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Kinematics

• Concerns with displacements, velocity, accelerations,
deformation, rotation of fluid elements.

• Does not refer to the FORCES responsible for such a motion.

• Kinematics describes the appearance of a motion.



Deformation or Strain

• The study of the dynamics of fluid flows involves
determination of the FORCES on an element, which depend
on the amount of its deformation, or STRAIN.

• Deformation in a fluid is similar to that of a solid.

• NORMAL STRAIN = the change in length per unit length of
a linear element.

• SHEAR STRAIN = change of a 90° angle.
• In fluids we talk about STRAIN RATES, because it continues
to deform.



Linear Strain Rate

The strain rates express the deformation of a volume element,
occurring both in fluids and in solids. The linear strain rate is
defined as change in length per unit time and unit length of a
linear element.



Linear Strain Rate
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Here the material derivative D/Dt has been used to ”track” the
particle. Above we have derived the expression for the linear strain
rate in the x direction. The expressions for the y and z direction
respectively are of the same form.



Shear Strain Rate
In addition to undergoing normal or linear straining, a volume
element (fluid or solid) may also be deformed in shape. The shear
strain rate of an element is defined as the decrease of the angle
formed by two mutually perpendicular lines on the element per
time unit.

Here dα and dβ are the deformation angles of the figure above,
dα = CA/CB



Shear Strain Rate
The rate of shear strain is:
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We can express the deformation (linear and shear ) of a volume
element in terms of the strain rate tensor
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The diagonal terms of the tensor e are the linear strain rates, while
off the diagonal we find half the shear strain rates.



Vorticity of a fluid element
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from the curl of a vector, the Vorticity vector is related to the
velocity vector ωi = ∇×vi . For rotation of a stiff body, the
vorticity is constant in space. It is twice the angular velocity. The
fluid motion is called irrotational if ω = 0. In irrotational flows the
velocity vector can be written as a gradient of a scalar function
ui =

∂φ

∂xi
. This is due to the fact that the curl(grad(·)) operator is

identical to zero. Since the velocity field in the case of irrotational
fluids can be written as the gradient of a scalar, it is also called
potential flow.



Circulation

Related to vorticity is the concept of circulation. The circulation
around a closed contour C is defined as the line integral of the
tangential component of velocity and is given by:

Γ =
∮
C
v ·ds (5)

According to Stokes theorem the line integral of v around a closed
contour C equals the “flux” of the vorticity through an arbitrary
surface A bounded by C .∮

C
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The circulation around a closed curve is equal to the surface
integral of the vorticity (or the flux of vorticity).



Relative motion near a point

We now know that a fluid element can (i) deform and (ii) rotate.
We can show that the relative motion between two neighbouring
points can be written as the sum of the motion due to local
rotation plus local deformation.
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Relative motion near a point
The Velocity Gradient Tensor

∂ui
∂xj

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj

−
∂uj
∂xi

)
= εij +

1

2
rij . (8)

Is made of the Strain Rate Tensor eij =
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The relative velocity = deformation + rotation
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Next

1 Conservation of Mass, Continuity

2 Conservation of Momentum

3 Navier-Stokes Equation

4 Energy Equations

5 Bernoulli Eq.



Atmospheric circulation: Streamfunction

arrows and values in parentheses) and ;12 years later
(dotted arrows and values in parentheses). Lagged cor-
relations between the individual terms in the radiative
balance and the convective index (Fig. 8) help us

understand and complete the detailed energetic dy-
namics of the two hemispheres summarized in Fig. 7.
Figure S2 shows the detailed energy balance at lags
of222 (which approximately coincides with the start of

FIG. 4. Atmospheric overturningmass streamfunction: (a)climatologymap; (b) composite, i.e.,
the difference between convective and nonconvective decades from 500 years of the control
simulation; and (c) lagged regression of 500-mbar mass streamfunction vs convective index,
where negative (positive) values on the time axis indicate periods before (after) a maximum in
convection (at lag 0). Black arrows indicate the flow direction of the Hadley and Ferrel cells in
(a) and their anomalies in (b). Red arrows indicate the direction of the eddy flux.
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Oceanic circulation: Streamfunction



Oceanic circulation: Barotropic Streamfunction

Barotropic streamfunction Ψxy (Sv) computed by integrating the
barotropic flow from north to south. What do you notice?



Oceanic circulation: Streamfunction

In units of Sv ≡ 106m3s−1. The flow follows the contours of the
streamfunction in the direction indicated by the black arrows. Dark
gray lines correspond to average depths of selected potential
density surfaces, and approximately indicate the upper/lower
bounds and core of each overturning ”cell”.



Water Mass Transformation


