Space groups

Space groups are a combination of: %«

* point group operations (inver)@n center, symmetry axes, mgor planes),
* symmetry operations involving translations (screw axes, g)'{e planes),

e centering translations (base-, face-, body-centering),

e |attice translations.

A space group:

(1) is a closed group (combinations of its elements yield the identity
transformation),

(2) contains the identity transformation,
(3) contains inverse transformations of its elements (inversion property),

(4) contains combinations of its elements (associativity property).

In 3D, 230 space groups,

but only 65 for protein structures*
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Enantiomorphic space groups

Enantiomorphic space groups, with screw axis in opposite directions:

P6, C:
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(tetragonal) P4,and P4,,P4,22and P4;22,P4,2,2andP4;,2,2,14,22, ...
(hexagonal) P3,andP3,,P3,21andP3,21,P3,12andP3,12,P6,andP6;,
P6,22andP6;22,P6,andP6,,P6,22andP 6,22

(cubic)P4,32and P 4,3 2.



Asymmetric unit

Lysozyme (pdb: 193L):
tetragonal lattice, space group P 4,2, 2, unit cell a = 78.54 A c=37.77 A
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Non-crystallographic symmetry

Besides the symmetry elements of the space group, other symmetry elements
may occur in a crystal structure, including symmetry elements not allowed by

the lattice periodicity (e.g. 5-fold axes, 7-fold axes, ...).
They are called Non-Crystallographic Symmetry (NCS).

Two protein chains related by NCS are crystallographically independent and
both belong to the asymmetric unit. Usually, NCS is not perfect.



Miller indices

Crystal lattice: described in the real space (coordinates x,y,z)

2,0 ° ° ° In the real space of the crystal lattice,
(1,1)  we can define families of parallel planes.
S To identify this planes, we can use the
U ;
° Miller indices (h,k):
% T (hk)
X< 7”' starting from the origin of the lattice and
* moving in a lattice direction, we can count

(2,-1) the number of planes until the next node.

For the blue set of planes: the first Miller index (in x direction) is 1, the second is 1.
For the red set of planes: the first Miller index is 2, the second is -1.

For the green set of planes: the first Miller index is 2, the second is O.

Which of the families has the shorter distance d between planes?

The distance between planes depends on the Miller indices: planes with higher Miller
indices have shorter distances.



From the real to the reciprocal lattice

The reciprocal lattice is a mathematical construction, but it is useful to
describe diffraction phenomena.

Reciprocal lattice: described in the reciprocal space by the Miller indices (h,k,/). A
The origin of the lattice is common to the real lattice.

Direction of the reciprocal lattice base vectors:

aa=1 a 1b, a 1lc

bb=1, b* La, b* Lc

c'cc=1 c*'La c*Lb
\_ Y,
A family of planes in real space can be described by a vector d* in reciprocal space.

The vector d” is obtained by the combination of the Miller indices and the base vectors
of the lattice: d™ = ha™ + kb™ + Ic”.

The modulus of d* is: d* = 1/, , with d distance between planes of the family in the
real space.

***For an orthogonal system (i.e. orthorhombic, tetragonal, cubic):

d p— a_2+ﬁ+ﬁ d *_1/ b*_l/ *_1/
hkl — hz kz lz and a = a - bJC - (o



