

Piano Nazionale di Ripresa e Resilienza

Data Infrastructure

Lecture 1: Data & Research Data Management

Federica Bazzocchi 24/3/2025

Brief introduction to Data Infrastructure section:

> Welcome


- > Goals
- > Calendar
- > Topics and Organization

Welcome

 \mathcal{T}

- > Few words about you
- > My contact: Federica.Bazzocchi@areasciencepark.it
- > My institute: RIT@AreaScience Park

Three laboratories active in creating an **integrated system** of research infrastructures and platforms.

Welcome

 π

- > @LADE we host students'internship and have different possibilities for undergraduated and graduated fellowhips! (if interested ask me!)
- > We organize together with SISSA a Master in Data Management and Curation ! The pilot edition is finishing but the next one will start on September 2025

•Open Science principles and methodologies, within the context of Horizon Europe Framework programme and EOSC;

•**FAIR principles**: data FAIR-by-design approach and FAIRification of data processes;

•Tools and software for data acquisition and metadata enrichment;

•Tools and methods for preliminary data and metadata analysis. Master in Data Management and Curation (MDMC)

π

Goals

- > Introduce/review the concepts of data management
- Discuss the concepts of data infrastructure and storage ecosystem
- > Data infrastructure sustainability
- Present some examples/tools and some parallelism between research and companies approach
- > Discuss some specific examples: DECOS and OFED

Calendar :

Timetable	24-mar	27-mar	07-apr	10-apr	14-apr	17-apr	28-apr	05-may
09:00-11:00	online		online		online		online	online
11:00-13:00		presence		presence		presence		

Topics:

- Research Data Management ad tools
- Large scale data infrastructure and hardware/software stack for large data management
- > Parallel and distribute storage
- > Cloud storage and associated services

Organization:

- Frontal lessons
- Active participation from you
- Interactive session on an example of data management in material science:
 OFED and its services
- Seminar to discuss of an example of data management: DECOS in the PRP project

LECTURE 1 OUTLINE:

- Some Reflexion on Data
- Research Data
 Management
- Introduction to Data
 Infrastructure

REFLEXION ON DATA

WHAT IS

DATA

My old (ingenuous) **BIAS** as young physics' student (that I am not anymore) and science enthusiast (that I still am)

- Data is a results of a measurement;
- It is objective;
 - It is quantitative;
- It is related to a physical law/phenomena;
- It is analyzed by mean of statistics and is used to validate a/make prediction by a (analytical) mathematical model.

DATA is a wider concept

• "Data is any set of characters that has been gathered and translated to some purpose, usually analysis. It can be any character, including text and numbers, pictures, sound, or video"

(https://www.computerhope.com/jargon/d/data.html)

• "Data is information that has been translated into a form that is efficient for movement or processing"

(https://searchdatamanagement.techtarget.com/definition/data)

 "Data is a collection of facts, such as numbers, words, measurements, observations or even just description of things" (https://www.mathsisfun.com/data/data.html)

DATA journey

- The word "data" derives from the Latin word "datum" (singular), which means the "thing given"
- A data can be defined as a fundamental unit of raw information, represented in different form that can be transferred and then recorded, processed, analyzed and then interpreted.
- 19000 B.C-**calculation** Ishango bone (baboon tool) : the first **mathematical data** (intended as information registered)
- I640s medical data- John Graunt started collecting information regarding deaths in London (number of death, mortality rate per age, causes)
- 1880s-data processing- the German-American statistician Herman Hollerith had the idea of using punch cards in writing and processing data. With this invention Hollerith helped the American government complete the US census within the same year.
- 1928 magnetic tape- German engineer Fritz Pfleumer patented a magnetic tape that he used to replace wire recording for storing data.
- 1960s relational database idea introduced by the computer scientist Codd
- 1990s Internet and then Google the rise of big data

History of Data: Ancient Times to Modern Day – 365 Data Science

DATA is raw and processed information

Key Characteristics

- **Primality** A data point on its own is neutral and meaningless without context.
- **Representation** expressed in different formats (numerical, textual, binary, images, sound signals)
- Storage It can be recorded on physical or digital media.
- Processing and Analysing -extraction of useful information
- **Transferability** It can be transmitted and exchanged between systems, individuals, or devices.

Kind of Data

- Observational: real-time captures (e.g. brain images, survey data)
- Experimental: from experimental results (e.g. from lab equipment)
- Simulation: generated from test models (e.g. economic or climate models)
- **Derived or compiled**: resulting from processing or combining 'raw' data (e.g. compiled databases, text mining, aggregate census data) ·
- Reference or canonical: collection of datasets, usually published and curated (e.g. gene databanks, crystallographic databases)

Types of Data

- Structured Data: Organized in tables or databases (e.g., name, age, address).
- Unstructured Data: Texts, images, videos, audio, without a predefined structure.
- Semi-structured Data: JSON, XML, which have some organization but are not as rigid as relational databases.
- Qualitative vs. Quantitative Data: Words vs. numbers.

Data Sources

- Data are not only created anymore to write scientific papers, but they are created with the notion of being reused in different contexts which is revolutionary in many disciplines;
- Data are produced by almost everything
- Advanced statistical methods (machine learning/deep learning) are required and have allowed to detect the patterns and correlations hidden in the data (without LLM would have been impossible NLP)

DATA-CENTRIC WORLD

In 2006, mathematician Clive Humby coined the phrase **"data** is **the new oil**."

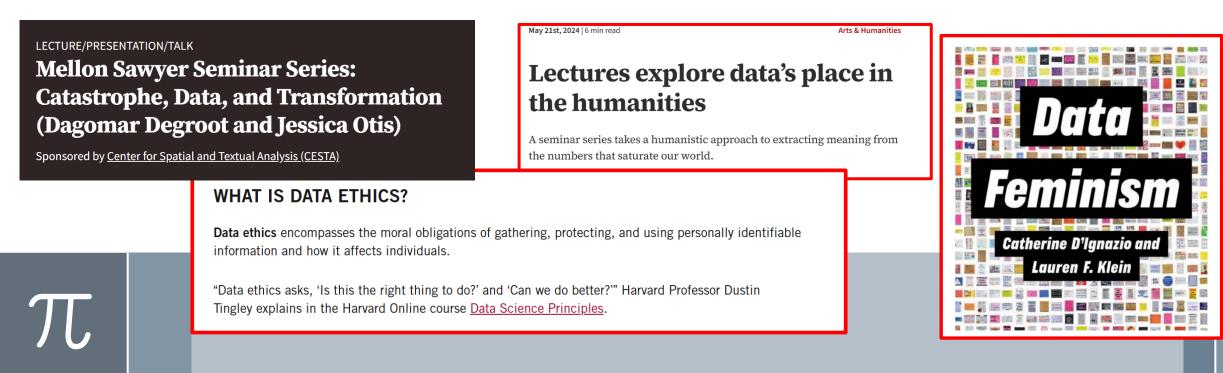
Data Is The New Business Fuel, But It Requires Sound Risk Management

By <u>Morgan Palmer</u>, Former Forbes Councils Member. for Forbes Technology Council, COUNCIL POST | Membership (fee-based)

Apr 28, 2022, 08:00am EDT

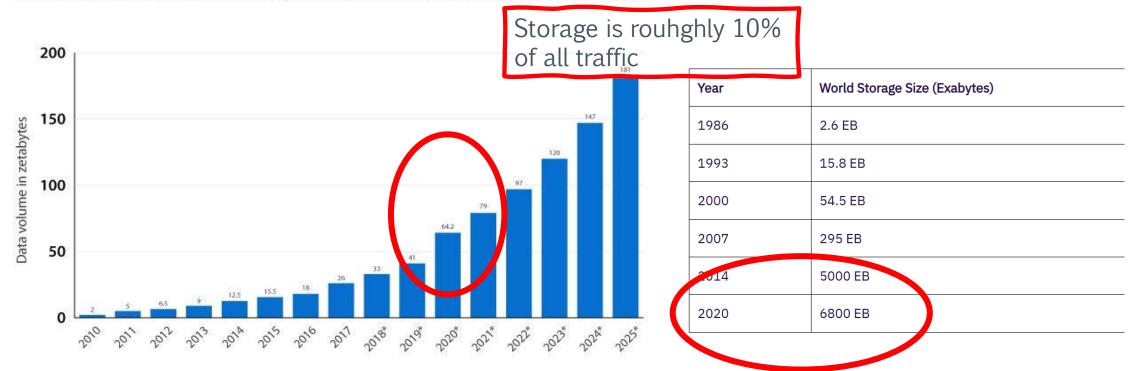
Why Are We Moving Towards A Data-Centric World?

Ian Gerald King · Follow 4 min read · Feb 23, 2017

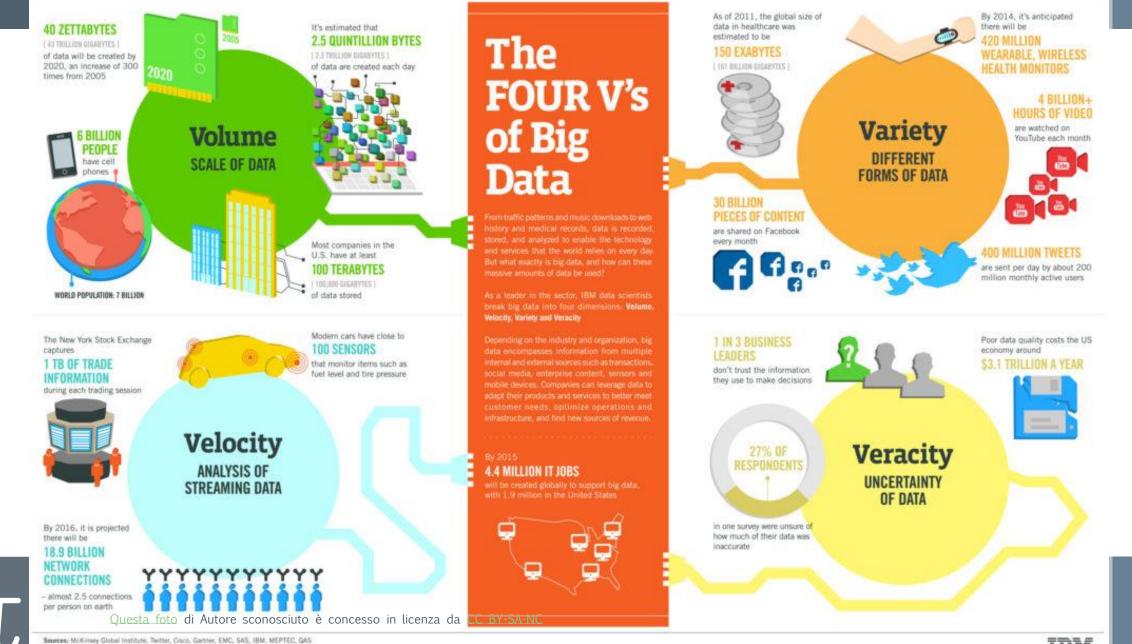

CYBERSECURITY

We need a new era of data responsibility

Jan 21, 2018


A parentheses

- Data intended as digital recorded infomation is a technical concept and is processed /analyzed by highly specialized techniques and professionals (data scientists, data and AI engineers)
- Nevertheless our society is so data-centered (and data-obsessed) that also humanities/social studies are interested in the influence of data for our society. They enter into the dialogue about DATA and their own studies are influenced by DATA.



DATA explosion in the last decades

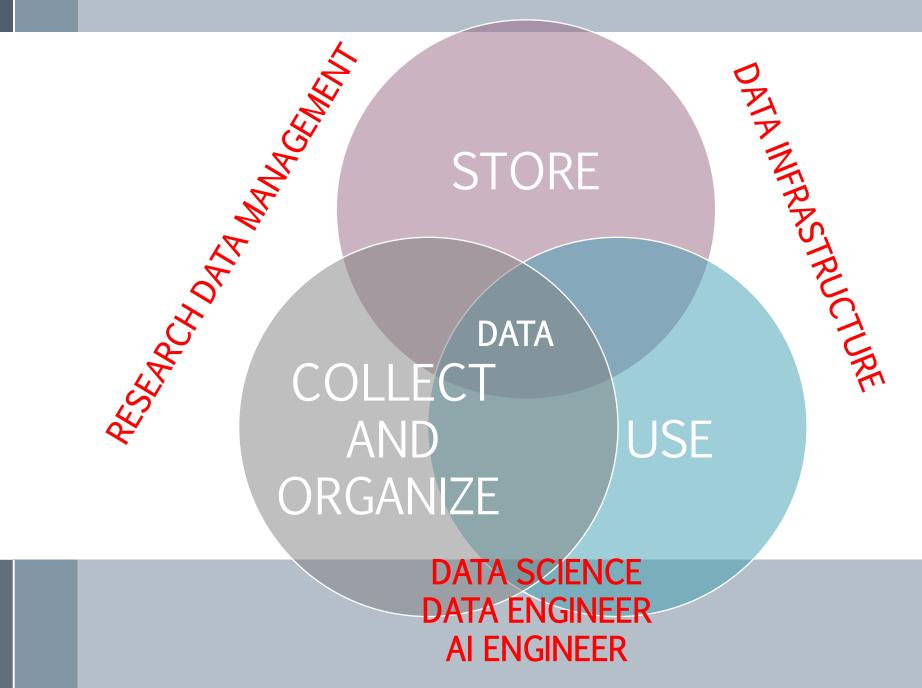
The volume of data/information created, captured, copied and consumed worldwide from 2010 to 2025

IBM

HOW WE MANAGE THIS

HUGE AMOUNT OF DATA

 \mathcal{T}


WHERE WE **STORE** THIS

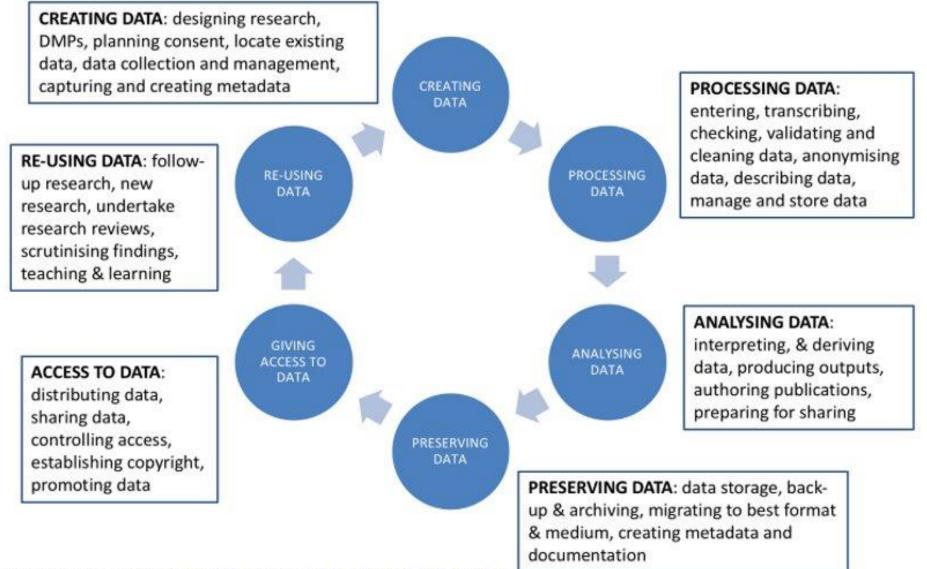
HUGE AMOUNT OF DATA

 \mathcal{T}

HOW WE USE (AND WHAT WE MAY DO WITH) THIS

HUGE AMOUNT OF DATA

π


RESEARCH DATA MANAGEMENT

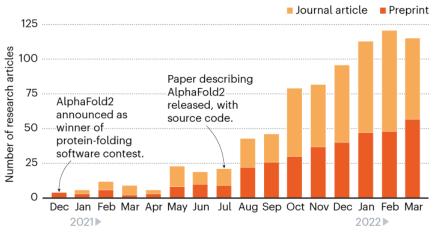
BIG DATA IN SCIENCE

- Data growing exponentially, in all sectors and therefore also in all science \cdot
- All science is becoming data-driven and this is happening very rapidly
- Data becoming increasingly open/public
- A scientific revolution in how discovery takes place => a rare and unique opportunity
- Data have to be managed adequately

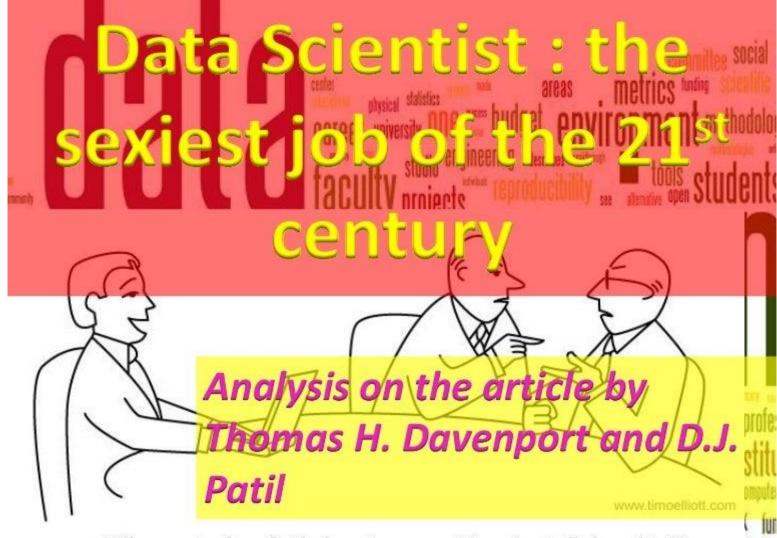
Cross domain/context problem!

DATA LIFE CYCLE

NOT – INCREMENTAL CHALLENGES!


Multi-faceted challenges in the analysis as well
New computational tools and strategies

 \cdot ... not just statistics, not just computer science, not just astronomy, not just genomics...


 Science is moving increasingly from hypothesis driven to data-driven discoveries and now to LLM-driven discoveries (think to alphafold/matgen)

ALPHAFOLD MANIA

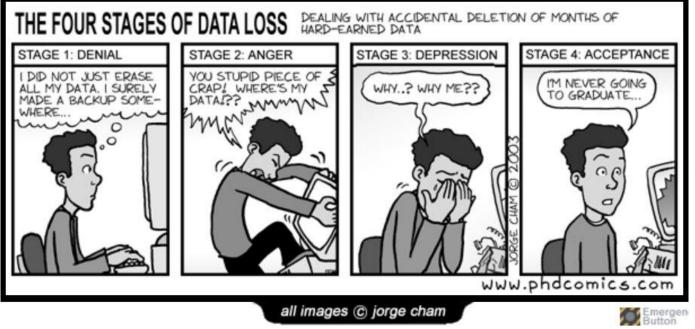
The number of research papers and preprints citing the AlphaFold2 Al software has shot up since its source code was released in July 2021*.

*Nature analysis using Dimensions database; removing duplicate preprints and papers/R. Van Noorden, E. Callaway.

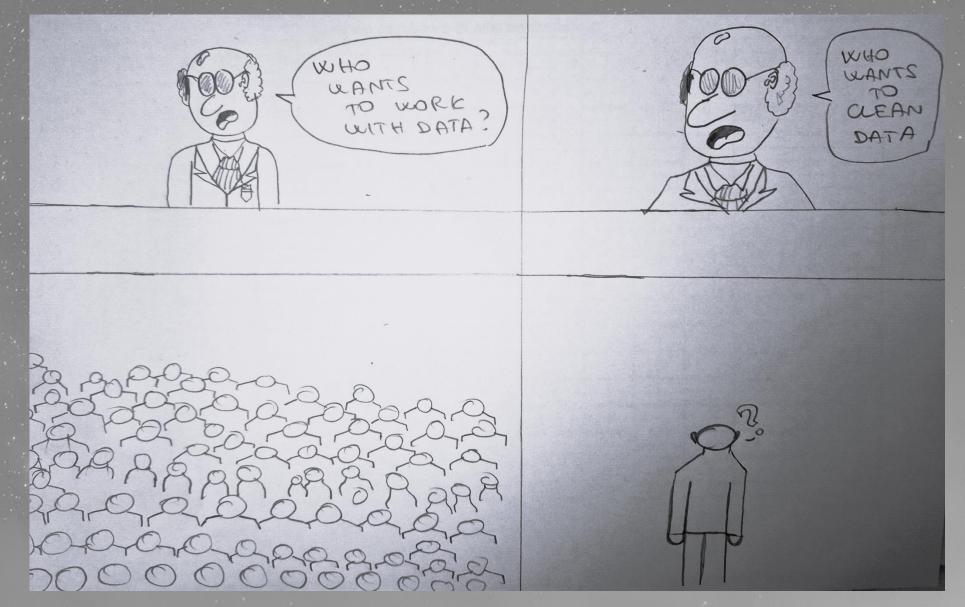
"When you two have finished arguing your opinions, I actually have data!"

They eat too much at once

They forget where they store their food


SCIENTISTS ARE LIKE SQUIRELLS

They collect too much data at once


<u>QS World University Rankings by Subject 2015 -</u> <u>challenges and developments - QS</u>

They forget where they stored them!

PHD Comics: Stages of Data Loss

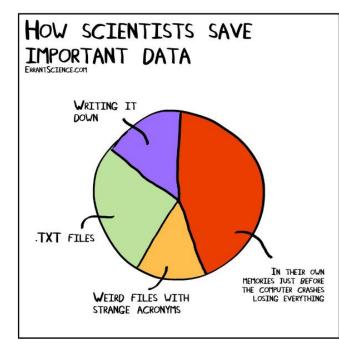
DATA SCIENTIST IS THE SEXIEST JOB IN 21st CENTURY?

DATA MINING FOR SURE NOT!!!

Cassimiliano Jabes

DATA SCIENTIST IS THE SEXIEST JOB IN 21st CENTURY?

<u>Questa foto</u> di Autore sconosciuto è concesso in licenza da \underline{CC} <u>BY-NC</u>


subject: External hard disk lost Organization: S.I.S.S.A. Date: Wed, 4 Jul 2018 13:54:48 +0200 From: Students' Secretariat <XXXX@sissa.it> To: SISSA Users:;

DO SCIENTISTS NEED DATA MANAGEMENT?

An external hard disk has been lost, most probably on the 4th floor, black, in a white box.

It contains a lot of work data of a SISSA PhD student.

If you happen to find it, please leave it at the reception desk or at the students' secretariat. Alternatively you can leave it in the Students' Secretariat mailbox in the lower level.

Marconi: scratch is almost full – quota imposed

16 May 2024

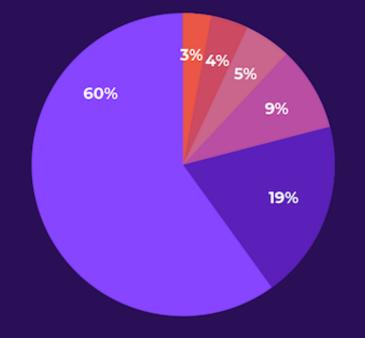
Dear Marconi Users,

we inform you that the scratch space has reached the occupation of more than 87% today. This may cause malfunctions to the filesystems. To avoid reaching a 100% occupancy, we temporarily set a quota of 20 TB on the scratch folder of each user. We encourage you to clean your scratch folders by removing useless data or by moving data to work and dres spaces. We will inform you as soon as normal occupancy will be restored and the quota removed.

Best regards, HPC User Support @ CINECA

DO SCIENTISTS NEED DATA MANAGEMENT?

Location: 😂 C:\user\research\data			~
Filename 🔺	Date Modified	Size	Type
🚦 data_2010.05.28_test.dat	3:37 PM 5/28/2010	420 KB	DAT file
🚦 data_2010.05.28_re-test.dat	4:29 PM 5/28/2010	421 KB	DAT file
🚦 data_2010.05.28_re-re-test.dat	5:43 PM 5/28/2010	420 KB	DAT file
🚦 data_2010.05.28_calibrate.dat	7:17 PM 5/28/2010	1,256 KB	DAT file
👸 data_2010.05.28_huh??.dat	7:20 PM 5/28/2010	30 KB	DAT file
data_2010.05.28_WTF.dat	9:58 PM 5/28/2010	30 KB	DAT file
🚦 data_2010.05.29_aaarrrgh.dat	12:37 AM 5/29/2010	30 KB	DAT file
😝 data_2010.05.29_#\$@*&!!.dat	2:40 AM 5/29/2010	0 KB	DAT file
👸 data_2010.05.29_crap.dat	3:22 AM 5/29/2010	437 KB	DAT file
👸 data_2010.05.29_notbad.dat	4:16 AM 5/29/2010	670 KB	DAT file
🚦 data_2010.05.29_woohoo!!.dat	4:47 AM 5/29/2010	1,349 KB	DAT file
🚦 data_2010.05.29_USETHISONE.dat	5:08 AM 5/29/2010	2,894 KB	DAT file
🕙 analysis_graphs.xls	7:13 AM 5/29/2010	455 KB	
ThesisOutline!.doc	7:26 AM 5/29/2010		
Notes_Meeting_with_ProfSmith.txt	11:38 AM 5/29/2010	1,673 KB	
DUNK	2:45 PM 5/29/2010		Folder
🖁 data_2010.05.30_startingover.dat	8:37 AM 5/30/2010	420 KB	DAT file
<	1		


all images ⓒ jorge cham

DO SCIENTISTS NEED GOOD DATA MANAGEMENT?

Data Scientists Spend the Majority of their Time Preparing Data

- Cleaning and organizing data: 60%
- Collecting data sets: 19%
- Mining data for patterns: 9%
- Other: 5%
- Refining algorithms: 4%
- Building training sets: 3%

🗲 CONTENTSTACK"

Source: https://www.forbes.com/sites/glipress/2016/03/23/data-preparation-most-timeconsuming-least-enjoyable-data-science-task-survey-says/#71534d7b6f63

DATA MANAGEMENT ROLE IN SCIENCE

> "Research cannot flourish if data are not preserved and made accessible. All concerned must act accordingly".

» "Data management should be woven into every course in science, as one of the foundations of knowledge"

'Editorial: Data's Shameful Neglect' (10 September 2009) in Nature 461, p. 145, doi:10.1038/461145a.

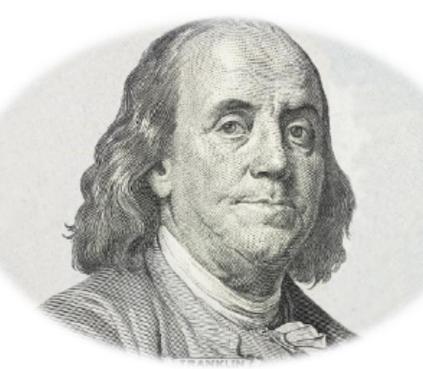
What is Research Data Management (RDM)?

Data management refers to all aspects of creating, housing, delivering, maintaining, and archiving and preserving data. It is one of the essential areas of responsible conduct of research

Ensures data integrity, accessibility, and compliance with regulations

Supports reproducibility, transparency, and long-term usability of research outputs

Increasingly, **universities** and research center now encourage all researchers (including postgraduate students) to undertake data management plans (DMPs) at the start of their research project

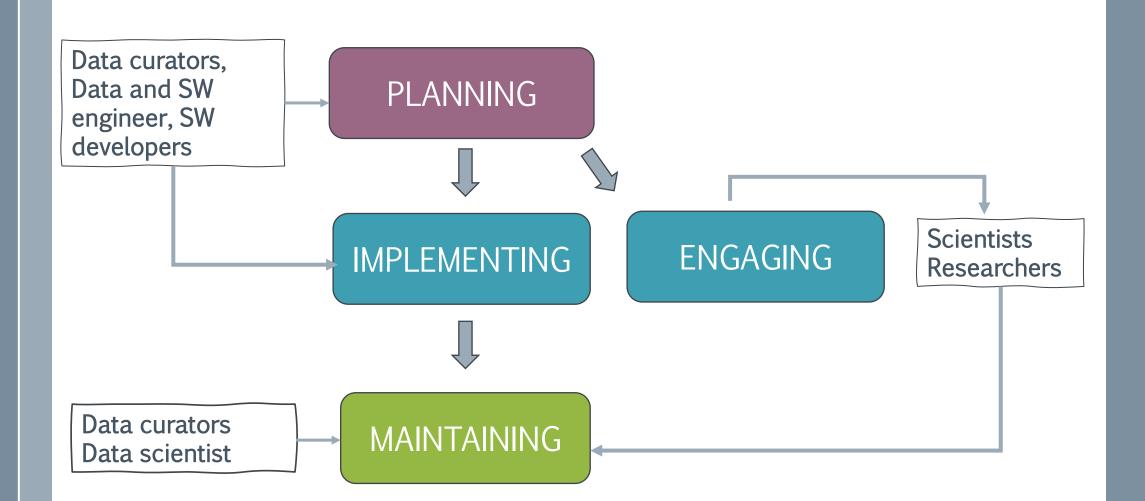

Before starting a new research project, Principal Investigators (PIs), research teams, and postgraduate students must address issues related to data management

Why is RDM Important?

- > Enhances data quality and integrity
- > Facilitates data reuse and collaboration
- > Complies with funding agency and institutional policies
- > Prevents data loss and ensures long-term preservation
- A good data management allows progress in research in a more direct way, without reinventing the wheel each time, both locally and within the community

"If you think education data management is expensive, Try ignorance without it"

Benjamin Franklin

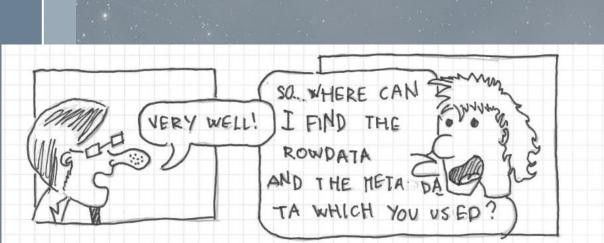

Data Management Priorities

A higher degree of interoperability is required to overcome the huge fragmentation;

- Data scientists have to face too much detail in an increasingly complex data and tool landscape;
- Data scientists need wide scale data tracing and reproducibility mechanisms to facilitate trust and verification;
- Improved ways are needed to automatically create scientific annotations to capture and exploit knowledge

Roles in data intensive science:


- Scientists/researchers: acquire, generate, analyze, check, organize, format, document, share, publish research data
- Data scientists/users: access, understand, integrate, visualize, analyze, subset, and combine data
- **Data engineers**: develop infrastructure, standards, conventions, frameworks, data models, Web-based technologies
- Software developers: develop tools, formats, interfaces, libraries, services
- **Data curators**: preserve data content and integrity of science data and metadata in archives
- Research funding agencies, professional societies, governments: encourage free and open access to research data, advocate elimination of most access restrictions



GOOD DATA MANAGEMENT REQUIRES COORDINATION AND COLLABORATION AMONG ALL THE PLAYERS !!!

Scientists need a Data Management Plan

EHM ... MAYBE IN THE SHARE PATA OR IN THE DYD. MAYBE I SAVED IT HERE ... D YOU KNOW WHAT? ! I'LL JUST START IT OVER AGAIN

DATA MANAGEMENT PLAN (DMP)

- How will the data be created?
- How will the data be documented?
- Who will access the data?
- Where will the data be stored?
- How will the data be shared?
- How long will the data be preserved?
- Who will back up the data?

A living document updated any time is needed

TOOLS (and guides) TO WRITE A DMP

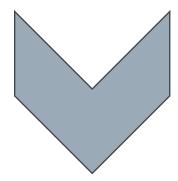
DAMAP easy.DMP A tool for machine actionable DMPs 🔔 DSW argos research data WIEN management DMPONLINE

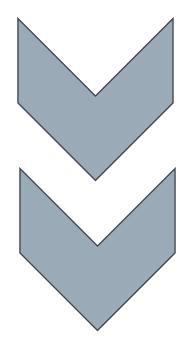
- Each funding agency could require or recommend a specific DMP template.
- Your institution could require and recommend a DMP template.
- Template could be presented as list of questions in text format or in a machineactionable format.

Brief recap on DMP

DMP is at the heart of fair (FAIR) DATA MANAGEMENT

1.1st Generation DMPs (Structured Data):


- In the 1960s, the concept of DMPs began with organizations emphasizing professional training and quality assurance metrics.
- DMPs primarily focused on managing structured data, such as relational databases. (datadiversity.net)


2. 2nd Generation DMPs (Big Data Analytics):

 With the rise of big data, DMPs adapted to handle diverse data types (structured, semi-structured, unstructured). (sparkfish.com)

3. Current Trends in DMPs:

Metadata and FAIR data principles (Findable, Accessible, Interoperable, Reusable) play a crucial role.
Ensuring data security, confidentiality and ethical compliance remains essential

Brief recap on DMP

The Data Management Plan (DMP) became mandatory for all EU projects, including Horizon Europe grants (rdm.mpdl.mpg.de)

Unlike in Horizon 2020, where an opt-out option existed, Horizon Europe no longer allows skipping the DMP requirement. <u>This trend aligns with the goal of making</u> <u>research data FAIR (findable, accessible, interoperable, and reusable) across all projects</u>

The huge amount of data produced nowadays in all Sciences requires a deep planning of data management in all projects. Scientific team as well as individual investigator should always start their project with a DMP for sake of (their own) science

Approaches

We may recognize two patterns

Project funded by EU or other National Institutions.

DMP is compulsory (one of the first Deliverable)

Local projects/ in house research

DMP is strongly suggested (if not compulsory inside the Institution)

> Template or not, possibility to use tools

Standard template

We said that ...

DATA is raw and processed information

Key Characteristics

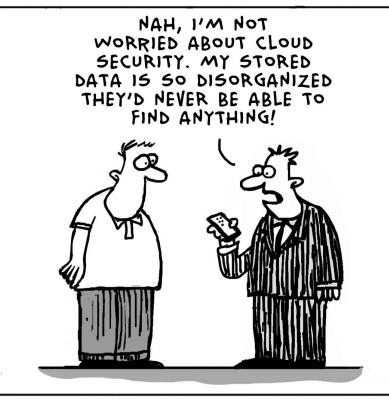
• **Primality** – A data point on its own is neutral and meaningless without context.

What do you think of when I say "metadata"?

WHAT IS METADATA?

- Data describing other data
- It provides information about the content, i.e., an image may include metadata describing the picture size, colour depth, image resolution, creation date...
- It describes individual files, single objects, or complete collections

ARIAR S!


THE IMPORTANCE OF BEING METADATA

- Gives the context, gives meaning to the data
- Ensures that resources will survive and continue to be accessible in the future
- > Is searchable, aiding the identification and retrieval of resources
- Helps users in managing, mantaining, and preserving digital collections
- Supports archiving, security, and authentication of data

WHAT MAKES METADATA GOOD?

- > Be complete and consistent ! (collect all metadata)
- If exist, use standards, if not exist define ad hoc schema and gives it a URI
- Controlled vocabularies for unambiguous keywords
- > Persistent identifiers (DOIs)
- > Clearly stated data limitations
- Explanation for appropriate reuse (indicate licences etc)
- Machine readable (interoperability)

(GOOD) METADATA HAVE A CORE ROLE IN FAIR PRINCIPLES

Indable Accessible

Interoperable eusable

F1: (Meta) data are assigned globally unique and persistent identifiers F2: Data are described with rich metadata F3: Metadata clearly and explicitly include the identifier of the data they describe F4: (Meta)data are registered or indexed in a searchable resource I1: (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation
I2: (Meta)data use vocabularies that follow the FAIR principles
I3: (Meta)data include qualified references to other (meta)data

A1: (Meta)data are retrievable by their identifier using a standardised communication protocol A1.1: The protocol is open, free and universally implementable A1.2: The protocol allows for an authentication and authorisation procedure where necessary A2: Metadata should be accessible even when the data is no longer available

R1: (Meta)data are richly described with a plurality of accurate and relevant attributes R1.1: (Meta)data are released with a clear and accessible data usage license R1.2: (Meta)data are associated with detailed provenance R1.3: (Meta)data meet domain-relevant community standards

CHALLENGES IN RDM

Ensuring compliance with evolving data policies Managing large volumes of diverse data types Encouraging researchers to adopt best practices Balancing data security with open access principles

DATA POLICY

A documented set of guidelines for ensuring the proper management of the data in an organization

Establishes who is responsible for data under various circumstances, and specifies what procedures should be used to manage it

Regulated data usage, data sharing, and data citations

Requires synergy of executive committee, finance, IT, management, and other data stewards within the organization

Is a flexible document, which can be changed in response to changing needs of the community

INTRODUCTION TO DATA INFRASTRUCTURE

WHAT IS

DATA INFRASTRUCTURE?

- The set of technologies and processes for collecting, storing, processing, and managing data
- Includes hardware, software, and policies to handle structured and unstructured data
- Aims to provide reliable, scalable, and secure data management solutions
- > A well-structured data infrastructure enables efficient data management, security, and innovation

THE RISE OF DATA INFRASTRUCTURE

1960s-1970s: Emergence of databases (e.g., IBM's IMS, relational databases by E.F. Codd)

1980s-1990s: Data Warehousing and ETL processes

2000s: Big Data explosion and cloud computing

2010s-present: Modern data infrastructure with scalable architectures and AI integration

KEY COMPONENTS OF DATA INFRASTRUCTURE

- > Data Storage: Databases, Data Lakes, Cloud Storage
- > Data Processing: ETL Pipelines, Batch & Streaming Processing
- > Data Governance: Security, Compliance, Data Quality
- > Data Access & Analytics: BI Tools, Dashboards, AI/ML Models

DATA INFRASTRUCTURE

- > Store large datasets and large data rates from experiments
- > Allow reliability by replicating data sources
- > Allow accessibility by copying source to several places
- > Monitor and check resource usage
- > Provide a set of integrated services which are compatible between domains
- > Increase interoperability through common standard schemes
- > Guarantee secure, broadband, remote access to data

DATA INFRASTRUCTURE

> Data preservation to allow long-term availability of data

> High quality of data and metadata to enable advanced and cross-disciplinary access and enrichment operations

> Economic justification: as the scientific community is operating on increasingly larger datasets and want to preserve the information concerned, the infrastructure provided should have a clear roadmap of technology exchange and backwards compatibility.

> Provide the infrastructure to allow fine-grained access control

WHY DATA INFRASTRUCTURE IS RELEVANT

- > Supports data-driven decision-making
- > Enables real-time analytics and business intelligence
- > Ensures data quality, security, and compliance
- Facilitates scalability and efficiency in modern enterprises

TAKE AT HOME MESSAGE N.1

Data wrangling: Different formats (often proprietary) No standardization Different information Different units Incomplete data Incompatible data

TAKE AT HOME MESSAGE N.2

Lack of agreement among scientists and IT on how to treat data

Manual metadata registration only at publication time

No clear and common (meta)data models

TAKE AT HOME MESSAGE N.3

Inactivity of scientists:

- > Old "handmade" programs
- > Pen and copybook
- > Data intellectual propriety

 Not familiar with technology

 Sharing data by physical drives (external hard disk, usb pen, ...)

> *"Metadata registration is a waste of time"* (cit.)

