2 + 39) for
g > 1 and for a, B € Ry (this by the convexity of ¢ — t7), we obtain

3n
22”/ Jul + 22 / = (P)B, 1 (a)
Qy—n(sa) Qy—n(s,a)
3,41 3
<o [ Pt [ (0, )
Q (s,a) QQ*W«(S)Q)

: : : 2
< 22n/ ’u3+22n+g/ ‘p’% < 22n+g/ <‘u’3+ ’p‘%> < 22n+%€0 < 2_3n68
Q (s,a) 5—n (5,a) 1(

for 25"+%eo <271 for n < 4.
Step 2: proof of A, ..., A, = Bp+1. We consider, for t < 0,

/| Jult)ou) +2 / / [Vl < / / o0+ B
w2 9o

and we conclude

cr'2m sup / \ (t)? +C_12"/ |Vul?

Njw

njw

2—1

2—n 5,

s—272nt<s Qo—n(sa)
< 012_2”/ / |u|2—|—3/ / |ul |V¢n|—|—2/ / pu - Vo
1/9 J By /3(a) 1/9 /By /3(a) 1/9 /By /3(a)
=L+ 1+ Is.

We have already seen, in (14.28), that I; < 012*2”63/3 and, in the inequality after (14.28),
2
that Iy < %012_2n68
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We now focus on I3. We consider a sequence i € C2°((—o00, s] x R3,[0,1]) for k =1,....,n
with

Xt = 1in Q%Q,k(s,a), suppxx N Q1(s,a) C Qy-k(s,a) and |Vxi| < 2F16. (14.31)

It is enough to pick xx(t,z) = T(22%(t — 3))X(2k(x —a)) with X(y) =1 for |y| < % and
X (y) =0 for |y| > 1 and with T(1) = 1 for ||| < I &= > and T{)=0|l|>1.
Now we write

13:3/ / pu'Wm:B/ / pu-V [dnxi]
,1/9 Bl/3 71/9 Bl/d(a)

32/

pu -V [on (Xk — Xet1)] + 3/ pu -V [hnXn]
Q1/3(s,a)

Q1/3(37a)

=3 Z/Q o) (p - (p)Bz_k(a)> u-V [én (Xe — Xot1)] + 3/62 » (p - (p)BTn(a)) w -V [dnXn)
1/3(s.a 1/3(s,a

(= @y ) w T n b= 43 [ (0= @), ) w T lbanal,

ngn (s,a)

where we used suppxx N Q1(s,a) C Q9 (s,a). Then we have

|13] <3Z/

2~

1l |V [ (i = xes)l +3/
QQ*’H(Sva)

(P)B,_k (a) P = (P)B,_n(a)| [l [V [Pnxn]|-

k(s,a)

Now we use the bounds

[k = Xk+1) V)| < (XQ, 4 (5.0\Qyi—1 (5:0) T XQy—t—1 (5:0)\Qy_—2(5,0)) | VO]
< 272 k4 o 01272942 from (i) Lemma 14.8,

where we used the fact that x; — X441 = 0 in Qz5-x—1(s,a) and outside Qy—«(s,a) (in the
8
region {t < s}),

Xn [Vl < XQ,- 0 (s.0) [VIn| < C12°", from (i) Lemma 14.8,

k k
| (VX — VXit1))| < b0 <16 2 XQQ_k(s,a)\Q%Z,k(s,a)) +16 2 +1XQ2_k_1(s,a)\Qg2k1(s,a))>

k k+1
< ¢on (16 2 XQQ—k(S@)\QQ—k—l(S»a)) +16 28 XQQ_k_l(s,a)\Q2_k_2(s,a)))
<16 2FC 272230+ 416 2810127279305 2) from (ii) Lemma 14.8 and (14.31)
and, finally

|0n Vxn| < ¢n16XQ2_n(s,a)\Q%Q,n(s,a)) < 9nlbxq,_, (s,a) < 16C12" from (i) Lemma 14.8 and (14.31).
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Then, for an appropriate ¢, we have

n—1
Bl < gy 2t P B, | Jul + G2 [ = )n, | lul
k=1 szk (s’a) ngn (s»a)
—qez Y2 [ o s, |l
k=1 Qg—k(s7a’)

n
_ T 2
<pCi2m Y 25525l L3 (@, (s, 2" P = (D) B, 1 (a) HLg(QTk(s,a))

k=1
" 7 3 3
<aoiz Y2 (26 [ et [ el
k=1 Qg—k (S7a) Qg—k(sva)
n 9, 2 2 1]
< pCh27 ) 27l < 2" Chef ———.
k=1 25 =1
So we have shown that Ay, ..., A, imply
2 C/
L4+ 13 <C (1424 )22 for g = —52—.
23 —1
Then
2
2" sup / lu(t)]? + 2 2"/ [Vaul? < (1424 c) C7272"€}
s—272<t<s J By n(a Qy—n(s,a)
and so also
2t sy [ quepert | Va2
5=272n72<t<s J By—n(a) Qy-n-1(s,a)

2
<2(1+24 ) CF27 2+

So, if we set Cg =2 (1 + 2+ ¢9) C? we have Ay, ..., A, => Bpi1.
Proof of Bs, ..., B, — A,.
Recall that we need the bound

2
22"/ ul? + 23"/ lp—(p)B _n(a)|% <2738 .
Qyn(s5,0) Qyn(s5,0) 2

The first term in this formula can be bounded using (14.11), that is, using B,

22”/ lul> < Cp |2 sup / lu(t))? + 2”/ |Vul?
Qy—n(s,a) s—272n<t<s JBy_p(a) Qy—n(s,a)
2 9
2

272 1 3 1 2 —
< Oy [0322%8] = Z4000]%,2*3”50 < 127?)”68 for ¢y < 4*300_303 .

ol
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To finish, we will prove
3

3 3 _ 2
22”/ P = ()8, (@] < 42 e (14.32)
ngn(sya)

To this effect we will use the formula, valid for 0 < r < p/2,

3 _3
/ p— (D)o} < Cor / uf?
QT(S7C")
3

2

r<|y—al|<p ly —al?

r

Njw

sup
s—r2<t<s

r3 3
vay [ (il
p2 Qp(s,a)

+ Cyr®

We apply this formula for » = 27" and p = 1/2, to get

3 3 3
20 [ e sl < C2 uf?
ngn (s,a) QQ—(n—l)( aa)

S
3
2 2
+C27°" | sup / uit) 1 (14.34)
§s—2—2nct<s 2—(”—1)<|y7a‘<1/2 |y - CL|
- 02232—3”/ (1l +1pI2)
Q1/2(s,a)

Then we estimate the three terms on the r.h.s. of (14.34).
For the first, we have, using inequality (14.11),

0223"/ lul® = 4022—%”22<"—1>/ ul?
Q27(n71)(57a) Q27(n71)(57a)

< 4CHCH27 2™ |2nt sup / lu(t)|?dx + 2"_1/ |Vul?
s—272(n=D<t<s I B, (n_1)(a) Qy—(n—1)(s,a)

1 213 1 5 3 1\ 1 2
<4C2Cp272" [0822@1)63} = 116(72006%275”273("71)60 < <32C’2C00§603> 1273"603

(14.35)

Njw

The last term in (14.34) is bounded using le(o 0) <|u\3 + |p|%) < €p, which yields

95-3n 3 3 99-3n 35\ Lo-3n 3 1, 3,3
05232 <|u| —|—|p|2) < (40y23273me3 ) ~273ed < Z27%e3 . (14.36)
Q1/2(s,a) 4 4
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We consider now the middle term in (14.34). We have

)2 — )2
sup / |u(®)] = suwp Z/ |u(®)] :
2= (=D <|y—a|<1/2 ly — a 5—27n<t<s o J2 R <|y—al<2~ (k=1 ‘y - a"

§—272N<t<s
n—1 n—2
<2ty "tk sup / lw@))? =24y 2% sup / lu(t))?
=2 s—2720k-D<t<s I B, (-1)(a) =1 s—272k<t<s J B, i (a)
2 N2 2
< 2'Cpeg Y 2" <2'Cpef2”.
k=1
Then
3
O |*
G2 | sup / Ju®)| (14.37)
s—272n<t<s J2- (=D <y —a|<1/2 |y - (l|
i [oredon]® = 1 (abcnciit Yoot - Ly on 3
< Cy270" {2 03632"] < 1 <2 CQCE,GS) 27l < 127 el
So, summing up (14.35)—(14.37), we get (14.32), and this ends the proof of Bo, ..., B, = A,.
O

We will prove now formula (14.33).
Lemma 14.9. There exists Cy such that forp € L%(Qp) andu € L3(Q,)NL>®((—p?,0), L*(B,))
and for —Ap = 0;0;(uiuj) in Q,, then for any 0 <r < p/2 we have

_3 3 _3
r2/|pwm&z<@r2/ fuf?
Qr 2r

3
+Cyr® | sup / M 2 (14.38)
—r2<t<0 J2r<|y|<p ’y|
3
r 3
+Cly [l +1pl?).
Pz JQ,

Proof. We will start by assuming u € L®((—p?,0),C™(B,)) with N > 1. This in turn
implies that p(t) € L>((—p%0)),C*(B,)) for a large k < N and for p/ < p: this is

analogous to Lemma 11.5 valid for the pair (u,w).
Let now ¢ € C°(R3,[0,1]) with

o 1in ng/4
() = {0 outside B,
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with V| < cp™! and [8;0j¢| < cp2. Then, like in Lemma 11.2, we have

00 = ()7 (=)0 = T+ (CA)0) = o+ (68D = pLg =250 Vi)

= 47r1|x| * (000 (uiuj) — pAd — 2V - Vp)

_ 47T1|x| « (0,0 (duiu;) — 0 (usw;0;0) — 9 (wsw;0i) + uiu; ;0,6 — pAs — 2V - (V) + 2pAAg)
_ 473‘:4 « (03 (dusty) — 2uiu; 0 — 2p0; ) + 47333‘ « (uite;0,0: + pAG)

= —ﬁ s« (05 (usuy) — 2uu;0i — 2p0;0) + 47r1\a:| % (10,0, + pAA)

Now we can apply Lemma 11.6 and conclude that, for some constant C,

1 Oii 3x;x;
=——PV. Yo T iU 2
op === PV. (2% = S0 ) (o) + Col
€Ty 1
—+ 47‘(‘|$|3 * (2ulu]&¢ + 2p6j¢>) + m * (ulu]é)]&gb +pA¢) .

We have p = ¢p in Q3,/4. We write

1 5@ 3:61'.%‘
pi1:i=——PV. << 5 j>> % (XBay Guitt;) + CPlul®

4 R

1 Oij  3wi;
pas= = (i - o)) (0 ) .

Then

2
IPuall ) <O Nowill g <O sty < Clulag, )
1,3 1,3
and so also
S 20’||U||%3(Q2r)

||p11 - (P11)Br||L%(QT)

which is equivalent to
3 3
| o= ua i< eent [
Qr

Next, we observe that by mean value there exists z((t) € B, so that (p12)p, = p21(xo(t))

1
p12(t,z) — (p12)B, (t) = /0 Vpia(t, s(z — x0(t)) + 20(t)) - ( — 20(t))ds
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and so

1
Ip12 = (pr2). |, 3 27"/ ds|| Vpra(s( = 2o(t) + 2o )], 3, , < 27[Qr13 VP12l (o)

L3Q,) = L2(Qr) —

2 101 3x;x;
—2r a3t 9 (2 - xg)*<<1—XB27.>¢uiuj>||Lw<QT>

1
)y / fu(t, y) 2y
/p>|y22r ‘CL’ - y‘4 p>y|>2r ‘y’4

where we used |z — y| = |y| <1 - ||:13||> > |yl2~t
)

13
< (Crs

< 2407”?
L2 (Qr)

9

Lo (Qr)

So we conclude

3 3 3
/ P12 — (p12)B,27 <2°C2r2r® | sup / 4\U(t y)[dy
Qr —r2<t<0 J p>|y|>2r |yl

Now we set

3
2

T
= = * Ui * pO
D2 = p21 + P22 Irlas it z¢+4 ’ E p0;¢.

Then, also from |V@| < cp™, supp|Ve| C B, \ Bs,/4 and, for x € By,

o= sl =bl (1= 1) =l |<1—4p>>\y|( %/’j)=|yr<1—§):‘§’,

we obtain
3 - Ju(y)]?
Ip21 — (p21) B, | < 2r|B;|3]|Vpar| e B, SCT3p 1/
’ ) ’LE(B ) r H H (Br) %pgy‘gp |aj - y|3
303,71 |u(y)[® 3013 —4 2
<3Cry 3y <4°Cr'p u(y)|2dy
toshise Y] 2p<lyl<p

win

2
43 1 ’ -
<oy o<l <ol ([ wPay) <cole ([ )
§e<lyl<p ipslyl<p

Then
3 3 9 9
/ ipo1 — (o), 3 < (C)3r8p / fuf*dy.

By the exact same argument,

w

/ P22 — (P2, |3 < (C')3r3p3 / ipl3dy.

T
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Finally we set

1
P3 = P31 + P32 iz * (uiuj0;0;0) + pr=p * (pAg)

They can be treated like pa; and pao, due to |0;0;¢| < cp~2. Indeed, for example

I = o) 3, < 2018 iy < O 72 [ i
Lz(Br) 2p<lyl<p 1T =Yl
2,3 —2 u(y)? 2.3, —4 2
<wery [ dy <oyt [ july) Py
3 p<|yl<p lyl 3r<lyl<p

2
3

<C'Crip™? (L \u(y)\?’dy) etc.
7Pr<lyl<p

4

All the above estimates have been obtained by assuming u € L¥CY (67,,) In general, we
consider a sequence L=((—p2,0),CN(B,)) > u, =% u, with the convergence occurring

in L3(Qp) N L=((=p?,0), L*(B,)).

15 A second result of Caffarelli, Kohn and Nirenberg

In this section we will the following theorem.

O]

Theorem 15.1. There exists absolute constants e; > 0 s.t. if (u,p) is a suitable weak

solution of the NS in Qgr(to,xo) for some R > 0 and we have either

1
limsup/ IVul? < e or
Qr(t07x0)

r—0 T

. 1 2
limsup —  sup lul® < e,
r—=0 T ¢g—r2<t<ty J Br(zo)

then uw € L>(Q,(to, x0))) for some p € (0, R).
Specifically, we will show that

(2p)2/Q ( )(\u|3+|p\3)dtdx <e
2p(t0,Z0

(15.1)

(15.2)

(15.3)

with € the small positive constant in Theorem 14.2. Then, the conclusion follows from

Theorem 14.2.

Like in the previous section, we will at first prove a simplified version of this theorem,

where there is no pressure.
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15.1 A simplified result, without pressure

We oversimplify and we assume that there is no pressure in the local energy inequality
(13.5), so that, as before in (14.5) we have

i d s Vaul? S 20, + A 4
/BR(mo) ule)"¢le)d 2/t0—R2 /;R(zo) [Vur's = /to—R2 /BR(mo) b )0 (154)
/ / \u|2(u - V)¢ for all ¢ € C(Qr(to, o), [0,00)).
tO—R2 BR(Z'O)

Then using (15.4) it is possible to prove rigorously the following.

Proposition 15.2. There exists and absolute constant €1 > 0 such that if for some R > 0
u € L™ ((tg — R?,ty), L*(Bgr(x0),R?)) and Vu € L*(Qg(to, o)) (15.5)

and u satisfies (15.4) then, if u satisfies either (15.1) or (15.2), there exists p € (0, R) s.t.

p_2/ lul® < €. (15.6)
Qp(toﬂ»‘o)

Before proving Proposition 15.2 we give a sketch. First of all, we can assume (tg, o) =
(0,0). Next, suppose that (15.1) is true and define

~ 1
E(r)=— sup / |u|?.
T —r2<t<0J B,

Then it will be shown that there exists a fixed 6 € (0,1) s.t. E(fr) < 27'e; +27LE(r) for
all r € (0, rg] for ro > 0 small enough. Then

n
E(@"r) <27'eg + 27 E(0" ') < (271 +27) e +27E(0" ) <> 27761 + 27 E(r)
J=1

so that, assuming that E (7) is uniformly bounded in (0, 70], then picking n sufficiently large,
we find that there exists an 7 > 0 s.t. E(r) < 2¢; for all » € (0,71]. Then, by (14.11)

3
2

7"_2/ lu|*dz < Cy |71 sup / ]u(t)\Qda:—i—r_l/ |Vul?| < C [361]%
T i QT

—r2<t<0

3 3 _2 2
= Cp32¢f < ¢ for €1 € <0, C, s3~1 (68)3>

and this, in turn, gives (15.6). So the key point of Proposition 15.2 is that if (15.1) is true,
then E(r) < 2¢; and also a similar case with (15.1) and (15.2) interchanged.
The proof of Proposition 15.2 exploits the following lemma, about cutoffs.
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Lemma 15.3. There exists a constant Cs > 1 such that, for any fizedr > 0 and 6 € (0,1/2],
there exists ¢ € C°(R*,[0,00)) such that suppp N Q1 C Q.

¢ > Ct(0r)™ in Qpr and (15.7)
0< ¢ <Cs(0r)7t, V| < Cs3(0r)72 and |(9; + N)o| < C360%r73 in Q. (15.8)

Proof. We write
o(t,z) = (0r)*I(t, z)ab(t, x). (15.9)
Here we choose 1) such that
(9 + A)(t,z) = 0 for t < (0r)* and with initial value 1 ((6r)%, z) = §(z). (15.10)

Then we know that

2
||

b(t,x) = K gryp_o(x) = (4n((0r) — 1))~ 2¢ 7@70. (15.11)

Then we have

2

Y(t,x) = (4r((0r)* — 1))~ %efﬁ < (4n((6r)2 — 1))~

3
2

< (4n(0r)?) 7% = (4m) 72 ()" in Q, = (—%,0) x B, (15.12)
Dt ) = (67 + [o)) LT
> (r2(0r)D) -3 157 = (3m)~Se=3(0r)~2 in Qpr. (15.13)
Next,
Vi(t,x) = —2 ' (4((0r)% — 1))~ Fe T o
s [
= -2 171' 2(4((9T)2—t)) 26 4((6r)2—t) W
so in Q.

—6,_—32 —4 —a?
—_— T2 07' sup «e . 1514
MOEDE ()" sup (15.14)

We define, for X € C°(R3,[0,1]) and T,n € C=(R, [0, 1]),

I(t,x) = X(z/r)T(t/r*)n(t) where

1in Bl/2 . 1f01"t€(—1/4,1/4)
X(@) = {O outside B and T(t) = { 0 for |t| > 1, (15.15)
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and

1 for t <1r2/4
n(t) = {0 for t > r2/2

Now we check if (15.9) satisfies the desired results. First of all, in @1 we have ¢(t,z) # 0
only if X (x/r) # 0, that is only if |z| > 1, and T(t/r?) # 0, that is only if —r2/4 <t < 0.
Hence it is true that supp¢ N Q1 C Q.

Now, let us look at the estimates. In @y, we have

$(t,x) = (0r)2X (a/r)T(t [r2)n(t)e(t, ) = (0r)2p(t, 2) > (87) 25 (0r) 7",
yielding (15.7) and in @, we have
(t,x) = (0r)2X (a/r)T(t/r2)n(e)e(t, ) < (0r)2(t,x) < (4m)”

so yielding the first estimate in (15.8).
Turning to the gradient, we have

Vo(t,z) = (9r)2z/)(t, x)T(t/r2)n(t)r71VX(x/r) + (97‘)2T(t/7“2)77(t)7"71X(x/r)Vw(t, x).

3
2

Or)~,

In @, we have
(Or) 2 (t, )T (t/r2)n()r~ (VX (w/r)] < [ VX]| Lo (0r)2(t,2) < VX |1 (47) 72 (0r) 7,
and
(Or)>T(¢/r*)n(t)yr~ X (x/r)|V(t,2)| < (0r)*|V(t,2)| < CO 22,

Finally, we have

(0 + D)t x) = (0r)*(t, x) (B + A) (X (2/r)T(t/r*)n(1))

4+ 2(0r)2r T (t /12 n(t) VX (/1) - Vi(t, x).

In Q, using (VX)(z/r)| # 0= 1/2 < |z/r| < 1, we have

2r Y (Or) 2T (t/r2)n(t) |(VX) (z/7) - Vo (t, )| < 0% [(VX)(x/7)] 2_67r_39_5r_4e_24102‘i|

< 276927r7%7‘73HVXHLoo sup g5 51 < CO*r 3.
0>0
Finally, in Q,, using also T'(¢/r?) #0 = 1/4 < |t/r?| < 1
(Or)*W(t,2)|(y + &) (X (2/r)T(t/r*)n(0)) | = (O0r)* (¢, 2)|(0 + L) (X (@/r)T(t/r?)) |
< (0r)*(4m((0r)* + !t!))_%e_‘*“"x;*'”“”_z (X (2/r) |T"(t/r*)| + T(t/r*) [(AX) (/1))
< 62(4m) 3 (1/4) 73 T o my + 6%(4m) 3 (0r) P63 | AX oo < OO,

[
Proof of Proposition 15.2. In the proof it is enough to consider (to,xo) = (0,0). The
first important step is the following.
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Lemma 15.4. For Cy the constant in Lemma 14.7, C3 the constant in Lemma 15.8 and
Cy the constant of the Poincaré inequality (15.17) reminded in the proof, we have

1

1 t
max sup  — |u(t)2,/ / |Vu)?
—(or)2<t<0 07 /By, Or J_(or)2 J By,
2
<303C§60% |[r~1 sup /|u(t)|2+r_1/ |Vu)?
*T2<t<0 r Qr

+4C3C367° (7’_1 sup /|u(t)2> (r_l/ \Vu|2>.
—r2<t<0J By Qr

Proof. Applying (15.4) for the ¢ of Lemma 15.3, we get

/31 lu(t)]?p(t) + 2/_251 /Bl Vul?6 < /_tl /B1 W0+ A)6
i /—t1 /31 (’u|2 B (|“|2)Br) (u-V)o.

Using the estimates in Lemma 15.3, we obtain

(15.16)

1

1 t
— ut2+/ / Vu2<0202r_3/ ul?
[, P g [ [ v < cien |
+C30 02 [ [uf? = (u?),
Qr !

= 1 _9 _
< it @il i, + €07 [ il = (),

Jul

Jul

1
5 (4m\3 -2,.—
= %3+ <3> lulzsq,) +C50™°r 2/Q fuf? = (1) | 1

2

3
< 2036? ( / |u|3) 22 /Q [l = () , | Jul

Now we have

Sl = | ol < Wl = (o) g 3 Nl < CalVHlla s
< 2C4||ull L2y I Vull 2B, lull L3 (B,

where we used the Poincaré inequality

e = (1) 5, 13 5, < CallVhl? 25, (15.17)

see [10] Theorem 8.11, where, by scale invariance, the constant Cy does not depend on r.
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Then, from Hoélder with % + % + % =1
/Q 10l = (jul?) | 0l < 2CalVullz2(q,) lulls 2o, llzsr20)

1
< 2r3Cul|Vul| 2 llulls @) sup  lullzzs,)
—r2<t<0

1 1 %
= 20,1? <7“_2/ \u\?’) ’ (7’_1/ ]Vu\2) ’ (7"_1 sup / ]u(t)|2> .
Qr Qr —r2<t<0 r

Then we conclude

1 1t 5
— lu(t)|* + / / |Vu|? < 2036* <r2/ \u]3>
er B@’f‘ 97’ 7(9702 B@'r Qr
} : 2
+ 20,0202 <r2/ ]u\3> (7’1/ |Vu\2> = sup / lu(t)|?
Q'r Qr —T2<t<0 r
2
< 20%6* (7“2/ \u]3)3
—|—C§92 <7“_2/ |u|3> +4C§C§9_6 (7“_1/ Vu|2> <r_1 sup / |u(t)|2>
r r —r2<t<0J B,

Then, using the inequality

r2/ lul> < Co |71 sup /]u(t)|2+rl/ |Vu|?
Q'r —7"2<t<0 r Qr

we obtain the following, which is (15.16),

1 1 [t
max sup  — |u(t)2,/ / |Vu|?
—(0r)2<t<0 07 /By, Or J_(ory2 J By,
r~1 sup / |u(t)|2+r1/ |Vu)?
—r2<t<0J By Qr

+4C3C307° (7’1 sup / |u(t)2> <T‘1/ \Vu|2>.
—r2<t<0J By Qr
O

Having obtained inequality (15.16) we move to the conclusion of the proof of Proposition
15.2.
We assume either (15.1) or (15.2). For definiteness we assume (15.1) , that is

=

3
2

, (15.18)

2
< 3C3C36°

1
limsup/ Vul|? < e
Qr

r—0 T
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but, assuming instead (15.2), that is
. 1 2
limsup -  sup lul” < €1,
r=0 T g—r2<t<ty J B,

the argument is the same, due to the symmetry with respect to the above quantities of
inequality (15.16). Then for r sufficiently small, we have

1
/ |VU‘2 < 2¢€1.
Qr

T

Then, by (15.16), we have

1 2
sup lu(t)* < 3C303 6

—(67)2<t<0 Or By,

+ 8C3C20 %¢, (rl sup /|u(t)\2)

—r2<t<0

r~1 sup /\u(t)|2+261

—r2<t<0J By

Setting now

~ 1
E(r):=~- sup /]u|2

T _r2<t<0

we have

~ 2 2 ~
E(0r) < 603C§ 0%¢; + <3C§CO3 0% + 8020§9—661> E(r).

2
Now if we use § < 1/2 so small that 6C3C3 6% < 1/2 and €1 > 0 so small that 8C3C30%¢; <
1/4, we obtain

- 1 1~
E(0r) < € + iE(T) for all r € (0,rg] for ro > 0 small enough. (15.19)

This implies

E(0"r) < e +27"E(r). (15.20)
We assume now
limsup E(r) < oo, (15.21)
r—0

which implies E(r) < C5 < oo for r € (0,71]. Then (15.20) implies E(0"r) < e +27"C5 <
2¢; for n > log, (Cg,efl) and 0 < r < min{rg,r1}. This implies E(r) < 2¢; for 0 < r < ry,
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with 75 = ™0 min{ro, 71}, for a fixed ng > log, (Cse;'). Inserting E(r) < 2¢ and (15.1) in
(15.18) we obtain

Wl

T_2/ lul® < 0033/261 < e for e < 3(Cy 60) , (15.22)
Qr

yielding (15.6). To complete the proof of Proposition 15.2, we need to prove (15.21). If
(15.21) is false, there exists R, \, 0 with E(R,) /" oo. Using (15.19),

1 1 ~
E(Ry) < gev+ B0 Ry) e + 27 E(07™ Ry,)

log(Rn/70)
log 0

0~ R, < ro. This implies

for m,, := [ } which is the largest m,, s.t. 67" R,, < rg, so that we have 0ry <

- 1 1~ -
E(R,) < ze1 + fE(Q_an) <e 427" sup E(r)
2 2 Oro<r<rg
which, from E(R,) 2% oo, implies SUPgy <r<ro SUP_r2<1<0 5. |u|?> = oo. But then, this

would imply u & L>®((—R?,0), L?(Bgr,R?)), contradicting the hypothesis (15.5).
O

15.2 Proof of Theorem 15.1
We can focus on the case (to,zo) = (0,0). Then using (14.1) like in Sect. 15.1, we have

/y +2/ /Blyvu\(p</ / u2(0; + A)g
// (1uP? (), <u-v>¢+/_1/31p<u-v>¢

with the test function from Lemma 15.3. Then, by Lemma 15.3 we get

t
1/ \u(t)]2+1/ / \Vu]2§C§92r_3/ fuf?
Or Jg,, Or J_(or)2 /By, Q

430722 [ uf? = (), | ful+ €307 [ ol Jul
Qr "

r

Now, by the discussion in Sect. 15.1, see (15.16), we have

1 1/t 2
0/ |u(t)|2+9/ / Va2 <3C2056 [ sup / |u(t)|2+r_1/ yvu|2]
T J By, T J—(6r)2 J By, —r2<t<0J B, Q-

—|—4CZC’§9_6 (7“_1 sup / |u(t)\2) (7‘_1/ |Vu|2> —|—C'320_2r_1/ Ip| |l
*7‘2<t<0 r Qr Qr
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We focus now on the additional term

-

2

cio (7 [ 1) o (2 [ wit)
) , Qr

c§e2r2/Q [Pl [ul < €367 2 lull s Pl 3

2
< C:%HQ <r2/ \u]?’) ’ + C§976 (7“2/ \pyg)
Qr Qr

So if we apply (15.18), we obtain

1 I 2
max / |u(t)|2,/ / (Vu? | <4C53C36% |r~! sup / |u(t)|2—|—7“_1/ |Vu)?
or Jp,, Or J_or)2 J By, —r2<t<0J B, Qr
+4C3C307% [+ sup / |u(t)[? <7“_1/ |Vu\2> + 02076 <r_2/ ]p|3)
—r2<t<0/ By T Qr

Now introduce the estimate

) 3 4
((07")_2/ ]pﬁ)g <2036 (r_l sup / u(t)]2> (7“_1/ ]Vu\Q)
Qor —r2<t<0 J By Qr
+2C203 | r / lpl2 ) . (15.23)

We need now to exploit one of (15.1)-(15.2). We choose

ol Q

Ol

1
limsup/ |Vul? < 1. (15.24)

r—0 T
Then, for rg > 0 small enough, we have

1
/ |Vu|? < 2¢ for r € (0,7]. (15.25)
Qr

r
Then we have

1

2
— [ Ju(®)? < 4C2C;6? [7’1 sup / [u(®) + 2e1
Or By,

—r2<t<0J B,

4
3
—l-SCfC%H_Gq r~1 sup /|u(7§)\2 +C§6‘6 (r_2/ \p]g>
—r2<t<0 . Qr
and

3 4 4
<(97‘)_2/ |p|g> ’ < 4053619_2 (7“_1 sup / |u(t)\2> —}—20539% <7’_2/ \p|§>
Qor —r2<t<0J B, Qr
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Then we obtain

9717« /BGT [u(t)] + 67" ((Qr)—2 /QGT ’pﬁ);‘

r~t sup /\u(t)]2+261

—r2<t<0

+8C3C30 %% (7"1 sup / ]u(t)\2>+0§097 <r2/ \p|§>
—r2<t<0J By Qr

4

4 4 3

+4C3e107 [ v~ sup / lu(t)|? —1—20539%0_7 (r_z/ |p]g> .
—r2<t<0J B, Qr

By [ o (72 [ rpwi)g ,

2 2 4 4
E(0r) < 8C2C3 0% + <4c§003 0% +8C5C50 %€y + C30 + 4C3 61077 + 2C§9§> E(r).

2
< 4C3C§6*

Setting
we obtain

2 4
Choosing # small enough, we can assume 8032003 6% < 1/2 and C§9 + 20530% < 1/5, so that

4
E(0r) <5 'e + (ﬁ) + 8030207 % + 4053619—9) E(r).

4
We choose €1 so that 8CZC§9_661 +4C2 €107 < 1/5. Then we obtain
E(0r) <27le; +27LE(r).

Then, proceeding as in Sect. 15.1, if we know that limsup,_,, E(r) < oo, we conclude
E(r) < 2¢ for 0 < r < ry for some appropriately small 2. Then we get

3 2
7“_2/ lul? < Cp33/%e; < 271ej for e1 < 3(271C; 'ep) (15.26)

Similarly

w

7"_2/ Pl <OTEI(r) <072ici <271 for ey < 277275 ()5,

Then we get (15.3). To complete the proof, up to (15.23), we need to show limsup, _,o E(r) <
oo. By the argument in (15.1), having limsup,_,y E(r) = oo would imply

3
swp | s [ e [l = o
Oro<r<rg | —r2<t<0JB, Qr
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But this would imply either u ¢ L®((—R?,0), L*(Bg,R?)) or p & L*?(Qgr,R), contradict-
ing the hypotheses.
O

Finally, we state the lemma needed for (15.23).

Lemma 15.5. There exists Cs such that forp € L%(Qr) andu € L3(Q,)NL>®((—r2,0), L*(B,))
and for —Ap = 0;0;(uu;) in Qr, then for any 0 < 0 < 1/2 we have

3
2 3
o0 [ wtsco (7 s [uor) (o o)
Q@T‘ —r2<t<0 [s Qr
+C’59r2/Q Ip|2. (15.27)

Proof. By scaling, it suffices to con81der case r = 1. We will start by assuming u € C’OO( 1)
This in turn implies that p(t) € L2 ((=1,0)),C*(By)) for all k. Let now ¢ € C(R3,[0,1])
with

1lin 33/4
@) = {() outside By/s.

Let Uj; = ui(uj — (uj)1) where (uj), = (uj)p, = v|Bpv|” fBT uj. Notice that —Ap =
0;0;U;;. Then, by Lemma 11.1, we have
1 1
¢p = (L) (=L)dp = * ((=A)¢p) = —— = (—0Lp — pAd — 2V¢ - Vp)
4| 47|z
1
= Infa] " (¢0:0;Uij — pAgp — 2V ¢ - Vp)
1
= Infw *(0:05(¢Us5) — 0i (Uij059) — 0;(Uij0;9) + Uij0;0i¢ — pAd — 2V - (Vp) + 2pAd)
1
aim * (0(¢Us5) — 2Ui;0i¢ — 2p0;¢) + )z * (Uij0;0;¢ + pAd)
I, 1
= " Al * (0(¢Us5) — 2Ui;0i¢ — 2p0;¢) + e * (Uij0;0;¢ + pAg)

Like in Lemma 14.9 we conclude

* (Uij0;0;¢0 + pAd) .

1 Oii 3z, T
=—-—PV. |2 - 2 2
op - V. (|$|3 BE > * (QbU )+ Arla |3 * ( Uij0i¢ + 2p0;¢) +

1
Arlx]

We have p = ¢p in Qy. We write

_ 1 (5” 3125:13]‘ B
n=—g bV <<\m|3 2 )) * (0Us)
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Then

il 5 g, = CZ 19U3511 3 sy < CZ (s = i)l g, ) = C'llullza(pyllug = (wi)illzos,)
,J 2¥)

< Cllullzzsy IVullL2(s,)-

Next, we write

X5 1 Ti —Yi
p:*Ui'8i¢:/ ——=Uij0i(y)d(y).
’ Am|z? ’ 27 J3/a<|yl<4/5 drlx —y[3 7Y w)ely)

Then, using Yang’s inequality,
HP2HLg(Be) S ||WHL1(1/4§|x\§2)Hui(uj - (“j)l)HL%(BMS) < CHUHL2(B1)HVUHL2(31)-

Similarly, for

1
p3 = —— * U;;0;0;¢

47 |x|
we have
12503y 5 gt sy = )l g, < Cllulzaga IVl
For
= YA
P4 prap * pAg
we have
Ipall 3 s,y < OlIPalliisy) S OlIPlirs,) < COlpll g 4

and, similarly, for

x;
= % 2pd),
p5 471_’37‘3 * p ]¢

we have

2

Thus, we have

191,35, < Cllellza I Vull iz, + C8loll 3.,

Lz(Bg) — 1)

143



and so

3 0 3 3
2 2 2 3 2
oy, sc/ mh”wwwp&w+cwm5@1

)

3
<cuuuuL2 iyl NIVl o a0y + CO Nl
< Ol s eIVl gy + OOl

Q1)
3
2

< 0926 2 ||u||Loo ((—62,0),L8(By) )HVUHL2(Q + 093||pH

3 3
/ rpwiscelﬂ( o | |u<t>\2)“(/ \W)“
QB —1<t<0 Bl Ql
+093/ |2,
Qr

which is (15.27) for r = 1.

that is

A Appendix. On the Bochner integral

For this part see [3]. Let X be a Banach space.

Definition A.1 (Strong measurability). Let I be an interval. A function f : I — X is
strongly measurable if there exists a set E of measure 0 and a sequence (f,(t)) in C.(I, X)
s.t. fu(t) — f(t) for any t € I\ E.

Remark A.2. Notice that when dim X < oo a function is measurable (in the sense that
f~1(B) is measurable for any Borel set B) if an only if it is strongly measurable in the
above sense. Indeed if f is strongly measurable in the above sense then as a point wise limit
of measurable functions f is measurable, see Theorem 1.14 p. 14 Rudin [15]. Viceversa
if f is measurable, then f is strongly measurable in the above sense, see the Corollary to
Lusin’s Theorem in Rudin [15] p. 54.

Ezample A.3. Consider {z;}7_, in X and {A4;}_; measurable sets in I with |4;| < co and
with A; N A, =0 for j # k. Then we claim that the simple function

Zx]XA I =X (A.1)

is measurable. Indeed, see Rudin [15] p. 54, there are sequences {p; s tren in CO(I,R) with
k—00
@jk(t) =" xa,(t) a.e. and hence

k—00

CUI,R) 3 fi(t) Zwmk =9° £(t) ace. in I.
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Proposition A.4. If (f,) is a sequence of strongly measurable functions from I to X
convergent a.e. to a f: 1 — X, then f is strongly measurable.

n—oo

Proof. There is an E with |E| = 0 s.t. f,(t) — f(t) for any ¢t € I\E. Consider for any

k—o00

n a sequence Cc(I,X) > for — fn a.e. We will suppose first that |I| < co. By applying
Egorov Theorem to { || fux — ful|bren there is E, C I with [E,| < 27" s.t. || fuk— foll "5 0
uniformly in I\E, Let k(n) be s.t. ||fnrm) — full < 1/nin I\E, and set g, = fy, x(n)- Set
F = EUJ(N,, Upsm £n). Then [F| = 0. Indeed for any m

o o
[F| <|E|+ ) |Ea| <|E[+ ) 27" "3"0.

n=m n=m

n—oo

Let t € I\F'. Since t ¢ E we have f,(t) — f(t). Furthermore, for n large enough we have
t € I\E,. Indeed

tZ(V\|J En=3mst.tg | En= t¢E,Vn>m.

m n>m n>m
Then [|gn(t) — fn(t)|| < 1/n and g,(t) "= f(t). So f(t) is measurable in the case |I| < co.
Now we consider the case |I| = co. We express I = U,I,, for an increasing sequence of

intervals with |I,,| < oo. Consider for any n a sequence C.(Ip, X) 3> fni hopo f a.e. in I,.
k—o00

Then by Egorov Theorem to || f, 1 — fnll thereis E, C I,, with |E,| <27 st. for — fo

uniformly in I,,\ B, Let k(n) be s.t. || f xn)— fall < 1/nin I,\E, and set g, = f, j(n)- Then

defining F' like above, the remainder of the proof works exactly like for the case |I| < oo.
O

Example A.5. Consider a sequence {z;} en in X and a sequence {4;};en of measurable
sets in I with |A;| < oo and with A; N Ay = () for j # k. Then we claim

ft) = ijXAj (t) (A.2)

is measurable. Indeed if we set fy,(t) := ijXAj (t), then we have 1i_>m fa(t) = f(t)
7j=1

for any ¢, since if ¢t ¢ U;Z; A; both sides are 0, and if ¢ € Ay, then for n > ng we have
fn(t) = xn, = f(t). Hence by Proposition A.4 the function f is measurable.
When the sum in (A.2) is finite then the function f is called simple.

Example A.6. Consider a sequence {z;} ey in X and a sequence {4;}jen of measurable
sets in I where again A; N Ay, = ) for j # k but we allow |A;| = co. Then

F(8) =" wixa, (1) (A.3)
j=1
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is measurable. To see this consider f,,(t) = X[—nn(t)f(t). Then
Fal®) =D wixa,ni—nm (1)
j=1

and by Example A.5 we know that each f,(t) is strongly measurable. Since f,(t) — f(¢)
for any t € I we conclude by Proposition A.4 that f is strongly measurable.

Another natural definition of measurability is the following one.

Definition A.7 (Weak measurability). Let I be an interval. A function f : I — X is weakly
measurable if for any ' € X' the function t — (2/, f(¢)) x/x is a measurable function I — R.

Obviously, strongly measurable implies weakly measurable. Let us explore the vicev-
ersa.

Definition A.8. Let I be an interval. A function f : I — X is almost separably valuable
if there exists a 0 measure set N C I s.t. f(I\N) is separable.

The following lemma shows that strongly measurable functions are almost separably
valuable.

Lemma A.9. If f: I — X is strongly measurable with (f,(t)) a sequence in C.(I,X) s.t.
fu(t) = f(t) for any t € I\E for a 0 measure set E C I then f(I\FE) is separable and there
exists a separable Banach subspace Y C X with f(I\F) CY.

Proof. First of all f,(I N Q) is a countable dense set in f,(I). So f,(I) is separable. In a
separable metric space any subspace is separable. So f,, (I'\E) is separable. The closed vector
space Y generated by U, f,(I\E) is separable. Indeed let C' C U, f,(I\E) be a countable
set dense in Uy, f(I\E). Let Spang(C) be the vector space on Q generated by C. Then
Spang(C) is dense in Y. For C' = {1, x2, ...} we have Spang(C) = UpZ,Spang ({1, ..., zn }).
This proves that Spang(C) is countable and that Y is separable. O
Ezample A.10. Let X be a Hilbert space with an orthonormal basis {e; }tcg. Then the map
f:R — X given by f(t) = e; is not strongly measurable. This follows from the fact that it
is not almost separably valuable.

On the other hand if x € X then ¢t — (f(¢), z) is different from 0 only on a countable subset
of R, and as such it is measurable. Hence f is weakly measurable.

Notice however that if C' C [0, 1] is the standard Cantor set (which has 0 measure and has
same cardinality of R) and if {€;};c¢ is another basis of X, then the map

) = e; for t € C and
g\ = 0 otherwise

is weakly measurable (like f and for the same reasons) and is almost separably valuable.
Pettis Theorem, which we prove below, implies that ¢ : R — X is strongly measurable.

The following lemma will be used for Pettis Theorem.
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Lemma A.11. Let X be a separable Banach space and let S be the unit ball of the dual
X'. Then X' is separable for the weak topology (X', X), see Brezis [2] p.62, that is there
exists a sequence {x;,} in S" s.t. for any x' € S there ewists a subsequence {x, } s.t. for
any x € X we have klggo@;”’ Ty xx = (@', 1) x x.

Proof. Let {z,} be dense in X. For any n consider
F, : 8" — R" defined by F,(z) := ((«/, z1)x/x, -, (¥, 20) x7 x)-

Since R™ is separable, and so is F,(S’), there exists a sequence {xz!, , }i s.t. {Fy(a] )}k is
dense in F,(S"). Obviously {z;, ;}nk can be put into a sequence. For any 2’ € S’ for any n
there is a ky, s.t. [(2' — 2], ;. , @) x/x| < 1/n for all i < n. This implies that for any fixed i

we have li_>rn (@) xi)xrx = (2, 2;) x x. By density this holds for any z € X. O
n o0 yhvn

Proposition A.12 (Pettis’s Theorem). Consider f : I — X. Then f is strongly measurable
if and only if it is weakly measurable and almost separable valuable.

Proof. The necessity has been already proved, so we focus on the sufficiency only. By
modifying f we can assume that f(I) is separable. By replacing X by a smaller space, we
can assume that X is separable.

Fix now x € X. Then we claim that ¢ — || f(¢) — z|| is measurable. Indeed for any a > 0

{tel:|If(t) -zl <a} =Nwes{t € I: [, f(t) - z)xx| < a}.}

Using the fact that S’ is separable in the weak topology o(X’, X) and the notation in
Lemma A.11, we have

{tel:|f(t) -l <a} = Nuen{t € I+ |(z, f(1) — 2)xrx| < a}.

Since the set in the r.h.s. is measurable, we conclude that ¢ — || f(¢) — z|| is measurable and
so our claim is correct.

Consider now n > 1. Since f(I) is separable there is a sequence of balls {B(z;, 2)};>0
whose union contains f(I). Set now

{ W = {t: f(t) € B(zo, 1)},
(,U]('n) = {t: f(t) € B(zj, 1)}\ Upej )
and

Fult) =D wix_om (1)
j=0 !

Notice that szowj(n) = [ and they are pairwise disjoint and measurable. By Example A.6
we know that f, : I — X is strongly measurable. Furthermore, for any ¢t € I there is a j

s.t. te wjn) and this implies

% > Hf(t) —.iL'jH = Hf(t) - fn(t)H
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In other words, || f(t) — fu(t)|]] < 1/n for any ¢t € I. Then f,(t) — f(t) for any ¢, and so by
Proposition A.4 the function f : I — X is strongly measurable. O

Ezample A.13. Consider the map f : (0,1) — L°(0, 1) defined by ¢ EN X(0,t)- This map is
not almost separable valued. Indeed ¢ # s implies [|f(¢) — f(s)]lcoc = 1. If f were almost
separable valued then there would exist a 0 measure subset E in (0,1) and a countable set
N = {tp}n in (0,1)\E such that for any ¢t € (0,1)\(EFUN) there would exist a subsequence
ng with f(t,,) Fope f(t) in L*°(0,1). But this is impossible since || f(t) — f(tn,)]|ooc = 1.

On the other hand f : (0,1) — L?(0,1) defined in the same way, is strongly measurable.

First, since L?(0,1) is separable, it is almost separable valued. Next for any given w €
L?(0,1) we have

(f()sw)r2(0,1) :/0 w(zr)dx

which is a continuous, and hence measurable, function. So f is also weakly measurable and
hence it is strongly measurable by Pettis Theorem.

Recall that in Remark A.2 we mentioned another possible notion of measurability, that
is that f : I — X could be defined as measurable if f~1(A) is a measurable set for any open
subset A C X. We have the following fact.

Proposition A.14. Consider f : I — X. Then f is strongly measurable if and only if f
is almost separably valuable and f~1(A) is a measurable set for any open subset A C X.

Proof. The <" follows from the fact that for any a open subset of R and for any 2/ € X
the set A = {& € X : (z,2')x x» € a} is open and for g(t) := (f(t),2')x,x» we have
f71(A) = g7'(a). So the latter being measurable it follows that g is measurable and
hence f is weakly measurable. Hence by Pettis Theorem we conclude that f is strongly
measurable.

We now assume that f is strongly measurable. We know from Lemma A.9 that f is almost
separably valuable. Let U be an open subset of X. Let (f,), be a sequence in C2(I, X) with
fu(t) "= f(t) ae. outside a 0 measure set E C I. Let U, = {z € X : dist(z,U¢) > r}.
Then

STHUNE = (Um>1 Un>1 mkE"fk_l(U%))\E' (A4)

To check this, notice that if ¢ belongs to the left hand side , then f(¢f) € U1 for some

mQ
n—oo

mo and, since f,(t) — f(t), for n large we have fi(t) € U if k > n for m; > my

preassigned. Viceversa if ¢ belongs to the right hand side, thenlthere exist n and m s.t.
frx(t) € Ux for all k > n. Then by fi(¢) hpe f(t) it follows that f(t) € U1 with the latter

a subset of U. This proves (A.4). Since the r.h.s. is a measurable set, this completes the
proof. O
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Definition A.15 (Bochner integrability). A strongly measurable function f : I — X is
Bochner—-integrable if there exists a sequence (fy(t)) in Co(1, X) s.t.

lim / 1 fult) — £(8)]xcdt = 0. (A5)

n—oo

Notice that || f,(t) — f(¢t)||x is measurable.

Example A.16. Consider the situation of Example A.13 of a Hilbert space X with an or-
thonormal basis {e;}ter and the map f : R — X, which we saw is not strongly measurable
and hence is not Bochner—integrable. Notice that f is Riemann integrable in any compact
interval [a, b] with f;f(t)dt =0.

To see this recall that the Riemann integral is, if it exists, the limit

b

/ f(t)dt = lim Z f(t;)|1;] with t; € I; arbitrary
@ A= I eA

where A varies among all possible decompositions of [a,b] and |A| = maxjea |I|. We have

|A]—0
%

IS e ILlI2 = S ferys e 111 < 2 3 15]12] = 21a](6 - a) 570,

L;en gk J
Proposition A.17. Let f : I — X be Bochner—integrable. Then there exists an x € X s.t.
if (fu(t)) is a sequence in C.(I, X) satisfying (A.5) then we have

lim z, = x where x,, == /fn(t)dt. (A.6)
I

n—oo

Proof. First of all we check that x,, is Cauchy. This follows immediately from (A.5) and
from

len — emllx = | / (Falt) = Fn(®)dt]x < / 1ult) — Fon ()t

< /I 1ult) — F(8) ] dt + / 1£(6) — Fml) .

Let us set © = limx,,. Let (g,(t)) be another sequence in C.(I, X) satisfying (A.5). Then
lim [; gn = x by

u/gn dt—xnx—n/gn ) dt+/fn dt — ox

/Hgn fn ”th‘f‘”/fn t—.CCHth
< /I lgn(t) — F(8)|xdt + / 1ult) — FO)llcdt + | / Jult)dt — o xdt.
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Definition A.18. Let f : I — X be Bochner—integrable and let x € X be the corresponding
element obtained from Proposition A.17. The we set [, f(t)dt = x.

Theorem A.19 (Bochner’s Theorem). Let f : I — X be strongly measurable. Then f is
Bochner—integrable if and only if || f|| is Lebesque integrable. Furthermore, we have

II/If(t)dtH S/I\f(t)lldt- (A7)

Proof. Let f be Bochner—integrable. Then there is a sequence (f,,(t)) in C.(I, X) satisfying
(A.5). We have ||f|| < ||full + IIf = fnll- Since both functions in the r.h.s. are Lebesgue
integrable and || f|| is measurable it follows that|| f|| is Lebesgue integrable.

Conversely let ||f|| be Lebesgue integrable. Then there exist a sequence (g,(t)) in
Ce(I,R) and g € L'(I) s.t. [, [gn(t) = || f(¢)]||dt — 0 and |gn(¢)| < g(t). In fact it is possible
to choose such a sequence so that ||gn — gml[1() < 27" for any n and any m > n (just by
extracting an appropriate subsequence from a starting g, 4). Then if we set

N
SN() =Y |gn(t) = gat1(t)] (A.8)
n=1

we have [[Sn|[z1) < 1. Since {Sn(t)}nen is increasing, the limit S(t) := limp o0 Sn(?)

remains defined, is finite a.e. and [|S|[z1;) < 1. Then [gn(t)] < |g1(2)] + S(t) = g(?)

everywhere, where g € L'(I). Notice that li_>m gn(t) is convergent almost everywhere (it
n—oo

convergent in all points where lim,,_, ;~ Sy, (t) is convergent). By dominated convergence it
follows that this limit holds also in L'(I) and hence it is equal to || f||.

Let (fn(t)) in C.(I,X) s.t. fo(t) = f(t) a.e. (this sequence exists by the strong measura-
bility of f(t)). Set

PG
= o+ 10

Notice that (uy(t)) is in C.(I, X). We have

192 (O] 1 £2 @]
1fa (O] + 5

We have (where the 2nd equality holds because because li_)m gn(t) = || f ()| and li_)m (@) =
1F @)l a.e.)

lun ()] < < lgn(B)] < g(t).

lim w,(t) = lim 19n(1)]

n—o00 n—o0 Wf”(t) = nh_>120 fn(t) = f(t) a.e..

4Suppose we start with a given {gn}. Then for any 27" there exists N, s.t. ni,nz > N, implies
lgn, — gnallerny < 27" Let now {p(n)} be a strictly increasing sequence in N s.t. ¢(n) > N, for any n.
Then ||gy(n) — Go(m)llLr(ry < 27" for any pair m > n. Rename g, (n) as gn.
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Then we have
Tim fun (t) — F(2)]| = 0 aue. with [Jun(t) — F(0)]| < g(t) + | F(H)] € L} (D).

By dominated convergence we conclude

lim /I lun(t) — F(8)||dt = 0.

n—oo

This implies that f is Bochner—integrable. Finally, we have

I [ s = tim I [ untt)arl < Jim [ ot = [ 150
]

Corollary A.20 (Dominated Convergence). Consider a sequence (f,(t)) of Bochner—integrable
functions I — X, g : I — R Lebesgue integrable and let f : I — X. Suppose that

[fn@)]] < g(t) for all n
7}1_{{.10 fn(t) = f(t) for almost all t.

Then f is Bochner—integrable with [; f(t) = limy, [} f, ().

Proof. By Dominated Convergence in L'(I,R) we have [, |f(t)| = lim, [;[|f»(¢)]. By
Proposition A.4, as a pointwise limit a.e. of a sequence of strongly measurable functions, f
is strongly measurable. By Bochner’s Theorem f is Bochner—integrable. By the triangular
inequality

fimsup | [ ()= £u(0)1 < lim [ 1£6) = £.(0)] =0

where the last inequality follows from ||f(t) — fn(t)]] < |If(®)|| + g(¢) and the standard
Dominated Convergence. O

Definition A.21. Let p € [1,00]. We denote by LP(I, X) the set of equivalence classes
of strongly measurable functions f : I — X s.t. [[f(¢)|| € LP(I,R). We set ||f|lrr(7,x) :=

A e 1 m)-
Proposition A.22. (LP(I1,X),|| ||z») is a Banach space.

Proof. The proof is similar to the case X =R , see [2].
(Case p = 00). Let (f,) be Cauchy sequence in L>(I, X). For any k > 1 there is a N, s.t.

1
I fr = fmllLoe(r,x) < T for all n,m > Nj.
So there exists an Fy C I with |Ex| =0 s.t.

1
| fr(t) = fr(t)||x < Z for all n,m > Ny and for all for ¢t € I\ E}.
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Set E := UpE). Then for any t € I'\E the sequence (f,(t)) is convergent. So a function
f(t) remains defined with

1
Ifn) — fD)]lx < % for all n > Ny, and for all for ¢t € I\ E. (A.9)

By Proposition A.4 the function f is strongly measurable. By (A.9) we have f € L>°(I, X)
and

1
| fr = fllzee(r,x) < % for all n > Ny,
and so f, — f in L*>(1, X).

(Case p < o). Let (f,) be Cauchy sequence in LP(I, X) and let (f,,) be a subsequence
with
ank - fnk+1”LP(I,X) < 27]6.

Set now

l
g () =D () = frs (Dl
k=1

Then
lgillze(rry < 1.

By monotone convergence we have that (g;(¢)); converges a.e. to a g € LP(I,R). Further-
more, for 2 < k <1

-1
£ (8) = Fr D llx =D 1, (8) = Fyr (D)llx < 9(8) — g (2)
j=k

Then a.e. the sequence (fp, (t)) is Cauchy in X for a.e. ¢ and so it converges for a.e. t to
some f(t). By Proposition A.4 the function f is strongly measurable. Furthermore,

1F(#) = fa Dl x < g(2).

It follows that f — f,, € LP(I,X), and so also f € LP(I,X). Finally we claim |f —
Juellze(r,xy = 0. First of all we have || f(t) — fu, (¢)[[x — 0 for a.e. t and

1F®) = fu DI < 9"(2)

by dominated convergence we obtain that ||f — fu,[[x — 0 in LP(I,R). Hence f,, — f in
(I, X). O

Proposition A.23. C°(1,X) is a dense subspace of LP(I, X) for p < occ.
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Proof. We split the proof in two parts. We first show that C?(I, X) is a dense subspace of
LP(I,X) for p < oco. For p = 1 this follows from the definition of integrable functions in
Definition A.15. For 1 < p < oo going through the proof of Bochner’s Theorem A.19, the
functions u, considered in that proof can be taken to belong to C%(I, X) and converge to
fin LP(1,X).

The second part of the proof consists in showing that C2°(I, X)) is a dense subspace of
CY(I,X) inside LP(I, X) for p < co. Let f € CY(I,X). We consider p € C°(R, [0,1]) s.t.
[ p(x)dx = 1. Set pe(x) := e *p(x/€). Then for € > 0 small enough p x f € C(I, X). We
extend both f and p * f on R setting them 0 in R\7. In this way p. * f € C°(R, X) and

f € CYR, X) and it is enough to show that p, * f 20 fin LP(R, X)..
We have

pes F(8) — f(t) = /R (F(t— es) — F(3))p(s)dy

so that, by Minkowski inequality and for A(s) := || f(- —s) — f(:)||zr, we have

[pe * f(t) = f(E)]|r < / Ip(s)|A(e s)ds.

Now we have lims_,0 A(s) = 0 and A(s) < 2||f||z». So, by dominated convergence we get

iy | £ = fl1r =l [ |p(s)| e 5)ds =

So
l{‘%pe * f = f m LP(R, X) (AlO)

Proceeding as in the previous proof, we can prove the following.
Proposition A.24. Let p € [1,00) and f € LP(R, X). Set
t+h

Tnf(t) =h"1 (s)ds fort € R and h # 0.
t

Then Tpf € LP(R, X) N L®(R, X) N CYR, X) and T, f "0 fin LP(R, X) and for almost
every t.

O]

Proposition A.25. Let p € [1,00] and {f,} a sequence in LP(I,X). Let f : I — X and
suppose that fn(t) — f(t) for almost any t in I. Then f € LP(I,X) with

£l ze(r,x) < linniiggf | full Lo (1, x)- (A.11)
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Proof. First of all we need to show that f is measurable. We know that there exists a zero
measure set F' C I such that f,(t) — f(t) for any ¢t € I\F. Since for any 2’ € X’ we have

(Fn(0),2") oo xr —=225 (f(t),2) ¢ xo for any t € I\F, the map (f(-),2') y-,, x+ is measurable,

and so f is weakly measurable. For any n there exists a zero measure set F, C I such
that f(I\E,) is separable. Let E = F'|JU, E,, which obviously has 0 measure. Let now A
be the convex hull of Uy, f,,(I\E) and let A the weak closure of A, which is also the strong
closure of A. Now, U, f,(I\E) is separable, A is separable and also A is separable. Since
f(I\E) C A we conclude that f(I'\E) is separable and so by Theorem A.19 f is strongly
measurable. Let now

9a(t) == Inf [1fu(t) Lx and g(t) := lim_g. (1)

n—-+o0o

Then
9(t) = lim inf | f;,(t)]|x -

Since gn(t) < [[fn(t)||x for any ¢, it follows that g, € LP(I) for any n and by monotone
convergence

lgllizoy = m lgnll o) < Hmnf || foll 2o x)-
By the lower semicontinuity of the norm || - || x, we have

[f(Dllx < g(t) for a.a. t € I and so || f[lrr,x) < 9llzer)-

This yields (A.11).

Definition A.26. We denote by D'(I, X) the space L(D(I,R), X).
Corollary A.27. Let f € L}, (I,X) be such that f =0 in D'(I,X). Then f =0 a.e.

Proof. First of all we have [, fdt = 0 for any J C I compact. Indeed, let (¢,) € D(I) with
0 <y, <1and ¢, — xj a.e. Then

/ fdt = lim pnfdt =0
J J

n—-4o00

where we applied Dominated Convergence for the last equality.
Set now f(t) = f(t) in J and f(t) = 0 outside J. Then T, f = 0 for all h > 0. Then f(t) = 0
for a.e. t. So f(t) =0 for a.e. t € J. This implies f(¢) = 0 for a.e. t € R. O

Corollary A.28. Let g€ L}, (I,X), to € I, and f € C(I,X) given by f(t) = ftto g(s)ds.
Then:

(1) f'=g inD'(1,X);
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(2) f is differentiable a.e. with f' =g a.e.

Proof. Tt is not restrictive to consider the case I = R and g € L*(R, X). We have

t+h _
Thy(t) = h_l/t g(s)ds = w

By Proposition A.24 Tjg "0 g for almost every ¢. This yields (2).
For ¢ € D(R) we have

- /R () (Bt
Furthermore 4 h .
%0 olt+1)20) Ft—h)— £(1)
(o, —};g%/ £(t) =~ lim [ oty

= — lim A () T-ng(t)dt = (g, ¢).

h—0

Definition A.29. Let p € [1,00]. We denote by WP(I, X) the space formed by the
ferl(I,X)st. feD,X)is also f' € LP(I, X) and we set || fllw1e = | flle + | f/||e-

Lemma A.30. Let u,g € L*(I, X) be such that

(u(ta), ) xe — (u(tr)s ) xe = / " (9(5), ) xxe ds for any f € X*.

t1
Then Owu = g in D'(I, X).

Proof. We immediately obtain (u(t), f)yx« € AC(I) with derivative 0 (u(t), f) xx+ =
(9(t), f)xx«- For any ¢ € D(I) and any f € X*

(= [uopins) == [ = [ nax st = [owoir)

which yields

- / w(t)g (£)dt = /I g(B)(t) for all € D(I)

1

and so dyu = g in D'(I, X).
Theorem A.31. Letp € [1,00] and f € LP(1,X). The following are equivalent.
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i fewhr(l,X).
ii There exists g € LP(I,X), to € I such that f(t) = f(to) + Lﬁ)g(s)ds for a.a. t,ty € 1.

iii There exists g € LP(I,X), xo € X and to € I such that f(t) = zo + ftz g(s)ds for a.a.
tel.

iv f € AC(1,X), is differentiable almost everywhere and [ € LP(I,X).

v f is weakly absolutely continuous, weakly differentiable almost everywhere and f' €

LP(I, X).

Proof. Assume (i). For ¢,ty € I we set
t
w(t) = f(t) = f(to) = t f'(s)ds.

Then w € C°(I,X) and w’ = 0 in D'(I, X) by Corollary A.28. Therefore w(t) = zg for
some fixed ¢ € X. But by continuity w(0) = 0 and so we get (ii). This immediately implies
(iii). By modifying f in a zero measure set, we get (iv) and this implies (v). So now we
want to show that v = i. Let g be the weak derivative of f, that is g = f’ in the sense that
for any ' € X’ we have (f(-),v) xxx € AC(I) with

SO.Y) xuxr = (St0)y) x o x +/t (9(s).9') x o x s (A.12)

Since g € LP(I, X ), we can consider
t
wlt) = £(6) = fita) = [ als)is

We claim that w = 0. Indeed, for any ¥’ € X’ we have from (A.12) that (w(t),y’) x x» = 0.
Since this holds for any ¢, it follows w = 0. Then

f(t) = f(to) + /t g(s)ds.

It follows from Corollary A.28 that f' = ¢ in D'(I, X) and we get (i).
O

Theorem A.32. Let X be reflezive. Letp € [1,00] and f € LP(I,X). Then f € WHP(I, X)
if and only if there exists ¢ € LP(I,R) such that

/tT ©(s)ds

In that case we have || f'||r(r,.x) < ll¢ller)-

1f(m) = f@Dlx <

for a.a. t,7 € 1. (A.13)
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Proof. The only nontrivial statement is proving that (A.13) implies f € W'P(I, X). Notice
that (A.13) implies that f is continuous almost everywhere and, up to a redefinition in a 0
measure set, can be assumed to be continuous. We will also consider the case I = R. Then
f(R) is separable. So we can assume that X be separable. Then, since X is also reflexive,
it follows that X’ is reflexive and separable. For any h > 0 consider

iy = LD 1O

We claim that h — f, is a bounded function from Ry to LP(I,X). For p = oo it follows

from
t+h
/t o(5)ds| < ol e,

LEDELI RS

X

For p < oo we have
Hf(t+h)—f(t) P

v |hlP

t+h p P t+h t+h
) [ eas) < [ jetspds = bt [ eto)ds,
t t t

Then we get the following, which completes the proof of our claim,

H ] L= [ tptsyeas = [ astotopin [ ar

- / p(t) Pt
R

Let now {z} }

be a sequence dense in X’ and set 1, (t) = (f(t), x},) xs x,- We have

/tT p(s)ds| .

Then 1, € AC(R) for all n, and in particular 1, is differentiable outside a zero measure
set £, C R. For £ = U, FE,, we conclude that

(fn(t),20) oy = Pt + h})L —¥n(t) noot Yl (t) for all t € R\E.

Let F be the set of Lebesgue points of ¢. Then for ¢t € R\ F we have

neN

[4hn(7) = ()]l x < [l ]l x

I fn(t)]] < K(t) < oo for h small enough.
+
We claim that for any ¢ € R\(E U F) there exists w(t) € X such that fp(t) b7, w(t).
Indeed, if we consider in Ry a sequence hy ey 0, then up to a subsequence (which to
simplify notation we assume to coincide with the initial sequence) there exists a weak limit
fn, (t) = w(t). Then for any n we have

n hy) — ;1 . / /
klggow (H_ ;Z,z : (t) - khlﬁo <fhk(t)’xn>X><X’ = <w(t)’xn>XxX"

Un(t) =
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This guarantees that in fact this limit is true for any ¢ € R\(F U F) and for any sequence

n—oo

hi —— 0. Hence f;(t) — w(t) for h — 0 for any ¢t € R\(E U F). It follows from
Proposition A.25 that w € LP(R, X)) with

lwllzr@,x) < @l rw)-

By statement v in Theorem A.31 and by Corollary A.28 we have f € WP(R, X) with

f=w.
O
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