On Stochastic Equations

Alberto Imparato

Department of Physics University of Trieste Italy

Liouville equation

- Classical system: N particles, Hamiltonian $H(\{\vec{q}_i, \vec{p}_i\})$, with $\vec{q}_i = (x_i, y_i, z_i)$ and $\vec{p}_i = (p_{x,i}, p_{y,i}, p_{z,i})$
- Equations of motion

$$\dot{\vec{q}}_i = \frac{\partial H}{\partial \vec{p}_i}$$

$$\dot{\vec{p}}_i = -\frac{\partial H}{\partial \vec{q}_i}$$

 \bullet Density of particles at position \vec{q} is proportional to the particle number

$$n(\vec{q},t) = \sum_{i=1}^{N} \delta(\vec{q} - \vec{q}_i(t))$$

particle conservation $\int d\vec{q} \, n(\vec{q}, t) = N$

Liouville equation II

• Joint probability distribution function of finding the particle 1 at position \vec{q}_1 with momentum \vec{p}_1, \ldots particle i at position \vec{q}_i with momentum \vec{p}_i , at time t

$$P(\left\{\vec{q}_i\right\}, \left\{\vec{p}_i\right\}, t) \propto \sum \delta(\vec{q}_i - \vec{q}_i(t))\delta(\vec{p}_i - \vec{p}_i(t))$$

• Time evolution

$$\frac{\partial P(\{\vec{q}_i\}, \{\vec{p}_i\}, t)}{\partial t} = -\left\{ \sum_i \frac{\partial}{\partial \vec{q}_i} \left[\delta(\vec{q}_i - \vec{q}_i(t)) \right] \frac{\partial \vec{q}_i}{\partial t} \delta(\vec{p}_i - \vec{p}_i(t)) + \frac{\partial}{\partial \vec{p}_i} \left[\delta(\vec{p}_i - \vec{p}_i(t)) \right] \frac{\partial \vec{p}_i}{\partial t} \delta(\vec{q}_i - \vec{q}_i(t)) \right\}$$

• Plug the Hamilton's equations into the previous equation

$$\frac{\partial P(\{\vec{q}_i\}, \{\vec{p}_i\}, t)}{\partial t} = \sum_{i} -\frac{\partial}{\partial \vec{q}_i} \left[P(\{\vec{q}_i\}, \{\vec{p}_i\}, t) \frac{\partial H}{\partial \vec{p}_i} \right] + \frac{\partial}{\partial \vec{p}_i} \left[P(\{\vec{q}_i\}, \{\vec{p}_i\}, t) \frac{\partial H}{\partial \vec{q}_i} \right]$$

normalization is conserved $\int \prod_i d\vec{q}_i d\vec{p}_i P(\{\vec{q}_i\}, \{\vec{p}_i\}, t) = 1, \quad \forall t.$

Stochastic system

- Canonical ensemble (T = const.), prepare you system with any initial condition $P(\{\vec{q_i}\}, \{\vec{p_i}\}, 0)$
- at $t \to \infty$ you expect the system to be in equilibrium

$$P(\{\vec{q}_i\}, \{\vec{p}_i\}, t) = P_{eq}(\{\vec{q}_i\}, \{\vec{p}_i\}) = \frac{e^{-\beta H(\{\vec{q}_i, \vec{p}_i\})}}{Z}$$

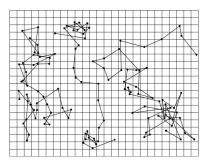
• Extension of the Liouville equation

$$\begin{split} \frac{\partial P(\left\{\vec{q_i}\right\},\left\{\vec{p_i}\right\},t\right)}{\partial t} &= \sum_{i} -\frac{\partial}{\partial \vec{q_i}} \left[P(\left\{\vec{q_i}\right\},\left\{\vec{p_i}\right\},t\right) \frac{\partial H}{\partial \vec{p_i}} \right] + \frac{\partial}{\partial \vec{p_i}} \left[P(\left\{\vec{q_i}\right\},\left\{\vec{p_i}\right\},t\right) \frac{\partial H}{\partial \vec{q_i}} \right] \\ &+ ? \end{split}$$

Additional terms such that we obtain again the Liouville equation when we eliminate the source of stochasticity?

Brownian motion

A micron-sized particle in solution performs a *random walk*, as an effect of the large number of random collisions with the solvent molecules



Jean Baptiste Perrin, Les Atomes (1914) mastic particle $r=0.53\,\mu\mathrm{m}$, mesh size $3.2\,\mu\mathrm{m}$

Langevin equation

For a single particle in 1D

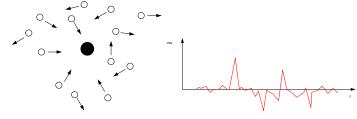
$$\dot{x} = \frac{p}{m}$$

$$\dot{p} = -U'(x) - \gamma \frac{p}{m} + \eta(t)$$

 $\eta(t)$ is called Gaussian noise

$$\langle \eta(t) \rangle = 0;$$
 $\langle \eta(t)\eta(t') \rangle = 2k_B T \gamma \delta(t - t')$

Gaussian noise?



- The noise mimics the effect of the large number of random collisions with the solvent molecules
- Central limit theorem \Rightarrow in a small interval δt

$$\mathscr{P}(\eta_t) = e^{-\delta t \frac{\eta_t^2}{4\gamma k_B T}} \sqrt{\frac{\delta t}{4\pi \gamma k_B T}} \Rightarrow \langle \eta_t \rangle = 0 \quad \text{AND} \quad \langle \eta_t \eta_{t'} \rangle = \frac{2\gamma k_B T}{\delta t} \delta_{t,t'}$$

with
$$\langle \eta_t \rangle = \int d\eta_t \, \eta_t \mathscr{P}(\eta_t), \, \langle \eta_t \eta_{t'} \rangle = \int d\eta_t d\eta_{t'} \, \eta_t \eta_{t'} \mathscr{P}(\eta_t) \mathscr{P}(\eta_{t'})$$

Liouville eq. \rightarrow Fokker-Planck eq.: quick and dirty

$$\dot{x} = \frac{p}{m}; \qquad \dot{p} = -U'(x) - \gamma \frac{p}{m} + \eta(t)$$

•

0

$$\frac{\partial P(x,p,t)}{\partial t} = -\frac{\partial}{\partial x} \left[\frac{p}{m} P(x,p,t) \right] + \frac{\partial}{\partial p} \left[\left(U'(x) + \boxed{\gamma \frac{p}{m}} \right) P(x,p,t) \right] + ?$$

• we want that $P_{eq}(\{\vec{q}_i\}, \{\vec{p}_i\}) = \frac{e^{-\beta H(\{\vec{q}_i, \vec{p}_i\})}}{Z}$, with $\partial_t P_{eq}(\{\vec{q}_i\}, \{\vec{p}_i\}) = 0$

$$\frac{\partial P(x, p, t)}{\partial t} = -\frac{\partial}{\partial x} \left[\frac{p}{m} P(x, p, t) \right] + \frac{\partial}{\partial p} \left[\left(U'(x) + \boxed{\gamma \frac{p}{m}} \right) P(x, p, t) \right] + \gamma k_B T \frac{\partial^2}{\partial p^2} P(x, p, t)$$

 $P_{eq}(\left\{\vec{q_i}\right\},\left\{\vec{p_i}\right\})$ is the stationary solution of the Fokker-Planck equation

Langevin eq. \rightarrow Fokker-Planck eq.

• Let's consider a free particle $U(x) = 0 \Rightarrow \dot{p} = -\gamma p/m \Rightarrow$

$$p(t + \delta t) = p(t) - \delta t \gamma \frac{p(t)}{m} + \delta t \eta(t)$$

with no assumption on the noise variance

$$\mathscr{P}(\eta_t) = e^{-\delta t \frac{\eta_t^2}{2A}} \sqrt{\frac{\delta t}{2\pi A}} \Rightarrow \langle \eta_t \rangle = 0 \quad \text{AND} \quad \langle \eta_t \eta_{t'} \rangle = \frac{A}{\delta t} \delta_{t,t'} (*)$$

• Conditional probability of finding momentum p' given that you start from p

$$P(p', t + \delta t | p, t) = \langle \delta(p' - p(t + \delta t)) \rangle_{\text{noise}}$$

where $\langle \ldots \rangle_{\text{noise}}$ is an average over $\mathscr{P}(\eta_t)$

• Let's define $\epsilon = \delta t(-p/m + \eta(t))$, and p = p(t), we have

$$\delta(p'-p-\epsilon) \simeq \delta(p'-p) + \epsilon \frac{\partial}{\partial p} \left[\delta(p'-p) \right] + \frac{\epsilon^2}{2} \frac{\partial^2}{\partial p^2} \left[\delta(p'-p) \right]$$

Langevin eq. \rightarrow Fokker-Planck eq. II

• Consider eq. (*) in the previous slide, and keep the terms up to the first order in δt ($\eta(t) \sim \sqrt{A/\delta t}$)

$$P(p', t + \delta t | p, t) = \langle \delta(p' - p - \epsilon) \rangle_{\text{noise}} = \left[1 - \frac{p}{m} \delta t \gamma \frac{\partial}{\partial p} \cdot + \delta t \frac{A}{2} \frac{\partial^2}{\partial p^2} \cdot \right] \delta(p' - p)$$

• Use $P(p', t + \delta t) = \int dp P(p', t + \delta t | p, t) P(p, t)$

$$\frac{\partial P(p,t)}{\partial t} = \frac{\partial}{\partial p} \left[\gamma \frac{p}{m} P(p,t) \right] + \frac{A}{2} \frac{\partial^2}{\partial p^2} P(p,t)$$

• We want $P(p, t \to \infty) = P_{eq}(p) = \exp\left[-\beta p^2/2m\right]/Z$, with $\partial_t P_{eq}(p) = 0 \Rightarrow$

$$A = 2\gamma k_B T$$

Fluctuation-dissipation relation: the noise (A) and the friction force $(-\gamma p/m)$ have the same physical origin

Fokker-Planck \rightarrow Smoluchowski eq.

• in the Langevin eq.

$$m\dot{v} = -U'(x) - \gamma v + \eta(t)$$

let's assume that the relaxation time $\tau=m/\gamma\ll 1$ is much smaller than any natural time scale associated with the motion in the potential U(x): overdamped regime

Neglect the inertial contribution $m\dot{v}/\gamma$

• The Langevin equation becomes

$$\dot{x} = -\Gamma U'(x) + \tilde{\eta}(t), \quad \text{with } \Gamma = 1/\gamma, \quad \langle \tilde{\eta}_t \tilde{\eta}_{t'} \rangle = 2\Gamma k_B T \delta(t - t')$$

 With a procedure similar to the one described above one obtains the Smoluchowski equation

$$\frac{\partial P(x,t)}{\partial t} = \Gamma \frac{\partial}{\partial x} \left[U'(x) P(x,t) \right] + \Gamma k_B T \frac{\partial^2}{\partial x^2} P(x,t)$$

Einstein relation

Smoluchowski equation with U(x) = 0

$$\frac{\partial P(x,t)}{\partial t} = \Gamma k_B T \frac{\partial^2}{\partial x^2} P(x,t)$$

with stationary solution $P_{st}(x) = \exp(-x^2/(4Dt))/\sqrt{4\pi Dt}$

$$D = \Gamma k_B T$$

$$\langle \Delta x^2 \rangle_{\star} = 2Dt$$

Generalized Brownian motion

Evolution of an observable: m(x,p) takes values m

$$P_{eq}(m) = \int dx dp \, \delta(m(x, p) - m) \frac{e^{-\beta H(x, p)}}{Z} \equiv \frac{e^{-\beta F(m)}}{Z}$$

A SDE for m

$$\frac{dm}{dt} = \mathcal{V}(m) + \eta_m(t),$$

assumptions:

- m varies over time scales which are longer than those for $\eta_m(t)$
- $\eta_m(t)$ is the result of many independent processes $\Rightarrow \eta_m$ Gaussian with $\langle \eta_m \eta_m' \rangle = 2\lambda \delta(t t')$
- \bullet m is independent of the instantaneous value of m (this requirement can be relaxed)

Generalized Brownian motion (cont.)

Write a FP equation

$$\frac{\partial P(m,t)}{\partial t} = -\partial_m \left[\mathcal{V}(m) P(x,t) \right] + \lambda \frac{\partial^2}{\partial m^2} P(m,t)$$

and require $P_{eq}(m)$ to be the steady state solution

$$\Rightarrow \mathcal{V}(m) = -\frac{\lambda}{k_B T} \partial_m \mathcal{F}(m)$$

and defining $\Gamma = \lambda/k_B T$ we obtain

$$\frac{dm}{dt} = -\Gamma \partial_m \mathcal{F}(m) + \eta_m(t), \qquad \langle \eta_m \eta_m' \rangle = 2k_B T \Gamma \delta(t - t')$$

Construction of a field theory

Fields $\phi_{\mathbf{l}}$ defined on N sites of a d-dimensional regular lattice with position $\mathbf{x}_{\mathbf{l}}$

$$H(\{\phi_{\mathbf{l}}\}) = \sum_{\mathbf{l}} G(\phi_{\mathbf{l}}) + \frac{1}{2} \sum_{\mathbf{l},\mathbf{l}'} K_{\mathbf{l},\mathbf{l}'} (\phi_{\mathbf{l}} - \phi_{\mathbf{l}'})^2$$

with $G(\phi)$ a power series expansion about $\phi = 0$ and $K_{1,1'}$ a finite range coupling matrix.

The partition function and the (overdamped) Langevin equation are well defined

$$Z = \int \prod_{\mathbf{l}} d\phi_{\mathbf{l}} e^{-\beta H(\{\phi_{\mathbf{l}}\})}$$

$$\frac{d\phi_{\mathbf{l}'}}{dt} = -\frac{\partial H(\{\phi_{\mathbf{l}}\})}{\partial \phi_{\mathbf{l}'}} + \eta_{\mathbf{l}'}(t), \qquad \langle \eta_{\mathbf{l}}(t)\eta_{\mathbf{l}'}(t')\rangle = 2k_B T \delta_{\mathbf{l},\mathbf{l}'} \delta(t - t')$$

Construction of a field theory (cont.)

continuum limit

- ullet volume per lattice site $\mathbb{V} \to 0$ and keep the total volume $V = N \mathbb{V}$ constant
- \bullet $\mathbf{x_l} \to \mathbf{x}$ continuous variable
- $\sum_{\mathbf{l}} \to \int d\mathbf{x} / \mathbb{V}$ (d-dim)
 - $\sum_{\mathbf{l}} G(\phi_{\mathbf{l}}) \to \int d\mathbf{x} g \left[\phi(x)\right], \quad g = G/\mathbf{v}$
- $\frac{1}{2} \sum_{\mathbf{l},\mathbf{l'}} K_{\mathbf{l},\mathbf{l'}} (\phi_{\mathbf{l}} \phi_{\mathbf{l'}})^2 \to \frac{1}{2} \int d\mathbf{x} \, k(\nabla \phi(\mathbf{x}))^2, \quad k = \frac{1}{dv} \sum_{\mathbf{l}} \mathbf{x}_{\mathbf{l}}^2 K_{\mathbf{l},0}$

$$H [\phi(\mathbf{x})] = \int d\mathbf{x}' g [\phi(\mathbf{x}')] + \frac{1}{2} k (\nabla \phi(\mathbf{x}'))^2$$
$$Z = \int \mathcal{D}\phi(\mathbf{x}) e^{-\beta H[\phi(\mathbf{x})]}$$

Time dependent Landau-Ginzburg equation

$$\frac{d\phi(\mathbf{x})}{dt} = -\frac{\delta H \left[\phi(\mathbf{x})\right]}{\delta\phi(\mathbf{x})} + \eta(\mathbf{x}, t), \langle \eta(\mathbf{x}, t)\eta(\mathbf{x}', t') \rangle = 2k_B T \delta(\mathbf{x} - \mathbf{x}')\delta(t - t')$$

Taking, e.g., $g[\phi(\mathbf{x})] = r\phi^2/2 + u\phi^4/4$ one obtains

$$H [\phi(\mathbf{x})] = \int d\mathbf{x}' \frac{r}{2} \phi^2(\mathbf{x}') + \frac{u}{4} \phi^4(\mathbf{x}') + \frac{1}{2} k(\nabla \phi(\mathbf{x}'))^2$$
$$\frac{d\phi(\mathbf{x})}{dt} = -r\phi(\mathbf{x}) - u\phi(\mathbf{x})^3 + \eta(\mathbf{x}, t)$$