

Carlo Antonio Stival

via A. Valerio 6/1 34127 Trieste +390405583489 cstival@units.it

ARGOMENTO

10

Utilizzo passivo di fonti rinnovabili per i servizi energetici dell'edificio

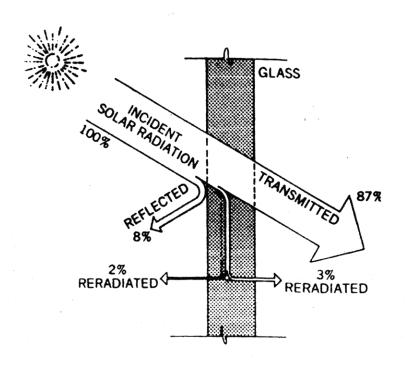
Raffrescamento

Corso di Tecnologie e soluzioni edilizie per la sostenibilità ambientale

Classificazione delle esigenze: URR

classe	esigenze	requisiti	
	Utilizzo razionale dei materiali da costruzione	URR.1.1	Utilizzo di materiali, elementi e componenti riciclati
		URR.1.2	Utilizzo di materiali, elementi e componenti aventi potenziale di riciclabilità
		URR.1.3	Utilizzo di tecniche costruttive per il disassemblaggio a fine vita
ľSe		URR.1.4	Utilizzo di materiali, elementi e componenti caratterizzati da un'elevata durabilità
URR. onale delle risorse	Utilizzo razionale delle risorse derivanti da scarti e rifiuti	URR.2.1	Raccolta differenziata dei rifiuti solidi urbani
3R. e de	Utilizzo razionale delle risorse idriche	URR.3.1	Riduzione del consumo di acqua potabile
UF		URR.3.2	Recupero, per usi compatibili, delle acque meteoriche
	Utilizzo razionale delle risorse climatiche ed energetiche	URR.4.1	Utilizzo passivo di fonti rinnovabili per il riscaldamento
Uso razi		URR.4.2	Utilizzo passivo di fonti rinnovabili per il raffrescamento e la ventilazione igienico – sanitaria
Š		URR.4.3	Utilizzo passivo di fonti rinnovabili per l'illuminazione
		URR.4.4	Isolamento termico
		URR.4.5	Inerzia termica per la climatizzazione
		URR.4.6	Riduzione del fabbisogno d'energia primaria e sostituzione di fonti energetiche da idrocarburi con fonti rinnovabili

18.1


Caratteristiche delle componenti vetrate

Il vetro è una sostanza costituita da:

- silice, sotto forma di sabbia, per il 72%, componente che rende il vetro trasparente;
- soda, che riduce la temperatura di fusione della silice (14%);
- calce (11%), con compiti stabilizzanti che rendono il vetro più resistente all'acqua;
- altri elementi, ad esempio ossidi metallici, che differenziano i diversi tipi di vetro.

La **differenziazione** tra i tipi di vetro, ottenuti per trattamenti termici, chimici, rivestimento e trattamento superficiale, è volta a ottimizzare le prestazioni riconducibili a diversi requisiti:

- benessere ed **efficienza energetica**, con lo sfruttamento (o l'esclusione) di apporti passivi e attivi di calore e luce;
- sicurezza, per sopportare urti e rotture;
- aspetto, tradotto nella possibilità di ottenere diverse finiture superficiali.

Le caratteristiche di comfort termico negli ambienti confinati e la prestazione energetica complessiva di un organismo edilizio sono fortemente caratterizzate dalle **prestazioni** dei **componenti trasparenti** dell'involucro edilizio, ed in particolare:

- dalla capacità dei serramenti di ridurre le dispersioni termiche invernali attraverso il vetro, il telaio e l'eventuale cassonetto;
- dalla sensibilità del serramento alle infiltrazioni
 d'aria alle superfici di contatto tra componenti.

Ai tre principali elementi costitutivi di un serramento (vetro, distanziatore e telaio) è possibile aggiungerne due opzionali, il sistema schermante ed il cassonetto, dipendenti dalla tipologia del precedente sistema.

La più diffusa tipologia di vetro è il *float*, fabbricato secondo il sistema a galleggiamento con l'ausilio di un bagno di stagno fuso il quale, unito alla ricottura su ambo i lati, fornisce lastre di spessore compreso tra 2 e 25 mm, con superfici perfettamente lisce e parallele.

Usualmente, nella miscela di base del vetro float, è impiegata una quota di vetro riciclato frammentato.

Il vetro float, brillante e caratterizzato da elevata luminosità, costituisce il materiale base per la realizzazione di tutti i vetri impiegati in edilizia, detti prodotti trasformati.

I vetri rivestiti sono lastre sulle quali è applicato un deposito di ossidi metallici, argento, fluoruri o altri composti per alterarne una o più proprietà. Secondo la UNI 1096, si individuano le seguenti classi:

- Classe A. La superficie rivestita può essere posta sia verso l'esterno, sia verso i locali interni;
- Classe B. La superficie rivestita deve essere rivolta verso i locali interni;
- Classe C. Il vetro deve essere impiegato solo in vetrate multistrato sigillate, con la superficie rivestita rivolta verso l'intercapedine;
- Classe D. Come la classe C; il vetro deve però essere incorporato in vetrate sigillate già al termine del processo di produzione;
- Classe S. Come la classe A, per applicazioni specifiche.

Il **coating magnetronico** permette di ridurre l'emissività del vetro float da 0,85 a 0,05, o inferiore. La pellicola prodotta deve essere protetta in intercapedine.

DEPOSITI PIROLITICI

Durante la produzione della lastra *float*, in fase di ricottura, si spruzzano ossidi metallici per consentire lavorazioni successive

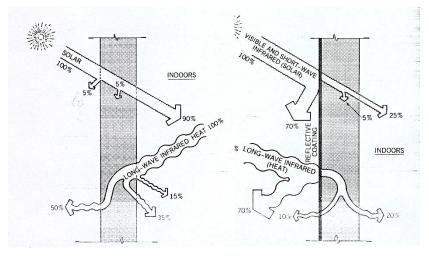
Riduzione scambi termici radiativi

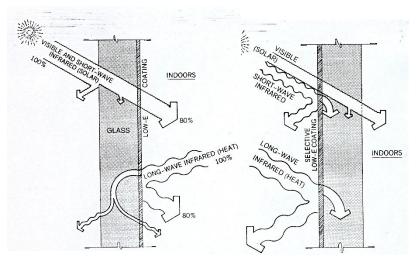
 $\varepsilon = 0,20 \div 0,15$

DEPOSITI MAGNETRONICI

Sono effettuati su lastre finite mediante elettroni accelerati che, in camere sottovuoto, proiettano atomi di metallo sulle lastre.

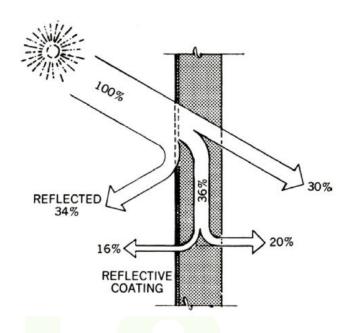
Riduzione scambi termici radiativi

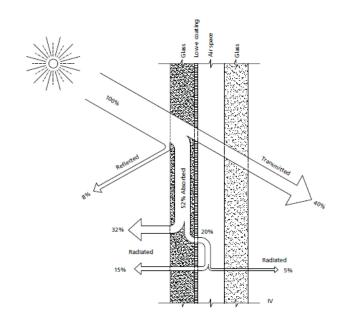

 $\varepsilon = 0.05 \div 0.02$



In base alle proprietà selettive del deposito, si distinguono:

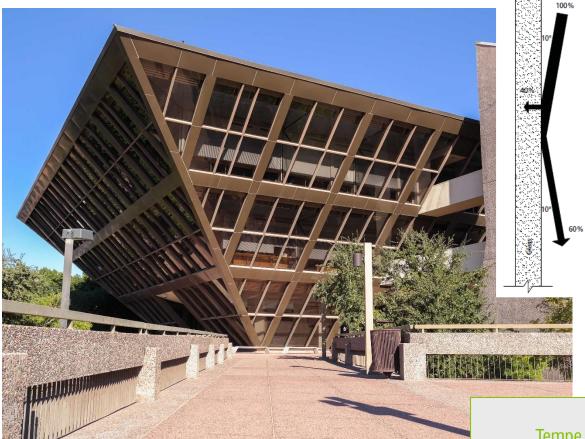
- vetri riflettenti a controllo termico, o basso emissivi, capaci di riflettere una quota significativa del flusso termico che investe il vetro partendo dall'ambiente interno. La trasmittanza termica delle lastre risulta perciò ridotta, e risultano trascurabili gli effetti di trasmissione della radiazione luminosa (incolore all'occhio umano);
- vetri riflettenti a controllo solare, dotati di un deposito specchiante per l'energia solare contenuta alle lunghezze d'onda dell'infrarosso e, in parte, del visibile. La prestazione dipende dallo spessore del deposito, influendo anche su trasparenza ed aspetto cromatico della lastra;
- vetri selettivi a controllo termico e solare, soluzioni che uniscono le prestazioni delle due precedenti categorie.

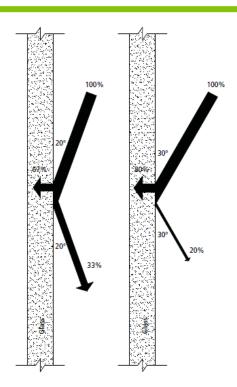




PROPRIETÀ SELETTIVE DEL VETRO

Vetro riflettente



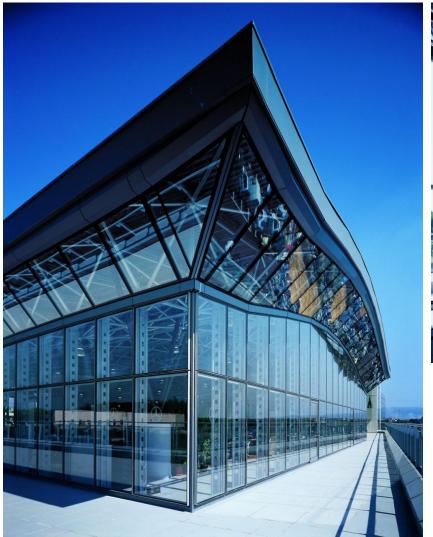

Vetro selettivo con rivestimento basso-emissivo

Il vetro può bloccare l'accesso della radiazione solare anche sfruttando le leggi ottiche della riflessione.

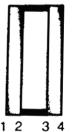
Tempe City Hall, Arizona (USA)

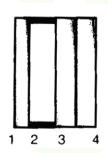
Le vetrate **isolanti** sono, per costituzione, realizzate impiegando due o più lastre di vetro float o di vetro rivestito, separate da distanziatori e sigillate ermeticamente lungo il perimetro così da creare un'intercapedine chiusa continua (definizione da UNI 1279).

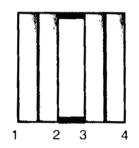
La finalità del sistema è la realizzazione di un serramento ad elevate prestazioni termiche e/o acustiche. L'incremento delle prestazioni è reso possibile proprio dall'**intercapedine** che riduce la trasmittanza della vetrata: in essa sono presenti, per **saturazione**, aria secca o **gas nobili**, con una conducibilità termica estremamente inferiore a quella della vetrata (per vetro float, si assume $\lambda = 1,0 \text{ W m}^{-1} \text{ K}^{-1}$).

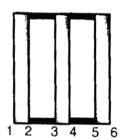

A tale funzione isolante possono essere associate:

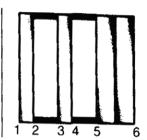
- il controllo della radiazione solare;
- il controllo della trasmissione della luce;
- l'isolamento acustico;
- sicurezza e resistenza al fuoco.

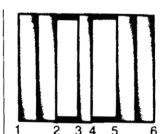

Concessionaria Mercedes, Roma






Se la prestazione di isolamento termico è prevalente sulle altre, si individuano:


- Doppi vetri, costituiti da due lastre di vetro separate da un'intercapedine satura d'aria secca ferma. Lo spessore delle lastre varia da 3 a 10 mm, con interposizione di una lama d'aria di spessore variabile tra 6 e 16 mm;
- Doppi vetri con intercapedine saturata di gas nobile: rispetto all'aria ferma (λ = 0,026 W m⁻¹ K⁻¹) si ottengono prestazioni più elevate impiegando argon (λ = 0,017 W m⁻¹ K⁻¹) o krypton (λ = 0,009 W m⁻¹ K⁻¹);
- Doppi vetri ad **elevate prestazioni**, comprendenti lastre riflettenti basso emissive, oppure / e a controllo solare, oppure / e stratificate. La presenza di un rivestimento sulla faccia interna della seconda lastra incrementa la riflessione del calore assorbito dalla lastra stessa verso i locali interni;
- **Tripli vetri**, soluzioni per portare la trasmittanza della vetrata a valori inferiori a 1,0 W m⁻² K⁻¹. I riempimenti delle intercapedini e l'adozione di rivestimenti e stratificazioni avviene in maniera analoga a quanto visto per i doppi vetri.



TIPO DI VETRO	FATTORE SOLARE g [-]	TRASMITTANZA TERMICA U [W/m² K]	TRASMISSIONE LUMINOSA T_L [-]
Vetrocamera mm (4+15+4) Intercapedine: aria	0,77	2,80	0,81
Vetrocamera mm (4+15+4) Intercapedine: argon 85%	0,77	2,60	0,81
Vetrocamera low-e (1) mm (4+15+4) Intercapedine: aria	0,72	1,40	0,79
Vetrocamera low-e (1) mm (4+15+4) Intercapedine: argon 85%	0,72	1,20	0,79
Vetrocamera low-e (2) mm (2,4+15+4) Intercapedine: aria	0,41	1,40	0,71
Vetrocamera low-e (2) mm (2,4+15+4) Intercapedine: argon 85%	0,41	1,10	0,71
Vetrocamera a basso fattore solare mm (1,6+15+4) Intercapedine: aria	0,34	2,70	0,39
Vetrocamera selettivo mm (2,4+15+4) Intercapedine: argon 85%	0,32	1,10	0,50

⁽¹⁾ Il rivestimento basso emissivo è applicato sulla lastra *float* interna, sulla superficie rivolta verso l'intercapedine.

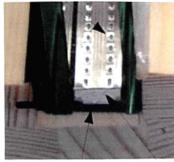
⁽²⁾ Il rivestimento basso emissivo è applicato sulla lastra *float* esterna, sulla superficie rivolta verso l'intercapedine.

Distanziatore

Il distanziatore è l'elemento volto a mantenere la distanza tra le lastre di vetro, realizzato usualmente in alluminio; attraverso l'applicazione di un sigillante butilico ne è garantita la tenuta all'aria.

Per quanto concerne la possibile formazione di condensa a causa del ponte termico generatosi localmente, soluzioni definite "warm edge", "a giunto caldo", permettono di ovviare all'elevata conduttività termica dell'alluminio, pari a 180 W m⁻¹ K⁻¹, con la realizzazione di un profilo distanziatore in PVC o in materiale organico rinforzato con fibra di vetro: in questo modo è possibile ridurre la trasmittanza lineica Ψ₁ del distanziatore fino a 0,040 W m⁻¹ K⁻¹, permettendo una riduzione massima del 10% della trasmittanza termica complessiva del serramento.

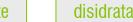
È quindi opportuno prevedere elementi tecnici dotati di pannelli termoisolanti, di spessore minimo di 20 mm sui due lati del cassonetto comunicanti con l'ambiente esterno.


Per quanto concerne i cassonetti, questi elementi per l'alloggiamento degli avvolgibili sono punti singolari a forte dispersione termica, in cui si manifestano inoltre riduzioni delle prestazioni di isolamento acustico e tenuta all'aria dell'involucro edilizio.

> Distanziatore Warm Edge

Butile

Lastra di vetro



sigillante

disidratante

disidratante

18.2

Schermature solari

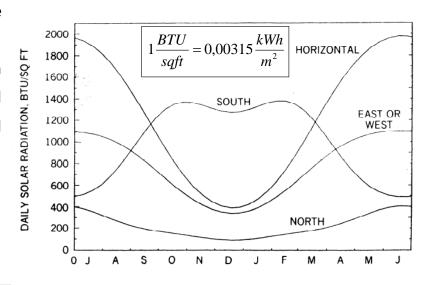
Principi

Part of the year the sun is our friend, and part of the year it is our enemy.

(Drawing by Le Corbusier from Le Corbusier: Oeuvre Complete, 1938– 1944, Vol. 4, by W. Boesiger, 7th ed. Verlag fuer Architektur Artemis © 1977.)

Principi

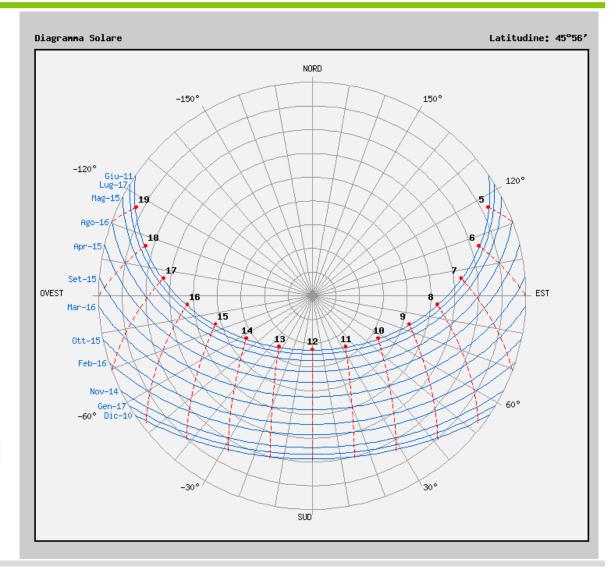
Una schermatura solare è un sistema progettato per favorire oppure controllare il passaggio e la diffusione della luce solare attraverso una superficie vetrata; inoltre, per diminuire il carico termico incidente sulla superficie stessa o su di una superficie opaca.

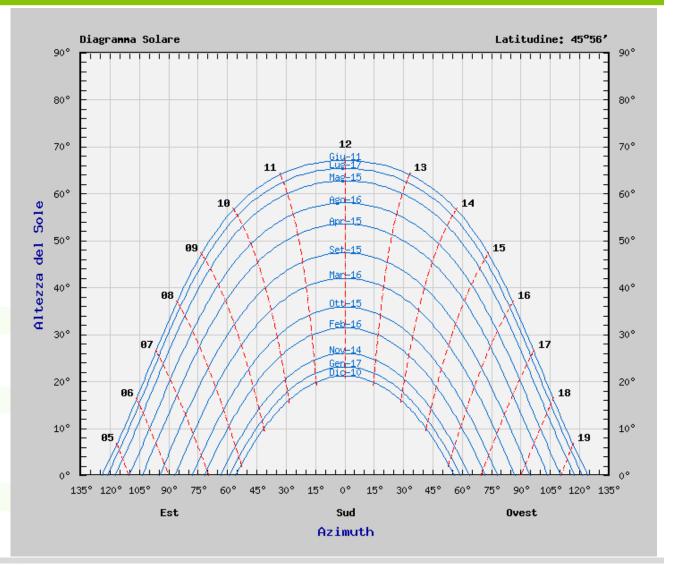

I sistemi di schermatura devono consentire l'incidenza della radiazione durante la stagione fredda per favorire il guadagno termico, ed impedirla o ridurla durante la stagione calda per evitare il surriscaldamento degli ambienti interni che va a gravare l'impianto di condizionamento.

I sistemi di schermatura si possono classificare a seconda della **posizione**, della **tipologia** e del **movimento** che eventualmente è concesso, e del **materiale** di cui sono costituiti:

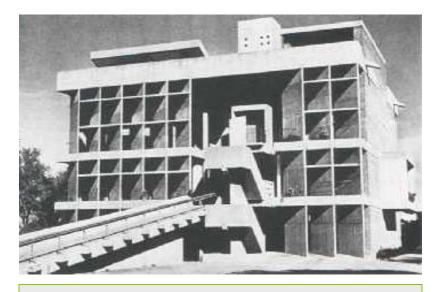
- posizionamento, interno o esterno all'involucro;
- tipologia, pannelli, lamelle, tende;
- movimento, tipo fisso oppure mobile;
- materiale, opaco o trasparente.

L'ombreggiamento rappresenta il primo passo verso una efficace strategia per affrontare il carico termico della stagione calda; solo successivamente si applica il raffrescamento passivo con la ventilazione naturale, e quindi l'impianto per il condizionamento estivo.


Si ricorda che l'esposizione **Sud** permette di ottenere minori quantità di radiazione solare estiva rispetto a qualsiasi altra esposizione.


Percorsi solari

Percorsi solari

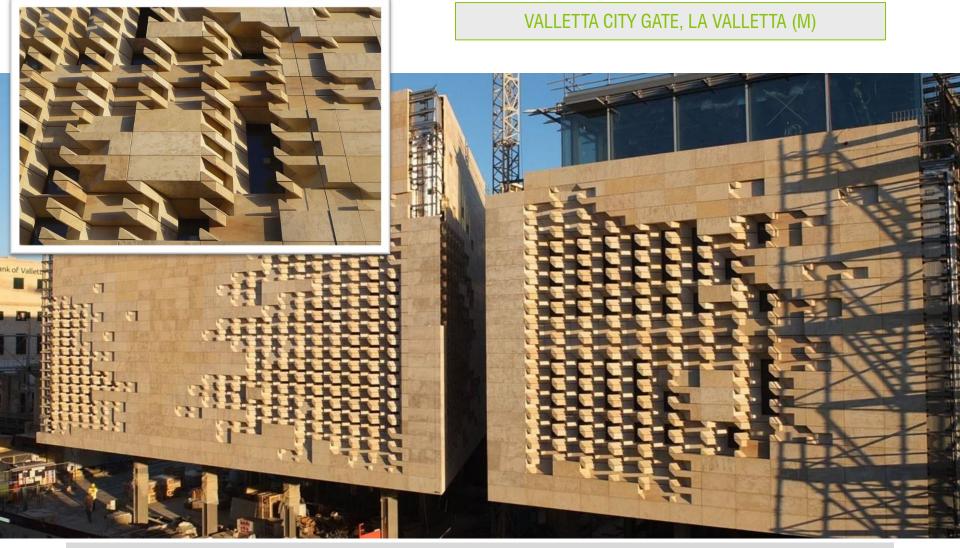


Principi

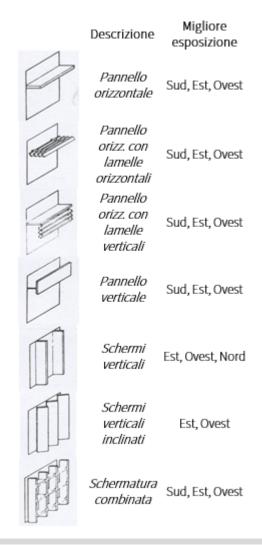
L'abilità nella progettazione di una schermatura solare sta nel bloccare la radiazione solare quando questa genera surriscaldamento senza per questo impedire la vista verso l'esterno ed il passaggio della luce. Tale requisito diviene più facilmente attuabile nei climi temperati, dove buona parte della radiazione solare in un dato istante è fornita dalla componente diretta: una volta neutralizzata questa parte, il carico termico ha già subito un sufficiente abbattimento. È così possibile predisporre una schermatura posta al di sopra della superficie trasparente che intercetti il Sole quando raggiunge il suo corso più alto, senza per questo incidere sulla panoramica visibile.

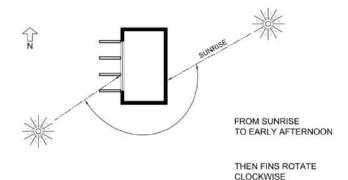
I sistemi di schermatura fissi possono essere verticali, quindi disposti con l'asse parallelo alla superficie della facciata ortogonalmente al terreno, oppure orizzontali, mediante un piano normale a tale superficie; questi sistemi vengono di norma fissati al livello del solaio, proteggendo così gli ambienti interni dell'edificio.

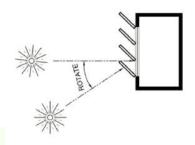
Nelle regioni calde, le tipologie sono combinate, dando vita ad un effetto compositivo a cassettone, per mantenere contenuti gli apporti solari per tutto il giorno; schermature fisse sono i brise soleil sperimentati da Le Corbusier, ma anche aggetti e terrazze.

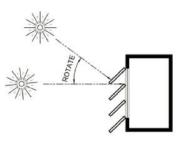


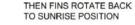
Capital Complex, Chandigarh, India, 1952.


Principi




Provvedere una facciata con esposizione Sud di un pannello schermante orizzontale è una soluzione efficace, poiché d'estate il Sole è alto sull'orizzonte. Nei climi caldi, dove può risultare necessario schermare anche le facciate rivolte a Nord, il pannello orizzontale perde ogni attrattiva ed è senz'altro più conveniente ricorrere a schermi verticali. Le esposizioni Est ed Ovest pongono una situazione più difficoltosa, poiché il Sole è basso quando insiste su queste superfici, e l'efficacia di un pannello orizzontale è senza dubbio minore.

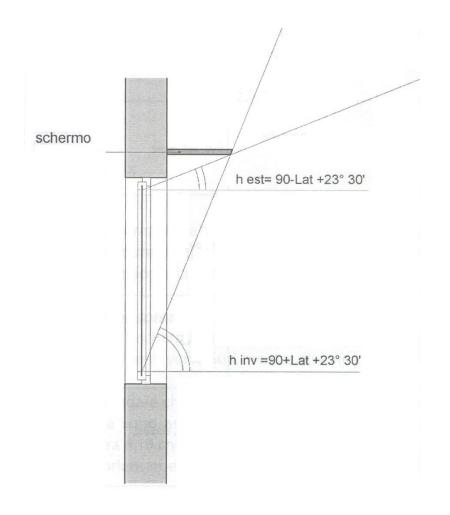




POSITION FROM EARLY AFTERNOON TO MID-AFTERNOON

THEN FINS ROTATE COUNTERCLOCKWISE

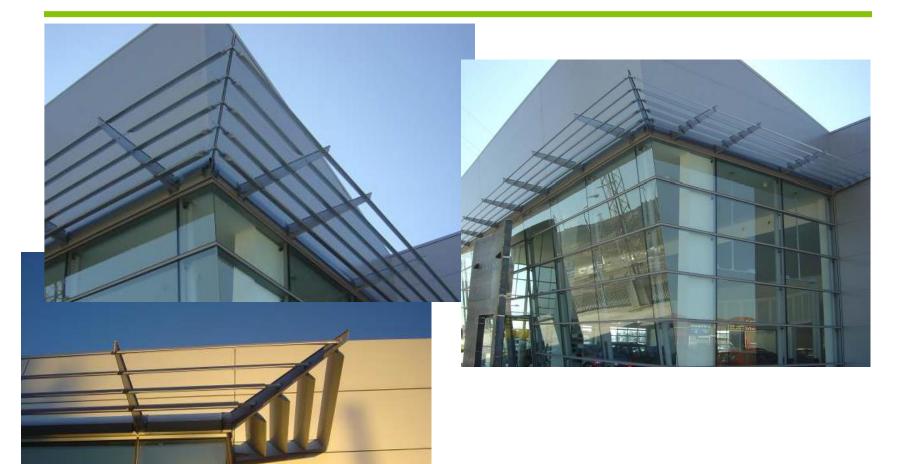
Impostare degli schermi verticali continui permette di risolvere il problema in modo più appropriato, ma va considerato che l'efficacia di tale sistema è reale solo per un passo elevato tra gli schermi stessi, fissi o mobili che siano, il che implica una severa riduzione della vista verso l'esterno. Nei climi caldi, in tali esposizioni, è opportuno combinare schermi orizzontali e verticali.



PLAN

orizzontale posto sopra la finestra, ed uno continuo quale una veneziana applicata alla stessa finestra hanno in pratica lo stesso comportamento a parità di posizione del Sole nel cielo: però nel secondo sistema si riduce la porzione di vista esterna, mentre un pannello orizzontale ostruisce solo la regione più alta. Le schermature fisse vengono spesso applicate poiché hanno un costo limitato, ma dimostrano dei limiti che possono venire ovviati considerando sistemi mobili. I sistemi mobili già a livello intuitivo rispondono in maniera più congrua al problema dell'ombreggiamento, il cui scopo è ridurre l'accesso solare all'interno dell'edificio nel periodo di surriscaldamento: la schermatura deve quindi rispondere ad un requisito termico. Detto in altre parole, il sistema schermante applicato deve trovarsi in fase con le condizioni

Un sistema schermante discreto, come un pannello



provocano un discomfort interno.

termiche esterne e modificarle quando essere

Concessionaria Volkswagen, Roma

Normalmente, le schermature **fisse** sono **efficaci** solo per le **particolari condizioni astronomiche** per le quali sono state progettate, e per essere efficaci in condizioni diverse devono essere associate a sistemi mobili.

Una schermatura fissa, ad esempio un pannello orizzontale innestato sopra la finestra, non risponde alle condizioni termiche, ma a quelle derivanti dalla posizione del Sole, e saranno queste a determinare l'ombra portata sulla finestra e quindi l'efficacia dello schermo.

La lunghezza di un pannello orizzontale fisso viene calcolata per garantire il blocco della radiazione quando il Sole è alto e permetterne l'accesso quando è basso, ma questo dimensionamento fa riferimento alle condizioni estreme del corso solare, senza porre il problema delle situazioni intermedie.

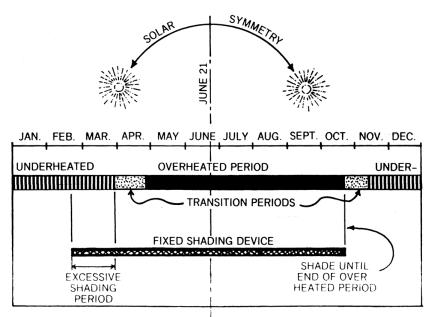
Gli angoli descritti dal percorso solare e la temperatura esterna sono **fenomeni sfasati**, per due ragioni.

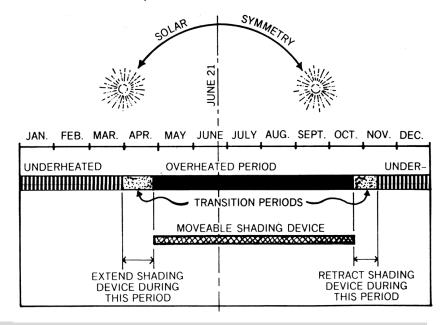
VARIAZIONI GIORNALIERE

in due giorni consecutivi possono verificarsi condizioni climatiche che richiedono diversi accessi solari ai serramenti

SFASAMENTO ANNUALE

la variazione annuale della radiazione solare diretta, funzione dei percorsi solari, non coincide con quella delle temperature

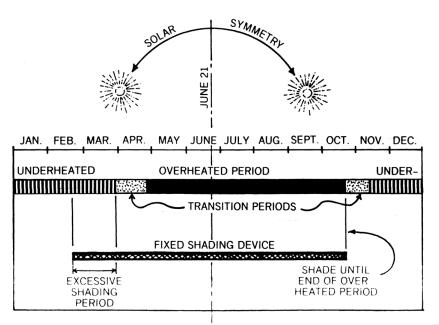


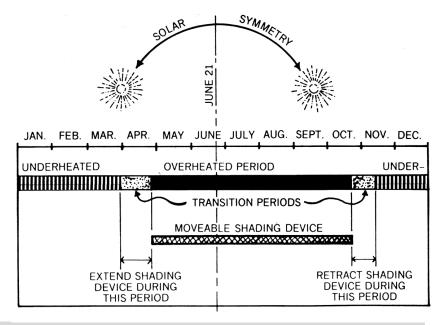


Soprattutto in primavera ed in autunno, può accadere che due giorni consecutivi portino con sé condizioni meteorologiche opposte, e l'ambiente circostante possa così raffreddarsi all'improvviso. L'arrivo di una perturbazione impedisce l'arrivo della radiazione solare diretta alla superficie terrestre, riducendo la sollecitazione termica; si passa così da una condizione di surriscaldamento ad una di sottoriscaldamento in sole

24 ore. Se uno schermo fisso è progettato per bloccare la radiazione solare a metà settembre, non può essere ritratto al verificarsi, in questo mese, di una giornata eccezionalmente fredda.

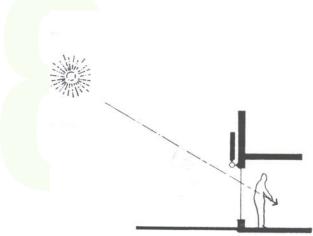
Seconda e più ampia considerazione, l'anno solare (la descrizione del percorso apparente che il Sole descrive sulla volta celeste) e l'anno termico (le oscillazioni annuali della temperatura esterna) sono sfasati.

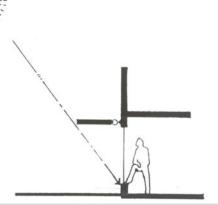




A causa della grande massa della Terra e dell'inerzia termica dell'atmosfera che la avvolge, il pianeta si riscalda lentamente in primavera, cosicché temperature più elevate si registrano solo 40 giorni dopo il solstizio d'estate (21 giugno). C'è poi un ritardo simile nel raffreddamento del pianeta trascorso il solstizio invernale.

L'anno termico non è simmetrico rispetto al 21 giugno, lo è il periodo di efficacia della schermatura fissa. Un sistema schermante fisso, quindi, opera per periodi di uguale lunghezza prima e dopo il solstizio estivo, senza tener conto del fatto che, ad esempio, il 30 agosto è un giorno senz'altro più caldo del 12 aprile, equidistanti dal 21 giugno.

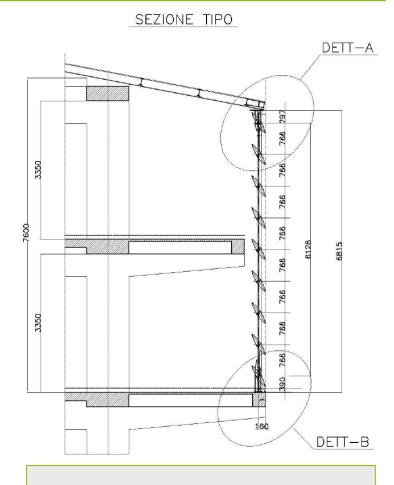



Tale fatto porta al verificarsi di una di queste due situazioni, entrambe non ottimali:

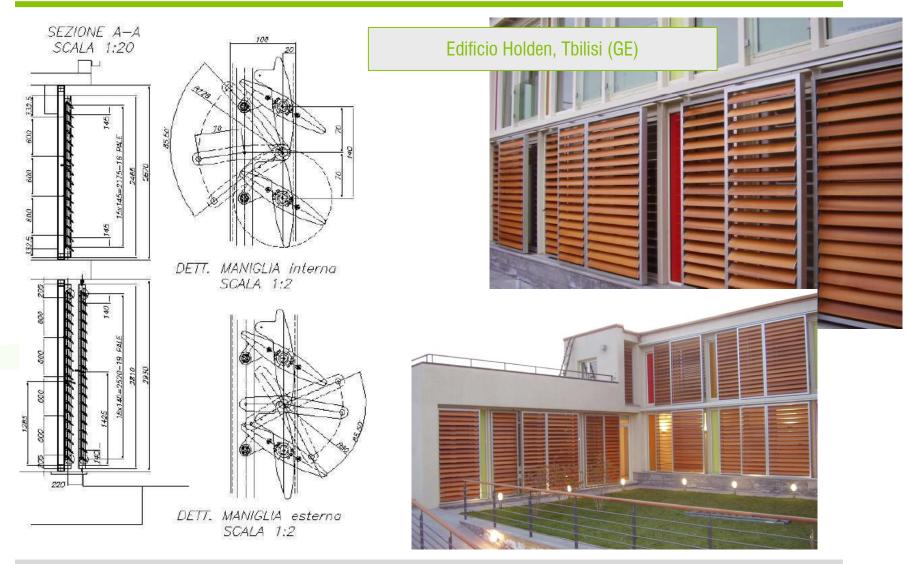
- se lo schermo è progettato per conservare intatti gli apporti solari durante la stagione del riscaldamento, risulterà un periodo verso la fine dell'estate in cui il Sole accede liberamente alla finestra:
- se invece l'intero periodo di surriscaldamento viene contrastato, lo schermo sarà efficace anche verso la fine dell'inverno, quando la radiazione solare è ancora gradita e ci si trova ancora nella stagione di riscaldamento.

Si rende quindi necessario ottemperare a questa asimmetria introducendo schermi mobili che siano efficaci in estate pur salvaguardando i guadagni invernali.

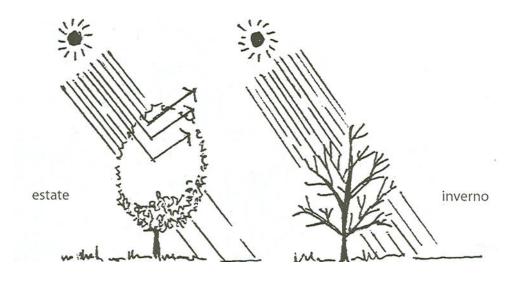
La modalità di funzionamento di uno schermo mobile, sulla base di questi principi, può essere anche molto semplice: presentare due sole configurazioni durante il corso dell'anno può essere sufficientemente efficace. Ad esempio, la schermatura può essere estesa nella tarda primavera per poi venire ritirata per garantire la completa esposizione solare in inverno.


Uno schermo costituito di lamelle e posizionato ortogonalmente alla parete (sistema continuo), oppure un pannello rotante attorno al proprio asse (sistema discreto) non portano carichi ulteriori alla dovuti neve. ed oltretutto impediscono all'aria calda di ristagnare al di sotto di essi: sono vantaggi che un pannello orizzontale infitto nella parete non può offrire, oltre ad essere più sensibile agli effetti del vento.

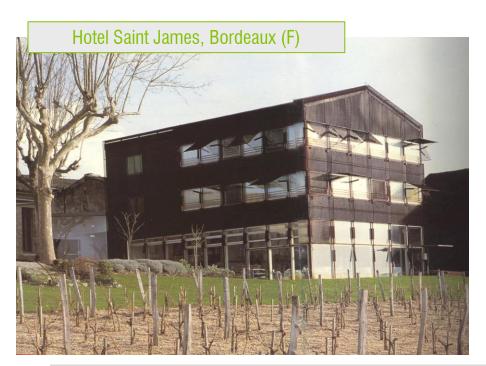
		Descriptive Name	Best Orientation	Comments
IX		Overhang Awning	South, east, west	Fully adjustable for annual, daily, or hourly conditions Traps hot air Good for view Can be retracted during storms Best buy!
X		Overhang Rotating horizontal louvers	South, east, west	Will block some view and winter sun
XI		Fin Rotating fins	East, west	Much more effective than fixed fins Less restricted view than slanted fixed fins
XII	The same of the sa	Deciduous plants Trees Vines	East, west southeast, southwest northeast northwest	View restricted but attractive for low-canopy trees Self-cooling Highly recommended
XIII		Exterior roller shade	East, west, southeast, southwest northeast northwest	Very flexible, from completely open to completely closed View is restricted when shade is used Provides security

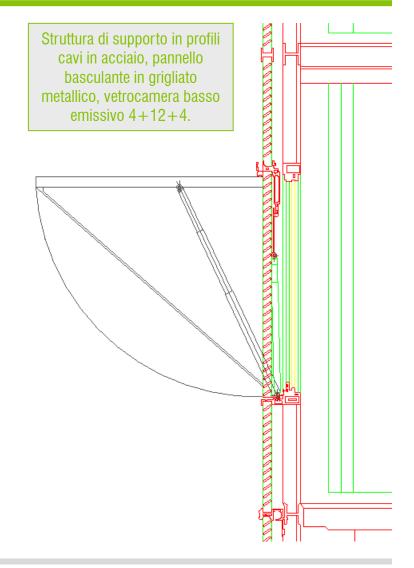


Stadium Colombino, Huelva (E)



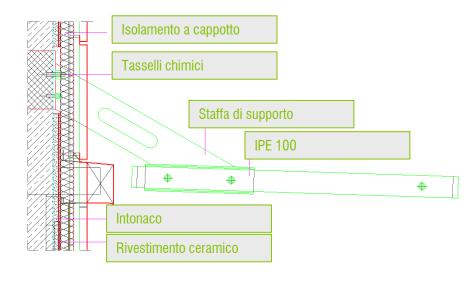
Anche la vegetazione decidua può essere considerata un sistema schermante: infatti la maggior parte delle piante segue l'andamento dell'anno termico, dato che le foglie cadono e si rigenerano in funzione della temperatura esterna. La vegetazione modula quindi la trasmissione della radiazione verso l'edificio in modo congeniale, presentando una serie di vantaggi, quali il basso costo, l'estetica ed il mantenimento della privacy.

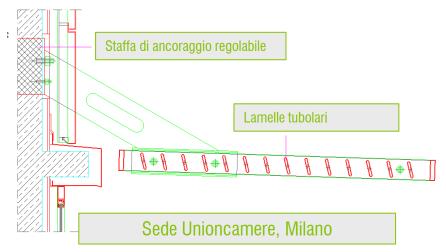




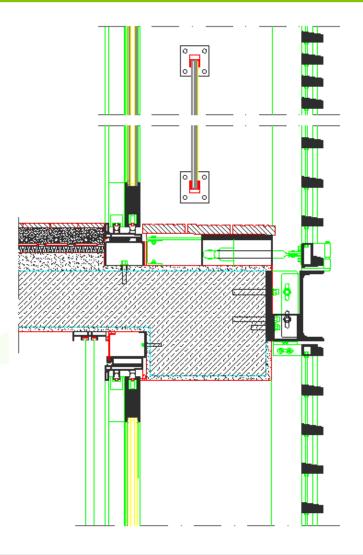
Tra le schermature esterne si annoverano anche gli avvolgibili, formati da lamelle rigide, adequati nelle difficoltose esposizioni Est ed Ovest, dove intercettare la radiazione è necessario per metà giornata e dannoso per il periodo restante; e i sistemi schermanti rotanti su un asse orizzontale parallelo alla facciata.

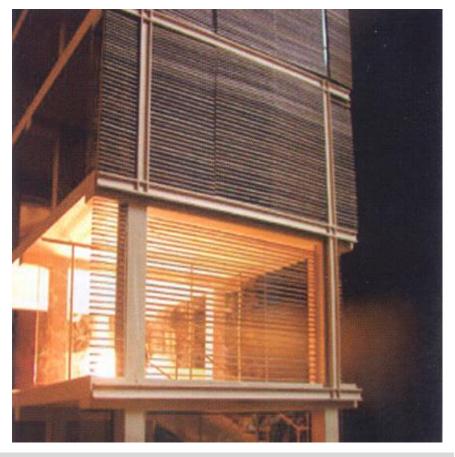
L'installazione di una **schermatura esterna** porta ai seguenti benefici:

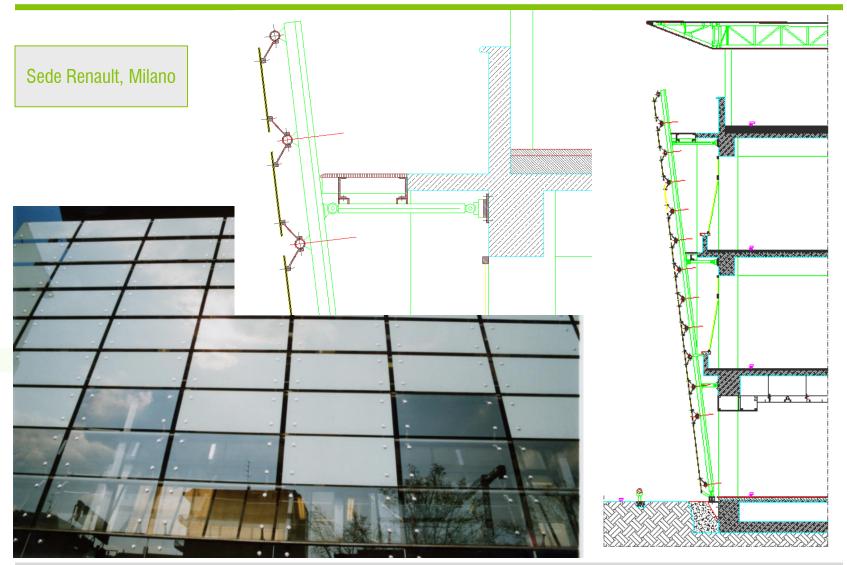

- l'intercettazione dei raggi solari prima che pervengano alla superficie vetrata. I raggi solari vengono principalmente riflessi verso l'esterno, in minor parte verso l'interno ed assorbiti dalla schermatura, che emette calore successivamente portato via tramite ventilazione naturale;
- la riflessione controllata della luce solare, correlata alla diffusione dell'illuminazione naturale degli ambienti.



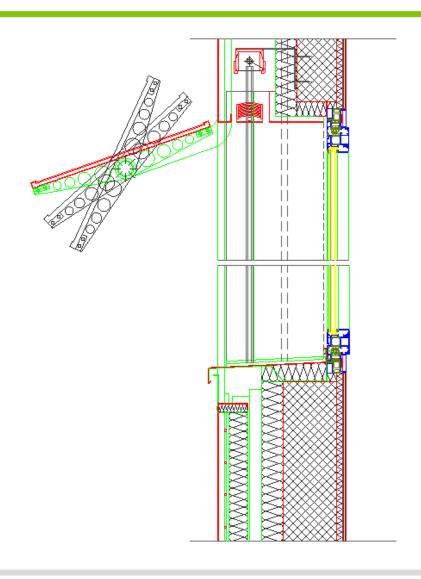
Gli aggetti sviluppati in senso orizzontale solitamente portano ad un abbassamento della luminosità interna, ma si possono anche impostare come dei riflettori che mandano la luce verso il soffitto (lightshelf), rendendo l'illuminazione più equilibrata. Un lightshelf è una schermatura orizzontale oppure inclinata, collocabile all'interno o all'esterno della superficie vetrata che, ombreggiando la finestra, riflette la luce verso il soffitto.



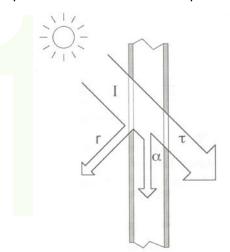


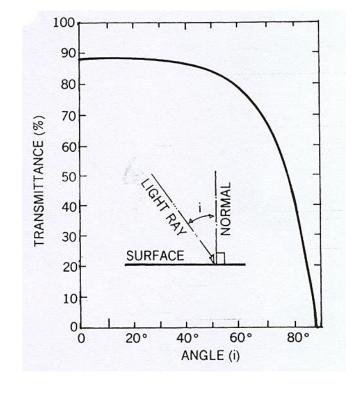


Ex «Casa Di Bianco», Cremona



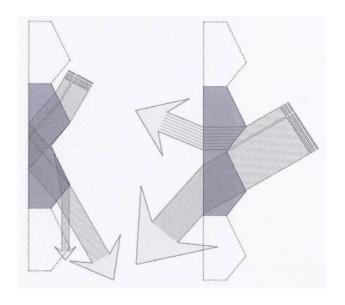
Edificio scolastico, Lugano (CH)





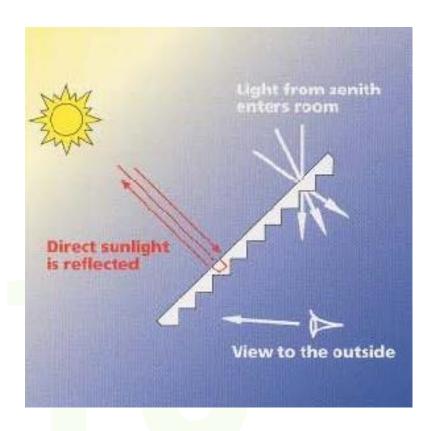
Nessun vetro, per quanto sottile e chiaro, permette il passaggio totale della radiazione solare. Qualsiasi superficie che riceve la radiazione solare trasforma quest'ultima in tre componenti: trasmessa all'interno, assorbita e riflessa verso l'esterno. La frazione α di energia assorbita dipende dall'eventuale rivestimento del vetro e dal suo spessore, mentre la frazione ρ riflessa dipende dalla natura della superficie e dall'angolo di incidenza della radiazione valutato rispetto alla normale alla superficie stessa.

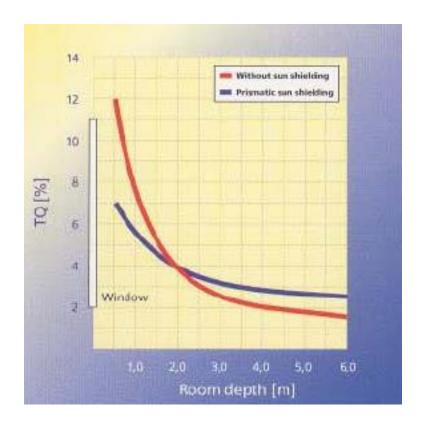
Un vetro può bloccare la radiazione solare anche sfruttando le leggi della riflessione. Infatti la trasmittanza del vetro è funzione dell'angolo di incidenza formato tra il raggio solare e la normale alla superficie del vetro.



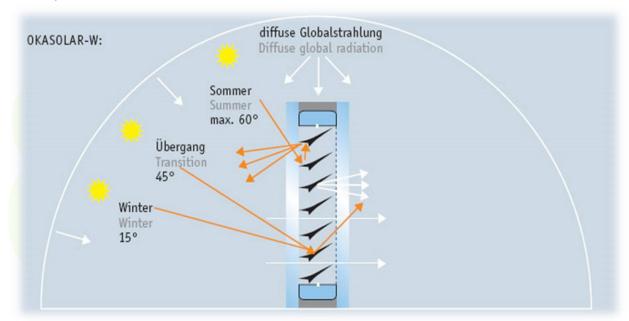
I cosiddetti "vetri di nuova generazione" sono in grado di modificare in modo dinamico la trasmissione luminosa e termica della radiazione solare verso gli ambienti interni. Se un vetro dotato di un fattore solare g ridotto può essere considerato come uno schermo permanente, allora questi vetri possono essere definiti come schermature solari a prestazione variabile.

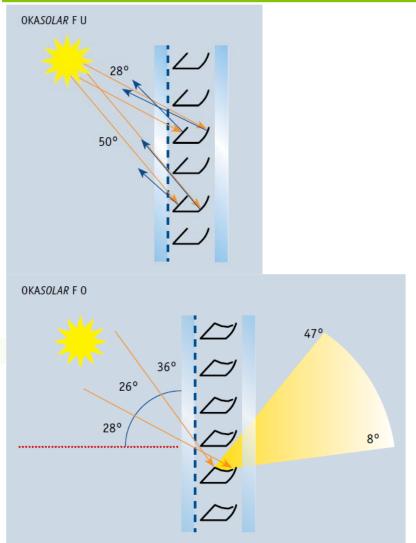
La prima categoria di **vetri selettivi** comprende i cosiddetti vetri a **selettività angolare**, che sfruttano principi geometrici per il direzionamento nella profondità degli ambienti della radiazione solare. È quindi possibile, in base all'angolo d'inclinazione della radiazione stessa, operare una selezione dei raggi escludendone una parte, che rimane all'esterno.


I **vetri prismatici** sono sistemi passivi capaci di produrre una **deflessione** della **radiazione** incidente avente un angolo di incidenza superiore a quello critico del dispositivo. La geometria del sistema permette la differenziazione delle prestazioni durante l'anno:

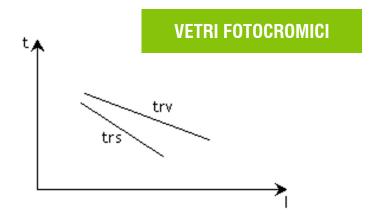

- nella stagione estiva i raggi colpiscono la faccia superiore del pannello, senza interagire con la faccia inferiore; essi sono dunque rifratti e infine riflessi;
- in **inverno**, i raggi solari incidono su **entrambe** le **facce del profilo**, cosicché la radiazione perviene all'ambiente evitandone un direzionamento verso le postazioni di lavoro e permettendo una maggiore **uniformità** d'illuminazione naturale.

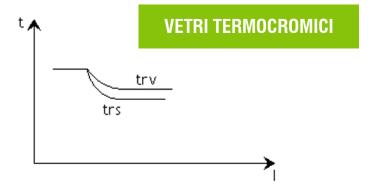
IN PRESENZA DI RADIAZIONE DIRETTA


IN ASSENZA DI RADIAZIONE DIRETTA


Un risultato simile è conseguibile inserendo dei sistemi geometrici per la deflessione dei raggi solari all'interno del serramento. La prima caratteristica distintiva di questi serramenti è lo spessore, ben superiore rispetto ad uno tradizionale; inoltre, la variabilità delle condizioni ottiche e luminose è garantita da una struttura univocamente identificabile. Opportuni profili di schermatura ottemperano a diverse necessità:

- la semplice schermatura della radiazione solare;
- una schermatura abbinata alla deviazione verso l'alto della radiazione stessa, al fine di incrementare l'uniformità di illuminazione nell'ambiente;
- l'abbinamento delle due precedenti funzioni alla riflessione verso l'esterno della radiazione solare.
 Il sistema è costituito da due lastre in vetro termico in cui sono inserite delle lamelle metalliche fisse.

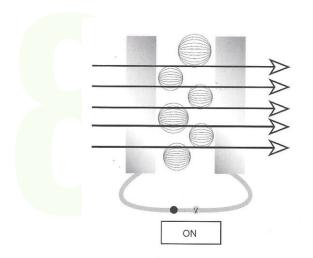


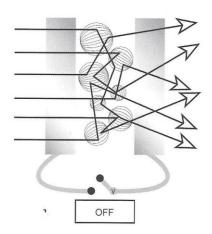

Vetri a trasmissione variabile

Esposti alla luce solare, i vetri fotocromici assumono una forte colorazione, che perdono al termine della fase di irraggiamento diretto; viene modificata la trasmissione luminosa a seconda della quantità di luce che viene ad incidere sulla superficie del vetro, grazie all'inserimento nella pasta di vetro di alogenuri di argento sensibili ai raggi ultravioletti. L'impiego dei vetri fotocromici nell'edilizia è limitato dalla sensibilità che questi materiali hanno nei confronti della temperatura ambiente.

I vetri termocromici hanno invece la capacità di modificare l'assorbimento della luce rendendosi opachi al di sopra di una certa temperatura critica, dipendente dal tipo di prodotto (10 - 90 °C); all'abbassarsi della temperatura, il vetro torna ad essere trasparente. Questa proprietà è resa possibile rivestendo la lastra di vetro con un ossido di tungsteno o di vanadio; il passaggio all'opacità avviene in modo immediato, senza alcuna gradualità.

trv: trasmissione radiazione visibile trs: trasmissione radiazione solare


Vetri a trasmissione variabile


Anche i vetri elettrocromici offrono una trasmissione luminosa variabile, alla ricezione di un impulso elettrico. Il campo elettrico che viene a crearsi serve essenzialmente per permettere il cambiamento di fase da trasparente ad opaco e viceversa; inoltre non è necessario mantenere attivo questo campo per conservare lo stato appena raggiunto.

Nei vetri a **cristalli liquidi**, interposto tra le lastre di vetro viene messo un **film** dotato di una serie di **cavità sferiche** contenenti appunto **cristalli liquidi**.

In assenza di corrente, questi si dispongono in modo casuale diffondendo la luce incidente e bloccando la vista attraverso di essi.

Creando un campo elettrico (di tensione intorno ai 100 V) tra le superfici esterne del film, i cristalli si posizionano ordinatamente rendendo il vetro trasparente; il passaggio avviene in un tempo pari circa a 10 centesimi di secondo, ma la tensione elettrica va mantenuta per tutto il tempo per cui si vuole garantire la trasparenza del vetro.

