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Agenda (about 3 lectures)

One-parameter models

General approach to Bayesian data modelling
A first example
Note on accumulation of evidence
Binomial model
Note on impact of more evidence
Summarizing posterior distributions
Conjugacy
Interplay between priors and data
Normal model
Poisson model
Other models
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General approach to Bayesian data modelling

A Bayesianly justifiable analysis is one that

“treats known values as observed values of random variables,
treats unknown values as unobserved random variables, and
calculates the conditional distribution of unknowns given knowns
and model specifications using Bayes’ theorem.”

-- Rubin (1984, p. 1152)
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3-Step General Approach to Bayesian Modeling

1. Set up the full probability model: the joint distribution of all entities,
including observables (  ) and unobservables (  ) in accordance with all
that is known about the problem

 is the model for the conditional
probability of the data, that is (proportional to) the likelihood

 is the prior distribution for the unknown parameters, reflecting
what is believed about the situation

2. Condition on the observed data (  ), calculate the conditional probability
distribution for the unobservable entities (  ) of interest given the
observed data: the posterior distribution

3. Examine fit of the model, tenability/sensitivity of assumptions, reasonable
conclusions?, respecify, summarize results, etc.

See ambiguous notation

y θ

p(y, θ) ∝ p(y|θ)p(θ)

p(y|θ) ∝ L(θ) = (L(θ, y))

p(θ)

x
θ

p(θ|y) = = ∝ p(y|θ)p(θ)
p(y, θ)

p(y)

p(y|θ)p(θ)

p(y)
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Notation

The main characters:

We denote with Greek letters, typically, , the parameter(s), unobservable
quantities.  can be a scalar or a vector.

The observed data are denoted by , if data are gathered on  units:

where  can be a scalar or a vector (if more than one variable is observed
on each unit).  can then be a scalar, a vector, or a matrix.

We will also use unknown but potentially observable quantities, that is,
future observations, these will be denoted as .

If covariates are available, these will be denoted by .

θ
θ

y n

y = (y1, … , yn)

yi
y

~y

x
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Model Specification

Specifying a Bayesian model means specifying:

The distribution of  conditional on the parameter : 

The prior distribution on : 

Putting these together, we have specified the joint distribution of :

and we can obtain the marginal distribution of  as:

y θ y|θ ∼ p(y|θ)

θ θ ∼ p(θ)

(y, θ)

p(y, θ) = p(y|θ)p(θ)

y

p(y) = ∫
Θ

p(y, θ)dθ = ∫
Θ

p(y|θ)p(θ)dθ
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Posterior distribution

Inference on  will be based on the posterior distribution, which is derived
through a straightforward application of Bayes theorem

The posterior distribution contains all the information on  we have (from the
data and prior to observing the data).

The work will have to do is to understand

how to summarize the information in , to obtain for instance point
and interval estimates or to perform hypotheses testing;

how to explore the distribution, but for simple examples  is difficult
to derive (impossible to derive analytically), so exploration of the
posterior will be based on computational machinery (MCMC and other
stuff) whose starting point is

θ

p(θ|y) = =
p(y, θ)

p(y)

p(y|θ)p(θ)

p(y)

θ

p(θ|y)

p(y)

π(θ|y) ∝ p(y|θ)p(θ)
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Predictive Distribution

We are sometimes interested in "unknown but potentially observable
quantities"  (e.g., prediction of  on new statistical units).

We assume that they behave like the data , that is:

Hence, unconditionally, the distribution of  is:

which is the same as . This is also called the prior predictive distribution.
After the data  have been observed, we can compute the posterior predictive
distribution:

where we note that the conditional iid assumption implies that:

~y y

y

~y |θ ∼ p(~y |θ)

~y

p(~y) = ∫
Θ

p(~y |θ)p(θ)dθ

y
y

p(~y |y) = ∫
Θ

p(~y , θ|y)dθ = ∫
Θ

p(~y |θ, y)p(θ|y)dθ = ∫
Θ

p(~y |θ)p(θ|y)dθ

p(~y |θ, y) = p(~y |θ).
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Exchangeability

A common hypothesis in statistical inference is that observations are
independent and identically distributed ( ), meaning we collect 
and assume these are .

In Bayesian inference, where the inference process is fully probabilistic.
independence of observations would imply that we cannot learn about future
observations from past ones (since  would be independent of ).

Instead, we assume observations are exchangeable, meaning the joint
distribution of  is invariant to index permutations:

for any permutation  of .

iid y1, … , yn
iid

yn+1 y1, … , yn

(y1, … , yn)

p(y1, … , yn) = p(yi1 , … , yin)

(i1, … , in) (1, … ,n)
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Exchangeability and Conditional Independence

We will usually specify the model assuming that

 are iid conditional on 

This implies that  are exchangeable. In fact, consider the
unconditional distribution:

y1, … , yn θ

θ ∼ p(θ)

y1, … , yn

p(yi1 , … , yin) = ∫ p(yi1 , … , yin |θ)p(θ) dθ

= ∫
n

∏
j=1

p(yij |θ)p(θ) dθ

= ∫
n

∏
i=1

p(yi|θ)p(θ) dθ = p(y1, … , yn)
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de Finetti's Theorem

For binary variables , exchangeability is equivalent to conditional
:

Theorem (de Finetti): Let , , be a sequence of Bernoulli
r.v., then they are exchangeable if and only if there exists a random variable 
valued in  such that:

An extension of this theorem exists for general random variables.

y1, … , yn
iid

Y1,Y2, … ,Yn n → ∞
θ

[0, 1]

p(y1, … , yn) = ∫
1

0

θ∑ yi(1 − θ)n−∑ yidP(θ).
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Non independence as  unknown

The following are equivalent:

 are exchangeable.
 are  conditional on .

This means:

Observations are IID if we know the data-generating mechanism.

Since we do not know it, observations are not independent. Instead:

 gives information about  because it provides information
about the data-generating mechanism .

θ

y1, … , yn
y1, … , yn iid θ

y1 y2

θ
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More on Bayesian prediction interpretation

("The usual Bayesian story":) Bayesian statistics is often described as
consisting of assigning a prior on  and using Bayes rule to compute the
posterior distribution. Obtaining the predictive distribution,

is then just a matter of computations. Bayesian statistics is deeper than that!
And a first basic concept we should recall is the interpretation of the Bayesian
predictive distribution.

Bayesian statistics is about acting under uncertainty, or incomplete information (from
the data, from domain knowledge, etc.).
If probability is the prescribed formal language to describe this (incomplete)
information, then the evolution of information, or learning, is expressed through
conditional probabilities.
In particular, learning on the next observation based on the observed is expressed
through the conditional distribution .
This leads us to the interpretation of the Bayesian predictive distribution:

it is a learning rule that formalizes, through conditional probability, how we
learn about future events given the available information.

(Thus, it is not meant as the ‘physical mechanism’ generating  given the past, like in
the classic setting).

θ

p(~y |y) = ∫
Θ

p(~y |θ, y)dp(θ|y)

p(~y |y)

~
Y
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Exchangeability with known model parameters

For the following scenarios, answer:

1. Are  and  exchangeable?
2. Are they independent?
3. Can we act as if they are independent?

Case A: A box has one black and one white ball. Pick  randomly, replace it,
then pick .

Case B: A box has one black and one white ball. Pick  randomly, do not
replace it, then pick .

Case C: A box has a million black and a million white balls. Pick  randomly,
do not replace it, then pick .

A similar set of questions follows when the exact number of black and white
balls is unknown.

y1 y2

y1

y2

y1

y2

y1

y2
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Exchangeability with unknown model parameters

For the following scenarios, answer:

1. Are  and  exchangeable?
2. Are they independent?
3. Can we act as if they are independent?

Case A: A box has  black and white balls, but we don't know how many of
each color. Pick  randomly, replace it, then pick .

Case B: A box has  black and white balls, but we don't know how many of
each color. Pick  randomly, do not replace it, then pick .

Case C: Same as B but we know that there are many balls of each color in the
box.

y1 y2

n
y1 y2

n
y1 y2
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Exchangeability and Independence

You don’t need to understand the term exchangeability before learning
Hierarchical Bayesian Models (Chapter 5).

At this point,

we consider exchangeable models for data, , in the form of
likelihoods in which the  observations are , given some parameter
vector . (Later we will consider exchangeability for parameters.)

Exchangeability is less strict condition than independence.

independence implies exchangeability
exchangeability does not imply independence

exchangeability is related to what information is available (instead of the
properties of unknown underlying data generating mechanism. See slide
on Bayesian prediction interpretation)

Often we may assume that observations are in fact dependent, but if
we can’t get information about these dependencies we may assume
those observations as exchangeable. "Ignorance implies
exchangeability."

y1, … , yn
n iid

θ
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A first exampleA first example
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Inference about a discrete quantity

In what follows we consider a real example of the very simplest case of
Bayesian calculation.

It is not typical of statistical applications of Bayesian inference, as it deals with
the estimation of a single individual's state (gene carrier or not) - and a
very small data sample, rather than with the estimation of a parameter that
describes an entire population.

Both the estimand and the observed variable are binary.
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Inference about a Genetic Status: Prior

Human males have one X-chromosome and one Y-chromosome, whereas
females have two X-chromosomes, each chromosome being inherited from
one parent.

Hemophilia is due to a recessive gene in the -chromosome, that is, if 
denotes an -chromosome with the hemophilia gene,

 is a female with the disease
 is a female without the disease but with the gene
 is a male with the disease

Mary has

an affected brother 
an unaffected mother  or 
an unaffected father 

Overall, the mother must be .

Let  if Mary is a gene carrier (is ) and  otherwise ( ), then
based on the above information, prior to any observation,

X X∗

X

X∗X∗

X∗X
X∗Y

⇒ X∗Y
⇒ XX∗ XX

⇒ XY

XX∗

θ = 1 XX∗ 0 XX

P(θ = 1) =
1

2
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Inference about a Genetic Status: Data Model and Likelihood

Data consist of the status of Mary's two sons, who are not affected.

Let then  be an indicator equal to 1 if the -th son is affected:

The outcomes of the two sons are exchangeable and, conditional on the
unknown , are independent; we assume the sons are not identical twins.

The likelihood function corresponding to Mary's two sons is:

yi i

P(yi = 1|θ) = { 0.5 if θ = 1
0 otherwise

θ

L(θ) = P(y1 = y2 = 0|θ) = { 0.25 if θ = 1
1 if θ = 0
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Inference about a Genetic Status: Prior Predictive

Data consist of the status of Mary's two sons, who are not affected.

We know that

Let , the predictive probability is

P(y1 = y2 = 0|θ) = { 0.25 if θ = 1
1 if θ = 0

y = (y1 = y2 = 0)

P(y) = P(y|θ = 1)P(θ = 1) + P(y|θ = 0)P(θ = 0)

= 0.25 × 0.5 + 1 × 0.5 = 0.625
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Inference about a Genetic Status: Posterior

Prior and likelihood are combined to obtain the posterior, let
,

Intuitively it is clear that if a woman has unaffected children, it is less
probable that she is a carrier.

When the parameter is discrete, the results can also be effectively described in
terms of prior and posterior odds.
The posterior odds are given by the likelihood ratio times the prior odds:

y = (y1 = y2 = 0)

P(θ = 1|y) =

=

= = 0.20

P(y|θ = 1)P(θ = 1)

P(y)

P(y|θ = 1)P(θ = 1)

P(y|θ = 1)P(θ = 1) + P(y|θ = 0)P(θ = 0)
0.25 × 0.5

0.25 × 0.5 + 1 × 0.5

=
p(θ1|y)

p(θ2|y)

p(y|θ1)

p(y|θ2)

p(θ1)

p(θ2)

= = = × 1
0.2

0.8

P(θ = 1|y)

P(θ = 0|y)

P(y|θ = 1)

P(y|θ = 0)

P(θ = 1)

P(θ = 0)

0.25

1
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Inference about a Genetic Status: Predictive distributions

Prior to the observations the predictive distribution is

Given the data the posterior predictive is

P(y1 = 1) = P(y1 = 1|θ = 1)P(θ = 1) + P(y1 = 1|θ = 0)P(θ = 0)

= 0.5 × 0.5 + 0 × 0.5 = 0.25

P(~y3 = 1|y) = P(~y3 = 1|θ = 1, y)P(θ = 1|y) + P(~y3 = 1|θ = 0, y)P(θ = 0|y)

= P(~y3 = 1|θ = 1)P(θ = 1|y) + P(~y3 = 1|θ = 1)P(θ = 0|y)

= 0.5 × 0.2 + 0 × 0.8 = 0.1
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Inference about a Genetic Status: Adding More Data

Suppose a third son is born and he is not affected, that is we have a new
observation , in order to obtain the new posterior distribution we can
use the old posterior  as a prior and update it based on the
likelihood 

A similar mechanism works with the odds

The same result is obtained by starting from the prior and considering the
data .

y3 = 0
P(θ = 1|y)

P(y3 = 0|θ)

P(θ = 1|y, y3 = 0) =

= = 0.111

P(y3 = 0|θ = 1)P(θ = 1|y)

P(y3 = 0|θ = 1)P(θ = 1|y) + P(y3 = 0|θ = 0)P(θ = 0|y)
0.5 × 0.2

0.5 × 0.2 + 1 × 0.8

=

=

P(θ = 1|y, y3 = 0)

P(θ = 0|y, y3 = 0)

P(y3 = 0|θ = 1)

P(y3 = 0|θ = 0)

P(θ = 1|y)

P(θ = 0|y)

1

8

0.5

1

1

4

y′ = (y1 = y2 = y3 = 0)
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Sequential analysis

A key aspect of Bayesian analysis is the ease with which sequential analyses
can be performed.

As new data arrives, we need updating the information.
Considering the whole data 

Posterior distribution for  given data  and 
Conditional distribution of  and  given 
Prior for 

Assuming conditional independence, the likelihood can be partitioned:

That is,  is partitioned into conditional distribution of the sole 
given  and posterior distribution for  given  (up to a constant of
proportionality)

(y1, y2)

p(θ|y1, y2) ∝ p(y1, y2|θ)p(θ)

θ y1 y2

y1 y2 θ
θ

p(y1, y2|θ) = p(y2|θ)p(y1|θ)

Then p(θ|y1, y2) ∝ p(y1, y2|θ)p(θ) = p(y2|θ)p(y1|θ)p(θ)

∝ p(y2|θ)p(θ|y1)

p(θ|y1, y2) y2

θ θ y1
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Bayes’ Theorem: Accumulation of Evidence

Dataset 1: 

Dataset 2: 

Dataset 3: 

Today’s posterior is tomorrow’s prior

Bayes’ theorem as a mechanism for accumulating evidence

Update diagnosis as symptoms, test results arrive

Update beliefs about proficiency as students complete tasks

Update beliefs about guilty as testimony is heard

Do a study, use results as basis for prior for next study

Makes Bayesian approach a natural framework for meta-analysis and
related approaches that synthesize information from datasets

p(θ|y1) ∝ p(y1|θ)p(θ)

p(θ|y1, y2) ∝ p(y2|θ)p(θ|y1)

p(θ|y1, y2, y3) ∝ p(y3|θ)p(θ|y1, y2)
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Binomial modelBinomial model
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Binomial model: a one-parameter model

We start to illustrate Bayesian inference in the context of statistical models
where only a single scalar parameter is to be estimated; that is, the estimand 
is onedimensional.

We start with the Binomial model where the aim is estimating a probability
from binomial data, i.e., the results of a sequence of ‘Bernoulli trials’.

Although a very simple model, it has relevant applications.

Also, it was dealt with by many of the first scholars working in probability.

In fact, it was the motivating example to develop Bayesian statistics both for T.
Bayes and for Laplace. The former considered it in an abstract context, the
latter had the aim of estimating the probability of a female birth.

θ
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Binomial data

We observe the results of a sequence of ‘Bernoulli trials’ (trials or draws from
a large population), i.e., data  each of which is either  or  (coding
'failure' and 'success' labels, respectively).

If we consider the trials exchangeable - we disregard the order - the data can
be summarized by the total number of  (successes), which we denote by .

Exchangeability is equivalent to say that conditional on , the probability of
success in each trial, the  are , i.e.,

independent: if , 
identically distributed: .

The sampling model for  is then a binomial model

where on the left side we suppress the dependence on  because it is regarded
as part of the experimental design that is considered fixed(; all the
probabilities discussed for this problem are assumed to be conditional on ).

y1, … , yn 0 1

1 y

θ
y1, … , yn iid

i ≠ j P(yi = 1|yj = 1, θ) = P(yi = 1|θ)
P(yi = 1|θ) = θ ∀i

y|θ

p(y|θ) = ( )θy(1 − θ)n−yn

y

n

n
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Binomial model ( ):  known

Observational model(/sampling distribution/statistical model) (discrete
function of y)

y|θ θ

p(y|θ) = ( )θy(1 − θ)n−yn

y
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Binomial model as likelihood:  unknown

Likelihood (continuous function of )

E.g., consider  and 

: 

θ

θ

p(y|θ) = ( )θy(1 − θ)n−yn

y

y = 6 n = 10

p(y = 6|n = 10, θ) 0.00 0.00 0.01 0.04 0.11 0.21 0.25 0.20 0.09 0.01 0.00
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Binomial model as likelihood:  unknown

Likelihood (continuous function of )

E.g., consider  and 

integrate(function(  ) dbinom(6, 10,  ), 0, 1)  0.09 

θ

θ

p(y|θ) = ( )θy(1 − θ)n−yn

y

y = 6 n = 10

θ θ ≈ ≠ 1
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Binomial model with uniform prior

Let's start with a uniform prior

The posterior (continous function of ) by the Bayes rule

where 

Hence

p(θ) = 1, with 0 ≤ θ ≤ 1

θ

p(θ|y) =
p(y|θ)p(θ)

p(y)

p(y|n) = ∫ p(y|θ)p(θ)dθ

p(θ|y) = =

= θy(1 − θ)n−y

p(y|θ)

p(y)

( )θy(1 − θ)n−yn
y

∫ 1

0 ( )θy(1 − θ)n−ydθ
n
y

1

Z
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Binomial model with uniform prior

 (constant given ) is the normalizing term

 has the form of the Beta function
when integrated on  the result can be given with Gamma
functions
with integers 
if integers are large this computation can be challenging and 
usually is computed in place of 

If we compute it with 

y<-6; n<-10;

integrate(function(theta) theta^y*(1-theta)^(n-y), 0, 1) 
0.0004329

gamma(y+1)*gamma(n-y+1)/gamma(n+2)  0.0004329

Z y

Z = ∫
1

0

θy(1 − θ)n−ydθ =
Γ(y + 1)Γ(n − y + 1)

Γ(n + 2)

Z
(0, 1)

Γ(n) = (n − 1)!
log Γ(⋅)

Γ(⋅)

y = 6,n = 10

≈

≈
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Binomial model with uniform prior

The posterior

is the Beta distribution with parameters  and , and we can also
write

E.g., consider  and 

p(θ|y) = θy(1 − θ)n−y,
Γ(n + 2)

Γ(y + 1)Γ(n − y + 1)

y + 1 n − y + 1

θ|y ∼ Beta(y + 1,n − y + 1)

y = 6 n = 10
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Conditioning to the model

The conditining to model  sometimes is shown explicitely

The posterior by Bayes rule is written

with 

makes clearer that the likelihood and the prior both constitute the model
makes clearer that an absolute probability per  does not exist, but it
depends on the model 
in case of two models, we can evaluate the marginal probabilities

 e 
It is usually implied to make the notation more concise.

M

p(θ|y,M) =
p(y|θ,M)p(θ|M)

p(y|M)

p(y|M) = ∫ p(y|θ,M)p(θ|M)dθ

p(y)
M

p(y|M1) p(y|M2)
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Posterior densities for binomial parameter 

Posterior density for binomial parameter , based on uniform prior
distribution and  successes out of  trials. Curves displayed for several
values of  and .

θ

θ
y n

n y
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Still on Bayes' Thorem: Impact of More Evidence

Incorporating Evidence

Reasoning under uncertainty requires a mechanism for incorporating
evidence
Bayes’ theorem as an updating mechanism

From prior to posterior
Properly synthesizes information in the data to revise the probability
distribution for the unknown parameter

1. Impact of More Evidence
The more data we have, the more the posterior reflects that

As sample size increases, the posterior becomes increasing similar to
the likelihood (usually)

2. Accumulation of Evidence
As new data arrives, proper synthesis, updating of the distribution

Today’s posterior is tomorrow’s prior
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Posterior distribution
for Laplace

Laplace example, revisited

Laplace observed  females and  males, that is if

he had

hence the posterior distribution for  is a  and

We ought to appreciate the fact that to get to this number Laplace had to develop
appropriate approximations, it is not immediate even today (R may give 0 depending
on how the problem is formulated due to machine precision).

241 945 251 527

θ = probability of a female birth

n = 241 945 + 251 527 = 493 472; y = 241 945

θ Beta(241 946, 251 528)

P(θ ≥ 0.5|y) ≈ 1.15 × 10−42
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Binomial model: computation

R
density dbeta
CDF pbeta
quantile qbeta
random number rbeta

Beta CDF is not trivial to calculate
E.g., pbeta in R uses a continued fraction with weighting factors and
asymptotic expansion
Bayes was able to solve integral given small  and . In case of large 
and , Laplace developed a Gaussian approximation (Laplace
approximation) of the posterior. In this specific case, R pbeta gives the
same results as Laplace’s result with at least 3 digit accuracy.

n y n
y
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Beta distributions
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Beta distributions

Distribution on 

The normalization constant is the reciprocal of

Integral is finite if , density is finite if 

Density has an asymptote in  if , in  if .

 if ,  if ,  if

; has two modes if 

, 

[0, 1]

θ|α,β ∼ Beta(α,β) ∝ θα−1(1 − θ)β−1

Z = ∫
1

0

θα−1(1 − θ)β−1dθ =
Γ(α)Γ(β)

Γ(α + β)

α,β > 0 α,β ≥ 1

0 α < 1 1 β < 1

E(Beta(α,β)) = α

α+β

Var(Beta(α,β)) =
αβ

(α+β)2(α+β+1)

Mode(Beta(α,β)) = α−1
α+β−2

α,β > 1 = 1 α ≥ 1,β < 1 = 0

α < 1,β ≥ 1 α,β < 1

α = E(θ)(α + β) β = (1 − E(θ))(α + β)
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Inference with binomial data

Classic/frequentist approach

Given , what are the probabilities of various possible risults for the r.v. ?

Weak Law of Large Numbers (Bernoulli theorem)

MLE: 

Bayesian approach

Given , what are the probabilities of various possible risults for the r.v. ?

as well as summaries of the posterior distribution

θ y

y ∼ Bin(n, θ)

limn→∞ P ( − θ > ϵ | θ) = 0
y

n

θ̂ =
y

n

y θ

[θ|y]
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Summarizing posterior distribution

In a Bayesian analysis, the “solution/answer” is the posterior distribution on .
Though, it is relevant to distill down the information it contains. This can be
done in the usual ways in which we summarize a probability distribution
(similar to the frequentist approach), so by

point summaries of the
central tendency

the mean
the median
the mode

variability
variance (and standard deviation)
range, interquartile range

intervals or regions as reflection of uncertainty
central posterior interval
highest posterior density interval / region

θ
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Point Summaries/Estimates of Central Tendency

Mean, , 

Expected a posteriori (EAP) estimator
Smallest root mean square error (RMSE) in population defined by

Median, 50th %ile
Often preferred in skewed distributions

Mode, 
Maximum a posteriori (MAP) estimator
Somewhat akin to ML, especially with diffuse priors
Less used in empirically based estimation (e.g., MCMC)

Point Summaries/Estimates of Variability

Range, interquartile range
Posterior variance, , ; Posterior standard deviation, 

Interpretation as the variability of the parameter
Thus while posterior standard deviations may be numerically similar to
frequentist standard errors, they have critically different
meanings/interpretations

E(θ|y) μθ|y

p(θ)

θ̂ := p(θ̂ |y) = max p(θ|y)

V (θ|y) σ2
θ|y

σθ|y
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Posterior intervals

Another common way to summarize the posterior conveying uncertainty is to
use intervals of a given posterior probability, say , this is any
interval  such that

This is also called a credibility interval (“Bayesian confidence interval”).

It is somehow the analogue of a confidence interval in classical statistics, but
notice the different interpretation, here we say that the unknown parameter
lies in the interval with the given probability (rather than saying that the
interval is random ...).

100(1 − α)%
[θL, θU ]

P(θL ≤ θ ≤ θU |y) = 1 − α
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(Remind) Interpreting Posterior Credibility Intervals

Posterior credibility intervals, expression of uncertainty, are interpreted as
direct probability statements for the unknown parameter.

The interpretation of the interval is such that probability is ascribed to the
parameter

Thus while posterior credibility intervals are often numerically similar to
frequentist confidence intervals, they have critically different
meanings/interpretations

Adopting an explicitly Bayesian approach would resolve a
recurring source of confusion for these researchers, letting them
say what they mean and mean what they say.

-- Jackman (2009, p. xxviii)

Frequentist CI theory says nothing at all about the probability that
a particular, observed confidence interval contains the true value;
it is either 0 (if the interval does not contain the parameter) or 1 (if
the interval does contain the true value)…
…Only the Bayesian procedure…[yielding posterior] credible
intervals…allows the interpretation that there is a [X]% probability
that the [parameter] is located in the interval.

-- Morey et al. (2016, p. 105, pp. 113-114)
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Central Credibility Intervals

A % Central Interval, CI, or equal-tailed interval is the interval of
values below and above which the % of posterior probability lies

where  is the quantile of order  of . Below, two examples of central
posterior intervals based on quantiles.

100(1 − α)
100α/2

Iα = [qα/2, q1−α/2]

qx x p(θ|y)
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Highest Posterior Density Intervals/Regions

Highest Posterior Density, HPD, region: set of values that contains the
% of posterior probability and for which the density is never

lower than the density outside it.

In formulas

where  is such that

CI HPD when posterior is bimodal (/multimodal) or asymmetric
CI HPD when posterior is unimodal and symmetric

100(1 − α)

{θ|π(θ|y) > cα}

cα

∫
θ|π(θ|y)>cα

π(θ|y) = 1 − α

≠
=
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Central posterior intervals vs HPD regions
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Posterior point estimates for the Uniform-Binomial model

The posterior mean represents a compromise between the prior mean, ,

and the observed proportion, , and in this compromise data weight
increases with their numerosity.

The posterior mode is the MLE: since the prior is flat, the maximum of the
posterior is where the maximum of the likelihood is.

The posterior variance is less readable, notice that it has  at the
denominator and  at the numerator.

E(θ) = 1
2

E(θ|y) =
y+1

n+2
1
2

y

n

Mode(θ|y) =
y

n

V (θ|y) =
(y+1)(n−y+1)

(n+2)2(n+3)

n3

n2
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Relation between prior and posterior

Note that

that is, the posterior variance is, on average, smaller than the prior
variance ( ).

In particular it is smaller the greater is the variation of  across .

Hint to conflicting priors.

This is a general result obtained if we express the mean and variance of a r.v.  in
terms of the conditional mean and variance given some related quantity .

,

E(θ) = E(E(θ|y))

V (θ) = E(V (θ|y)) + V (E(θ|y))

V (θ) > E(V (θ|y))

E(θ|y) y

u
v

E(u) = E(E(u|v))
V (u) = E(V (u|v)) + V (E(u|v))
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More on posterior summaries for Uniform-Binomial model

We may compute the average over 

(by using the result that the marginal distribution of  is uniform on .)

Remember that  and if , 

y

E(V (θ|y)) = E((y + 1)(n − y + 1))

= E(ny + n − y2 + 1)

= (n2/6 + 5n/6 + 1)

1

(n + 2)2(n + 3)

1

(n + 2)2(n + 3)
1

(n + 2)2(n + 3)

y (0,n)

V (θ) = 1
12

n = 1 E(V (θ|y)) = 1
18
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Prediction for a future Bernoulli trial

Consider a new observation , which behaves like the , that is

 is independent of  conditional on 

then the prior predictive distribution is

while the posterior predictive distribution is

Extreme cases

cf. maximum likelihood

~y yi

~y y1, … , yn θ
P(~y = 1|θ) = θ

P(~y = 1) = ∫
1

0

θp(θ)dθ = ∫
1

0

θdθ = E(θ) = 1/2

P(~y = 1|y) = ∫
1

0

θp(θ|y) ∗ dθ = E(θ|y) =
y + 1

n + 2

p(~y = 1|y = 0) = and p(~y = 1|y = n) =
1

n + 2

n + 1

n + 2
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Benefits of integration

Consider the number of correct responses in the set of responses to the J
equally difficult tasks.

Example: Perfect Response Patterns ( ,  )

An examinee correctly completes all  tasks
What should you believe about the examinee’s proclivity to complete
tasks?
Likelihood vs Bayes with minimal prior information

n = 10 y = 10

10
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Perfect Response Pattern: ML

The maximum likelihood estimate (MLE) is 1.0
This is a boundary: problems arise with standard errors, sampling
distribution, hypothesis testing
Do we really think this is a good estimate of an examinee’s proclivity to
correctly complete tasks? Do we really think the examinee will correctly
complete every single task?
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Perfect Response Pattern: Bayes with minimal prior information

Uniform prior: 
Beta posterior: 

U(0, 1)
Beta(11, 1)

E(θ|y) = 11/12
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Example: Perfect Response Patterns
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Note: Prior predictive distribution for 

With a uniform prior on , the distribution of a Bernoulli  prior to observing

the data is .

For a binomial 

y

θ ~y
P(~y = 1) = 1

2

y = (∑n

i=1 yi) ∼ Bin(n, θ)

p(y) = ∫
1

0

p(y|θ)p(θ)dθ

= ( )∫
1

0

θy(1 − θ)n−yp(θ)dθ

= ( ) =

=

n

y

n

y

Γ(y + 1)Γ(n − y + 1)

Γ(n + 2)
1

n + 1
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Justification of the uniform prior

=1 if

we want a uniform prior predictive distribution; in the binomial example
the Bayesian reasoning entails:

justification based on the observables  and 
justification of Bayes

we think that all values of  are equally probable; principle of insufficient
reason (Laplace), i.e. "If nothing is known about  then the uniform is
appropriate".

justification based on the unobservable 

p(θ)

p(y) = y = 0, 1, … ,n
1

1 + n

y n

θ
θ

θ
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Prior

We considered a uniform prior on , this has been the choice of both Bayes
and Laplace, who (loosely speaking) justified it

Bayes based on the fact that it implies a uniform predictive prior on 
Laplace based on the so called 'principle of insufficient reason' because he
had no information about 

Afterwards different approaches to the prior specification have been
considered, in what follows we discuss different choices and look at their
consequences, keeping in mind the following

a prior need only to reasonably summarize the knowledge we have on 
if this information is scarce, the effect of the prior should vanish as
enough data are collected

θ

y

θ

θ
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Conjugate priors

A convenient type of prior is the kind that leads to a posterior in the same
family, this property is called conjugacy.

This is not available for any likelihood (just for exponential distributions,
plus some irregular cases),

Used for computational reasons, and still sometimes used for special models
to allow partial analytical marginalization

Definition

If  is the class of sampling distributions and  is the class of prior
distributions,  is a natural conjugate for  if  is the set of all densities
having the same functional form in  as the likelihood.

Conjugate priors are useful because

it is easy to obtain the results (analytic forms for the mean, variance, etc.)
they simplify the calculations
they are a good starting point
you can use mixtures of conjugate families

F P

P F P

θ
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Conjugate priors and exponential families

Probability distributions belonging to an exponential family have natural
conjugate prior distributions.

Definition

A family of distributions  is an exponential
family if all its members have the form

where , ,  and  are known
functions.

 is called the natural parameter of .

F = {p(y|θ) : θ ∈ Θ ⊂ R
d}

p(y|θ) = f(y)g(θ) expϕ(θ)Tu(y)

f : R → R g : R
d → R ϕ : R

d → R
d u : R

d → R
d

ϕ(θ) F
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Exponential family: likelihood and sufficient statistic

If a vector of observations  is observed and  are 
following a distribution from 

hence

where

is a sufficient statistic.

The quantity  is called a sufficient statistic for , because the likelihood for 
depends on the data  only through the value of .

y = (y1, … , yn) yi iid
F

p(y|θ) = (
n

∏
i=1

f(yi)) g(θ)n exp(ϕ(θ)T
n

∑
i=1

u(yi))

p(y|θ) ∝ g(θ)n exp(ϕ(θ)T t(y))

t(y) =
n

∑
i=1

u(yi)

t(y) θ θ
y t(y)
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Conjugate distribution for an exponential family

If the prior is of the form

then the posterior is

which has the same form as the prior.

It can be shown that only exponential families of distributions have natural
conjugate priors.

(That is because have a fixed number of sufficient statistics)

p(θ) ∝ gη(θ) exp(ϕ(θ)Tν)

p(θ|y) ∝ gn+η(θ) exp(ϕ(θ)T (t(y) + ν))

65 / 98



Beta-Binomial model

The conjugate prior for the Binomial model is the Beta distribution:

If  then 

as is easily checked:

 e  can be interpreted as the number of prior successes
and prior failures, and  as the number of prior observations

Uniform prior when  and 

θ ∼ Beta(α,β) θ|y ∼ Beta(α + y,β + n − y)

p(θ|y) ∝ θy(1 − θ)n−yθα−1(1 − θ)β−1

= θy+α−1(1 − θ)n−y+β−1

(α − 1) (β − 1)
α + β − 2

α = 1 β = 1
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Example: placenta previa

Probability of a female birth with placenta previa (BDA3 p. 37)

In a study in Germany, 437 females out of 980 births with placenta previa
were observed.

Do we have evidence that the proportion of female births with placenta previa
is less than 0.485, which is the corresponding proportion in the general
population?

(empirical proportion is )
Likelihood: 
Prior: 
Posterior: , 

0.445
∝ θ437(1 − θ)980−437

U(θ|0, 1) = Beta(θ|1, 1)
∝ θ437(1 − θ)980−437 Beta(θ|438, 544)

P(θ < 0.485|y) = 0.9928
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Comparison of posterior distributions with different parameter values for
the Beta prior distribution: Beta priors centered in the population mean,
0.485, and with increasing strenght
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Still on Perfect Response Pattern example

Example:  - uniform priori vs Beta(2,2)n = 10, y = 10
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Esempio: Perfect Response Patterns

Bayes with an informative prior

Do you believe a priori that the candidate is very capable of successfully
completing these tasks?
What should you believe about the candidate's ability to complete the
tasks?
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Esempio: Perfect Response Patterns
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Esempio: Perfect Response Patterns
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Beta Binomial model: Posterior mean

Let us synthesize the posterior distribution using the expectation

The posterior mean is a weighted average of the prior expectation and the ML
estimate, where

ML estimate prevails if  is large;
ML estimate prevails if  and  are small:

the variance of the prior distribution is large
, the equivalent number of observation of the prior

distribution, is small.
if , 

E(θ|y) = ∫ θπ(θ|y)d(θ) =

= +

= E(θ)


prior mean

+

MLE

α + y

α + β + n

α + β

α + β + n

α

α + β

n

α + β + n

y

n

α + β

α + β + n

n

α + β + n

y

n

n
α β

α + β(−2)

n → ∞ E[θ|y] → y/n
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Beta Binomial model: Posterior variance

The posterior variance is

decreases as  increases
if , 
As  and  gets big

V (θ|y) = =
(α + y)(β + n − y)

(α + β + n)2(α + β + n + 1)

E(θ|y)(1 − E(θ|y))

α + β + n + 1

n
n → ∞ Var[θ|y] → 0
y n
E(θ|y) ≈ y/n
V (θ|y) ≈ (1 − )1

n

y

n

y

n
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Different priors  different posteriors

uniform, centered at 0.5, 0-1, rightly asymmetric

⇒
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Prior effect as  increases

The effect of the prior, however, tend to disappear as enough sample
information is entered.

In the following we observe the effect on the posterior of two distinct priors
on samples of , always with 

n

n = 5, 20, 50, 200 y/n = 0.8
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Prior effect as  increases

We can see things from another point of view and consider different priors
with the same sample.

We observe a sample with  and , the prior mean is 0.25, 
is 2, 20, 50, 200

α + β

n = 100 y = 50 α + β
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Posterior mean as a function of sample size

Posterior mean as  increases for different priorsn
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Posterior mean: conflicting priors

Posterior mean as  increases for different priorsn
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Posterior mean: all together

Posterior mean as  increases for different priorsn
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Posterior variance as a function of sample size

Posterior variance as  increases for different priorsn
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## sd(MLE) with n=1:3,10,50,100,350  0.43 0.31 0.25 0.14 0.06 0.04 0.02 

## prior sd: 0.289 0.109 0.035

## post sd with n=1:3,10,50,100,350  0.25 0.22 0.19 0.13 0.06 0.04 0.02 

## post sd with n=1:3,10,50,100,350  0.11 0.1 0.1 0.09 0.06 0.04 0.02 

## post sd with n=1:3,10,50,100,350  0.04 0.04 0.04 0.03 0.03 0.03 0.02
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Posterior variance: conflicting priors

Posterior variance as  increases for different priorsn
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## sd(MLE), n=1:3,10,50,100,350  0.433 0.306 0.25 0.137 0.061 0.043 0.023 

## prior sd: 0.173 0.065 0.021

## post sd, n=1:3,10,50,100,350  0.233 0.221 0.204 0.133 0.061 0.043 0.023 

## post sd, n=1:3,10,50,100,350  0.072 0.076 0.079 0.084 0.059 0.044 0.023 

## post sd, n=1:3,10,50,100,350  0.021 0.022 0.022 0.023 0.027 0.027 0.021
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## sd(MLE), n=1:3,10,50,100,350  0.3 0.212 0.173 0.095 0.042 0.03 0.016

## prior sd: 0.17 0.07 0.02

## post sd, n=1:3,10,50,100,350  0.241 0.224 0.201 0.117 0.046 0.032 0.016 

## post sd, n=1:3,10,50,100,350  0.074 0.079 0.082 0.087 0.056 0.038 0.018 

## post sd, n=1:3,10,50,100,350  0.021 0.022 0.022 0.024 0.028 0.028 0.02185 / 98



## sd(MLE), n=1:3,10,50,100,350  0.3 0.212 0.173 0.095 0.042 0.03 0.016

## prior sd: 0.17 0.07 0.02

## post sd, n=1:3,10,50,100,350  0.241 0.224 0.201 0.117 0.046 0.032 0.016 

## post sd, n=1:3,10,50,100,350  0.074 0.079 0.082 0.087 0.056 0.038 0.018 

## post sd, n=1:3,10,50,100,350  0.021 0.022 0.022 0.024 0.028 0.028 0.02186 / 98



Non-informative priors

Vague, flat, diffuse, or noninformative
tend to "let the data speak for themselves"
Noninformative distributions are typically defined as being flat over
the entire real axis (e.g., ). Common noninformative priors
include wide uniform distributions (e.g.,  or

 for positive-only parameters) or diffuse normal
distributions (e.g., )
flat is not always true to be noninformative

Assigning flat prior distributions to transformed parameters
often yields highly skewed, strongly informative priors for the
parameter in the original scale.

flat can be a stupid choice
A more accurate definition of noninformative priors would be
‘distributions that possess a range of uncertainty larger than any
plausible parameter value’

Making the prior flat somewhere can make it non-flat somewhere
else

proper prior have 
density of improper prior does not have a finite integral

posterior sometimes can be still proper

∝ 1
U(−1000, 1000)

U(0, 1000)
N(0, 10000)

∫ p(θ) = 1
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Weakly informative priors

Weakly informative produce a better behavior of the posterior from a
computational point of view

quite often there is at least some knowledge of the scale
also useful if you have information from previous observations, but
you are not sure how applicable that information is to the uncertainty
of the new case

Construction
Start with some version of a non-informative prior and then add
enough information to make the inferences "reasonable".
Start with a strong, very informative prior and expand it to account
for uncertainty in your prior beliefs and in the applicability of any
prior based on past history to new data.

Stan team's preliminary choice recommendations https://github.com/stan-
dev/stan/wiki/Prior-Choice-Recommendations
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Example of informative prior

The percentage of female births is remarkably stable at around 48.5% ,
rarely varying by more than 0.5% from this rate
There is a study on the percentage of female births among parents in
attractiveness categories 1–5 (rated by interviewers in a face-to-face
survey)
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Example of informative prior
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Posterior distribution estimation via simulation

Analytical solutions (doing mathematical calculations)

Facilitated by conjugate priors

For ,   

When we cannot obtain the posterior analytically, it is necessary to
estimate or approximate it in some way

It can be approximated or estimated
A flexible and general approach to estimating distributions is necessary

Realized by simulation
A little now, more later

x ∼ Binom(θ,n) θ ∼ Beta → θ|x ∼ Beta
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Simulation-based Estimation

A sampling algorithm is constructed to simulate or draw from the posterior.
Many such draws are sampled, which serve to empirically approximate the
posterior distribution, and can be used to empirically approximate the
summary statistics.

Monte Carlo Principle:

Anything we want to know about a random variable  can be
learned by sampling many times from , the density of .

-- Jackman (2009, p. 133)

θ
f(θ) θ

92 / 98



Simulation of the posterior in the Beta-Binomial model

A sampling algorithm is constructed to simulate or extract from the posterior.

93 / 98



Beta-Binomial Model: Density

A lot of these extractions are collected, which serve to empirically
approximate the posterior distribution
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Beta-Binomial Model: Summary Statistics

and also to empirically approximate the summary statistics.
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Marginal NotesMarginal Notes
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Model and likelihood

Term  has two different names depending on the situation. Due to
the short notation used, there is possibility of confusion.

1. Term  is called a model (sometimes more specifically
observation model or statistical model) when it is used to describe
uncertainty about  given  e . Longer notation  shows
explicitly that it is a function of .

2. In Bayes rule, the term  is called likelihood function. Posterior
distribution describes the probability (or probability density) for different
values of  given a fixed , and thus when the posterior is computed the
terms on the right hand side (in Bayes rule) are also evaluated as a
function of  given a fixed . Longer notation  shows explicitly
that it is a function of .
Term has it’s own name (likelihood) to make the difference to the model.
The likelihood function is unnormalized probability distribution
describing uncertainty related to  (and that’s why Bayes rule has the
normalization term to get the posterior distribution).

p(y|θ,M)

p(y|θ,M)

y θ M py(y|θ, M)
y

p(y|θ,M)

θ y

θ y pθ(y|θ, M)
θ

θ
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Ambiguous notation in statistics

In 

 can be variable or value
we could clarify by using  or 

 can be variable or value
we could clarify by using  o 

 can be a discrete or continuous function of  or 
we could clarify by using , ,  or 

 is a probability mass function, sampling distribution,
observation model

 is a probability
 is a likelihood function (can be discrete or continuous)
 is a probability density function, sampling distribution,

observation model
 is a density

 is a likelihood function (can be discrete or continuous)
 and can also be mix of continuous and discrete

Back to 3-step general approach

p(y|θ)

y
p(Y |θ) p(y|θ)

θ
p(y|Θ) p(y|θ)

p y θ
PY PΘ pY pΘ

PY (Y |Θ = θ)

P(Y = y|Θ = θ)
PΘ(Y = y|Θ)
pY (Y |Θ = θ)

p(Y = y|Θ = θ)
pΘ(Y = y|Θ)
y θ
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