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Liouville equation

o Classical system: N particles, Hamiltonian H ({g;,p;}), with
G = (i, Yi, i) and p; = (Pa,is Py,is Pa,i)
e Equations of motion

. oH
. oH

o Density of particles at position ¢ is proportional to the particle number
N
n(@t) =Y 67— a(1)
i=1

particle conservation [dgn(q,t) =N



Liouville equation II

e Joint probability distribution function of finding the particle 1 at position

¢q1 with momentum p7, ...
time ¢
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o Time evolution
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o Plug the Hamilton’s equations into the previous equation
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normalization is conserved [ [[, dg;dp; P({¢;},{p:},t) =1, WVt




Stochastic system

e Canonical ensemble (T = const.), prepare you system with any initial
condition P({q;},{pi},0)

@ at t — oo you expect the system to be in equilibrium

e~ BH{4i,p:})
PUTY A7 0) = P} () =

o Extension of the Liouville equation
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Additional terms such that we obtain again the Liouville equation when
we eliminate the source of stochasticity?




Brownian motion

A micron-sized particle in solution performs a random walk, as an effect of the
large number of random collisions with the solvent molecules
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Jean Baptiste Perrin, Les Atomes (1914)
mastic particle r = 0.53 pm, mesh size 3.2 ym



Langevin equation

For a single particle in 1D
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n(t) is called Gaussian noise

(n(®) =0;  (n(t)n(t')) = 2kpTo(t —t')



Gaussian noise?
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@ The noise mimics the effect of the large number of random collisions with
the solvent molecules

o Central limit theorem = in a small interval §t
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with (n;) = [dne e 2 (ne), (o) = [ dnedne nene 2 (ne) 2 ()
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Liouville eq. — Fokker-Planck eq.: quick and dirty

m

o we want that Py ({gi}, {5i}) = ©oriirih)
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P.({d:},{p:}) is the stationary solution of the Fokker-Planck equation
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Langevin eq. — Fokker-Planck eq.

e Let’s consider a free particle U(z) =0 = p= —yp/m =

p(t)

p(t +0t) = p(t) — ot y—= +dtn(t)

with no assumption on the noise variance

ot
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P(ny) = e 024

o Conditional probability of finding momentum p’
given that you start from p

P(p',t+dtlp,t) = (0(p" — p(t + 1)) poise

where (...) .. IS an average over & ()

o Let’s define € = dt(—p/m + n(t)), and p = p(t), we have
€ 0?

S0/~ p = ) = 0~ p) + ez '~ )] + 5 006"~ )
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Langevin eq. — Fokker-Planck eq. II

o Consider eq. (*) in the previous slide, and keep the terms up to the first

order in 0t (n(t) ~ \/A/5t )

0 A 9?2
P, t+dtlp,t) = 6(p' —p — 1Py @ I
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e Use P(p/,t+dt) = [dp P(p,t + dt|p,t)P(p,t)

OP(p,t) 0 [ p A 9?
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o We want P(p,t — 00) = Peq(p) = exp [fﬂpz/Qm] /Z, with

atPeq(p) =0=
A= 2’)’]€BT

Fluctuation-dissipation relation: the noise (A4) and the friction force
(—vp/m) have the same physical origin
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Fokker-Planck — Smoluchowski eq.

e in the Langevin eq.
mi = ~U'(z) = yv +n(t)

let’s assume that the relaxation time 7 = m/v <« 1 is much smaller than
any natural time scale associated with the motion in the potential U(x):
overdamped regime

Neglect the inertial contribution mv/~

e The Langevin equation becomes
&= -TU"(z) + 7(t), with = 1/~, (ene) = 2TkpTo(t — t')

e With a procedure similar to the one described above one obtains the
Smoluchowski equation

oP(z,t) 0 02



Einstein relation

Smoluchowski equation with U(z) =0

OP(x,t) 0?

with stationary solution Py (z) = exp(—22/(4Dt))/V4n Dt

<Ax2>t = 2Dt




Generalized Brownian motion

Evolution of an observable: m(z,p) takes values m

e BHD)  o=BF(m)

Pealim) = [ dadp(m(z,p) - m) " =

A SDE for m
dm

e V(m) + nm(t),
assumptions:
e m varies over time scales which are longer than those for 0, (t)

@ 7, (t) is the result of many independent processes
= N, Gaussian with (n,n),) = 2X\0(t —t')

e m is independent of the instantaneous value of m (this requirement can
be relaxed)



Generalized Brownian motion (cont.)

Write a FP equation

OP(m,t) 0?
and require P.,(m) to be the steady state solution

A

OmF(m)
and defining I' = A\/kpT we obtain

dm
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Construction of a field theory

Fields ¢; defined on N sites of a d-dimensional regular lattice with position x;

H({}) = Z G(¢1) + Z Ky (1 — ¢v)?

LU
with G(¢) a power series expansion about ¢ = 0 and Ky a finite range
coupling matrix.

The partition function and the (overdamped) Langevin equation are well
defined
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Construction of a field theory (cont.)

continuum limit
e volume per lattice site v — 0 and keep the total volume V = Nv constant

@ X; — X continuous variable

o Y, — [dx/v (d-dim)
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Time dependent Landau-Ginzburg equation

dp(x) _ 6H [p(x)]
i T e T
(n(x, t)n(x',t")) = 2kpTé(x —x')5(t — ')

Taking, e.g., g [¢(x)] = r¢?/2 + ug* /4 one obtains

H(600] = [ dx' J6%(x) + 56'(x) + SK(Vo(x)

dop(x) _ —r(x) — ud(x)® + n(x,t)




