Geophysical Fluid Dynamics

Lecture IV
@ Deformation or Strain
© Vorticity and Circulation
© Streamfunction

© Relative motion near a point



Kinematics

e Concerns with displacements, velocity, accelerations,
deformation, rotation of fluid elements.

® Does not refer to the FORCES responsible for such a motion.

e Kinematics describes the appearance of a motion.



Deformation or Strain

The study of the dynamics of fluid flows involves
determination of the FORCES on an element, which depend
on the amount of its deformation, or STRAIN.

Deformation in a fluid is similar to that of a solid.

NORMAL STRAIN = the change in length per unit length of
a linear element.

SHEAR STRAIN = change of a 90° angle.

In fluids we talk about STRAIN RATES, because it continues
to deform.



Linear Strain Rate

The strain rates express the deformation of a volume element,
occurring both in fluids and in solids. The linear strain rate is
defined as change in length per unit time and unit length of a
linear element.
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Linear Strain Rate
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Here the material derivative D/Dt has been used to "track” the
particle. Above we have derived the expression for the linear strain
rate in the x direction. The expressions for the y and z direction
respectively are of the same form.
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Shear Strain Rate

In addition to undergoing normal or linear straining, a volume
element (fluid or solid) may also be deformed in shape. The shear
strain rate of an element is defined as the decrease of the angle
formed by two mutually perpendicular lines on the element per

time unit.
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Here da and df are the deformation angles of the figure above,
da=CA/CB



Shear Strain Rate

The rate of shear strain is:
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We can express the deformation (linear and shear ) of a volume
element in terms of the strain rate tensor
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The diagonal terms of the tensor e are the linear strain rates, while
off the diagonal we find half the shear strain rates.
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Vorticity of a fluid element

9B and -4

The angular velocities are - Gt so the average is

\(42)
the Vort|C|ty is 2x the above
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from the curl of a vector, the Vorticity vector is related to the
velocity vector w; =V x v;. For rotation of a stiff body, the
vorticity is constant in space. It is twice the angular velocity. The
fluid motion is called irrotational if @ = 0. In irrotational flows the
velocity vector can be written as a gradient of a scalar function
up = a . This is due to the fact that the curl(grad(-)) operator is
|dent|ca| to zero. Since the velocity field in the case of irrotational
fluids can be written as the gradient of a scalar, it is also called
potential flow.



Circulation

Related to vorticity is the concept of circulation. The circulation
around a closed contour C is defined as the line integral of the
tangential component of velocity and is given by:

F:%Cv-ds (5)

According to Stokes theorem the line integral of v around a closed
contour C equals the “flux” of the vorticity through an arbitrary
surface A bounded by C.
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The circulation around a closed curve is equal to the surface
integral of the vorticity (or the flux of vorticity).



Relative motion near a point

We now know that a fluid element can (i) deform and (ii) rotate.
We can show that the relative motion between two neighbouring
points can be written as the sum of the motion due to local
rotation plus local deformation.
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Relative motion near a point
The Velocity Gradient Tensor
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The relative velocity = deformation + rotation
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Next

@ Conservation of Mass, Continuity
© Conservation of Momentum

© Navier-Stokes Equation

©Q Energy Equations

© Bernoulli Eq.
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Atmospheric circulation: Streamfunction
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Oceanic circulation: Streamfunction
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Oceanic circulation: Barotropic Streamfunction
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Barotropic streamfunction W, (Sv) computed by integrating the
barotropic flow from north to south. What do you notice?



Oceanic circulation: Streamfunction
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In units of Sv =10°m3s~1. The flow follows the contours of the
streamfunction in the direction indicated by the black arrows. Dark
gray lines correspond to average depths of selected potential
density surfaces, and approximately indicate the upper/lower
bounds and core of each overturning "cell”.
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