
Overpotential (η): deviation from the equilibrium potential (thermodynamic) required to 
drive a reaction at a certain rate (faradaic current density) 

The overpotential (η)

𝜼 = 𝐸 − 𝐸𝑒𝑞

• It is an indicator of the efficiency of an 
electrochemical system (the energetic cost 
required to drive a reaction at a certain rate)

• The rate constant for a heterogeneous electron 
transfer process is dependent on the applied 
potential 

L. Chen et al., Energy Environ. Sci., 2014, 7, 329–334

𝜼



The origin of the overpotential

Bard & Faulkner, 2nd Ed., Wiley, 2001 

The overall η of an 
electrode reaction at a 
given j is the sum of η terms 
associated to single 
elementary reaction steps 
(e. g. mass transport, 
charge transfer, coupled 
chemical reactions…)



Transition state theory

Reaction coordinate

ΔGf
≠

ΔGb
≠

ΔGreaction

Reactant

Product

Transition state 
(Activated complex) 

𝑘 = 𝜅
k𝐵𝑇

ℎ
𝑒−∆𝐺≠/𝑅𝑇

𝑘 = 𝐴𝑒−𝐸𝑎/𝑅𝑇

Arrhenius equation 

Pre-exponential factor
(frequency or collision 

factor )

Activation energy
(energy barrier) 

Eyring-Polanyi equation

ΔG0



Electrode kinetics: The effect of potential

Reaction coordinate

• Analogous description of the energetic pathway on an electrode reaction through a reaction 
coordinate

• The energetics of electrode processes are dependent on the applied potential 

Na(Hg) Na+ + e–

𝑬 = 𝑬𝒆𝒒

Solution Amalgam

Equilibrium

Na+ + e–Na(Hg) 

ΔGOx
≠ ΔGRed

≠

∆𝑮𝑶𝒙
≠ = ∆𝑮𝑹𝒆𝒅

≠

ΔG0



Electrode kinetics: The effect of potential

Reaction coordinate

• Analogous description of the energetic pathway on an electrode reaction through a reaction 
coordinate

• The energetics of electrode processes are dependent on the applied potential 

Na+ + e–

Na(Hg) 

Na(Hg) Na+ + e–

𝑬 > 𝑬𝒆𝒒

Solution Amalgam

Oxidation

ΔGOx
≠ ΔGRed

≠

∆𝑮𝑶𝒙
≠ < ∆𝑮𝑹𝒆𝒅

≠

ΔG0



ΔG0

Electrode kinetics: The effect of potential

Reaction coordinate

• Analogous description of the energetic pathway on an electrode reaction through a reaction 
coordinate

• The energetics of electrode processes are dependent on the applied potential 

Na(Hg) 

Na(Hg) Na+ + e–

𝑬 < 𝑬𝒆𝒒

Solution Amalgam

Reduction

Na+ + e–

ΔGOx
≠

∆𝑮𝑶𝒙
≠ > ∆𝑮𝑹𝒆𝒅

≠

ΔGRed
≠



Kinetics of electrode reactions

𝑣𝑅𝑒𝑑 = 𝑘𝑅𝑒𝑑 ∙ 𝐶𝑂𝑥 0, 𝑡 =
𝑖𝑐

𝑛𝐹𝐴

Ox + ne–         Red
kRed 

kOx 

𝑣𝑂𝑥 = 𝑘𝑂𝑥 ∙ 𝐶𝑅𝑒𝑑(0, 𝑡) =
𝑖𝑎

𝑛𝐹𝐴

𝑣𝑡𝑜𝑡 = 𝑣𝑅𝑒𝑑 − 𝑣𝑂𝑥 = 𝑘𝑅𝑒𝑑 ∙ 𝐶𝑂𝑥 0, 𝑡 − 𝑘𝑂𝑥 ∙ 𝐶𝑅𝑒𝑑(0, 𝑡) =
(𝑖𝑐 − 𝑖𝑎)

𝑛𝐹𝐴

𝒊

𝒊 = 𝑖𝑐 − 𝑖𝑎 = 𝑛𝐹𝐴 [𝑘𝑅𝑒𝑑 ∙ 𝐶𝑂𝑥 0, 𝑡 − 𝑘𝑂𝑥 ∙ 𝐶𝑅𝑒𝑑 0, 𝑡 ] 

Cathodic current 
Anodic current 

Surface concentration (x = 0) Surface concentration (x = 0)

[mol s-1 cm-2]

[cm s-1]



Kinetics of electrode reactions

Reaction coordinate

ΔG0 ΔGc
≠ ΔG0,c

≠ ΔG0,a
≠

ΔGa
≠

Ox + ne–

Red

At Equilibrium:
E = E0’

∆𝑮𝟎,𝒄
≠ = ∆𝑮𝟎,𝒂

≠

Upon oxidation:
E > E0’

∆𝑮𝒄
≠> ∆𝑮𝒂

≠

nF(E – E0’)



Electrode kinetics: The effect of potential

nF(E – E0’)

(1 – α)nF(E – E0’)

αnF(E – E0’)

Reaction coordinate

ΔG0

Ox + ne–

Red

∆𝑮𝒂
≠= ∆𝑮𝟎,𝒂

≠ − 𝟏 − 𝜶 𝒏𝑭(𝑬 − 𝑬𝟎′
)

∆𝑮𝒄
≠= ∆𝑮𝟎,𝒄

≠ + 𝜶𝒏𝑭(𝑬 − 𝑬𝟎′
)

α = transfer coefficient



𝑘𝑂𝑥 = 𝐴𝑂𝑥 𝑒𝑥𝑝 −
∆𝐺𝑎

≠

𝑅𝑇
= 𝐴𝑂𝑥 𝑒𝑥𝑝 −

∆𝐺0,𝑎
≠

𝑅𝑇
exp[(𝟏 − 𝜶)

𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)]

Electrode kinetics: The effect of potential

∆𝐺𝑎
≠= ∆𝐺0,𝑎

≠ − (1 − 𝛼)𝑛𝐹(𝐸 − 𝐸0′
)∆𝐺𝑐

≠= ∆𝐺0,𝑐
≠ + 𝛼𝑛𝐹(𝐸 − 𝐸0′

)

𝑘𝑅𝑒𝑑 = 𝐴𝑅𝑒𝑑  𝑒𝑥𝑝 −
∆𝐺𝑐

≠

𝑅𝑇
= 𝐴𝑅𝑒𝑑  𝑒𝑥𝑝 −

∆𝐺0,𝑐
≠

𝑅𝑇
exp[−𝜶

𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)]

with COx* = CRed*

Potential-independent 

At equilibrium kredCOx* = kOxCRed*

kred = kOx = k0 standard rate constant
(heterogeneous) 

Potential-dependent 

(C* = bulk concentration)

(E = E0’)



Electrode kinetics: The Butler-Volmer equation

𝑘𝑅𝑒𝑑 = 𝒌𝟎exp[−𝜶
𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)]

𝑘𝑂𝑥 = 𝒌𝟎 exp[(𝟏 − 𝜶)
𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)]

Recalling …

𝒊 = 𝑖𝑐 − 𝑖𝑎 = 𝑛𝐹𝐴 [𝑘𝑅𝑒𝑑 ∙ 𝐶𝑂𝑥 0, 𝑡 − 𝑘𝑂𝑥 ∙ 𝐶𝑅𝑒𝑑 0, 𝑡 ] 

we obtain …

𝒊 = 𝑛𝐹𝐴𝒌𝟎[𝐶𝑂𝑥 0, 𝑡 𝑒−𝜶
𝑛𝐹
𝑅𝑇

(𝐸−𝐸0′) − 𝐶𝑅𝑒𝑑 0, 𝑡 𝑒(𝟏−𝜶)
𝑛𝐹
𝑅𝑇

(𝐸−𝐸0′)] 

Butler-Volmer equation (current-potential)



Electrode kinetics: The Butler-Volmer equation

J. A. V. Butler (1899 – 1977) M. Volmer (1885–1965)

Max Volmer’s paper published in 1930



The Standard Rate Constant (k0)

• Measures the intrinsic kinetics of heterogeneous electron transfer of a redox couple 
(intrinsic ability of a redox couple to exchange electrons with the electrode)

• Large k0 indicate fast heterogeneous electron transfer (short timescale, k0 ≈ 1-10 cm/s), 
usually observed for redox processes that do not involve significant molecular 
reorganization (only e– transfer + resolvation, e.g. aromatic hydrocarbons)

• Small k0 indicate sluggish heterogeneous electron transfer (k0 < 10-9-10-11 cm/s), typically 
being accompanied by significant molecular rearrangement and/or involving complicated 
mechanisms (multistep, e.g. ORR, HER) 

• Extreme variability in the k0 range 

• Even for systems with small k0, the electrode reaction kinetics (kOx, kRed) can be increased 
by applying E >> E0’ or E << E0’ !!! 

what’s the extent of the potential effect on electrode reaction kinetics??  



The transfer coefficient (α)

Reaction coordinate

ΔG0

Ox + ne– Redθ φ

Reaction coordinate

ΔG0

Ox + ne– Redθ
φ

Reaction coordinate

ΔG0

θ

φ

Red

θ = φ    α = 0.5

Ox + ne–

θ < φ    α < 0.5 θ > φ    α > 0.5

• Measures the symmetry of the energetic barrier for a redox process (0 ≤ α ≤ 1) 

• It can be obtained experimentally and is generally considered equal to 0.5

• α = 0.5 for a symmetrical barrier, α ≠ 0.5 for asymmetrical barriers (angles θ and φ)

• Dissects the effect of change in potential on the barriers to the cathodic (ΔGc
≠) and anodic 

reaction (ΔGa
≠) 



Verification of the Butler-Volmer model: the equilibrium

Equilibrium:  

0 = 𝑛𝐹𝐴𝒌𝟎[𝐶𝑂𝑥 0, 𝑡 𝑒−𝜶
𝑛𝐹
𝑅𝑇

(𝑬𝒆𝒒−𝐸0′
) − 𝐶𝑅𝑒𝑑 0, 𝑡 𝑒(𝟏−𝜶)

𝑛𝐹
𝑅𝑇

(𝑬𝒆𝒒−𝐸0′
)] 

𝒊 = 𝟎 𝒊𝒄 = 𝒊𝒂

𝑛𝐹𝐴𝒌𝟎𝐶𝑂𝑥 0, 𝑡 𝑒−𝜶
𝑛𝐹
𝑅𝑇

(𝑬𝒆𝒒−𝐸0′
) = 𝑛𝐹𝐴𝒌𝟎𝐶𝑅𝑒𝑑 0, 𝑡 𝑒(𝟏−𝜶)

𝑛𝐹
𝑅𝑇

(𝑬𝒆𝒒−𝐸0′
) 

𝑬 = 𝑬𝒆𝒒

= COx* = CRed*

𝑒
𝑛𝐹
𝑅𝑇

(𝑬𝒆𝒒−𝐸0′
) =

𝐶𝑂𝑥
∗

𝐶𝑅𝑒𝑑
∗

𝑬𝒆𝒒 = 𝐸0′
+

𝑅𝑇

𝑛𝐹
𝑙𝑛

𝐶𝑂𝑥
∗

𝐶𝑅𝑒𝑑
∗

Nernst Equation  



The exchange current (i0)

𝒊𝟎 = 𝑛𝐹𝐴𝒌𝟎𝐶𝑂𝑥
∗ 𝑒−𝜶

𝑛𝐹
𝑅𝑇

(𝑬𝒆𝒒−𝐸0′
)

𝑒
𝑛𝐹
𝑅𝑇

(𝑬𝒆𝒒−𝐸0′
) =

𝐶𝑂𝑥
∗

𝐶𝑅𝑒𝑑
∗

Exchange current
(bidirectional) 

Equilibrium:  𝒊 = 𝟎 𝒊𝒄 = 𝒊𝒂 = 𝒊𝟎 𝑬 = 𝑬𝒆𝒒

elevate to –α

𝑒−𝜶
𝑛𝐹
𝑅𝑇

(𝑬𝒆𝒒−𝐸0′
) =

𝐶𝑂𝑥
∗

𝐶𝑅𝑒𝑑
∗

−𝜶

substitution

𝒊𝟎 = 𝑛𝐹𝐴𝒌𝟎𝐶𝑂𝑥
∗ (1−𝜶)

𝐶𝑅𝑒𝑑
∗ 𝜶

𝒋𝟎 =
𝒊𝟎

𝑨
Exchange current density  

It reflects the intrinsic rate of the electron transfer 
for a redox couple (k0)

𝒊𝟎 ∝ 𝒌𝟎

Exercise: derive the i0 equation from ia instead of ic



The current – overpotential relationship

𝒊𝟎 = 𝑛𝐹𝐴𝒌𝟎𝐶𝑂𝑥
∗ (1−𝜶)

𝐶𝑅𝑒𝑑
∗ 𝜶

𝒊 = 𝑛𝐹𝐴𝒌𝟎[𝐶𝑂𝑥 0, 𝑡 𝑒−𝜶
𝑛𝐹
𝑅𝑇

(𝐸−𝐸0′
) − 𝐶𝑅𝑒𝑑 0, 𝑡 𝑒(𝟏−𝜶)

𝑛𝐹
𝑅𝑇

(𝐸−𝐸0′
)] 

Butler-Volmer
Exchange current 

we obtain …

𝑒
𝑛𝐹
𝑅𝑇(𝑬𝒆𝒒−𝐸0′

) =
𝐶𝑂𝑥

∗

𝐶𝑅𝑒𝑑
∗ 𝜼 = 𝐸 − 𝐸𝑒𝑞

By dividing i/i0 and recalling the Nernst equation and the definition of overpotential (η) …



The current – overpotential relationship

𝒊 = 𝒊𝟎[
𝐶𝑂𝑥 0, 𝑡

𝐶𝑂𝑥
∗ 𝑒−𝜶

𝑛𝐹
𝑅𝑇

𝜼 −
𝐶𝑅𝑒𝑑 0, 𝑡

𝐶𝑅𝑒𝑑
∗ 𝑒 𝟏−𝜶

𝑛𝐹
𝑅𝑇

𝜼]

Current-overpotential equation

Cathodic component 
current (ic)

Anodic component 
current (ia)

Exercise: derive the i (η) equation

Current is a function of the potential and the amount of reagent available at the 
electrode surface with respect to its bulk concentration



𝒊 = 𝒊𝟎[
𝐶𝑂𝑥 0, 𝑡

𝐶𝑂𝑥
∗ 𝑒−𝜶

𝑛𝐹
𝑅𝑇

𝜼 −
𝐶𝑅𝑒𝑑 0, 𝑡

𝐶𝑅𝑒𝑑
∗ 𝑒 𝟏−𝜶

𝑛𝐹
𝑅𝑇

𝜼]

The current – overpotential relationship

Bard & Faulkner, 2nd Ed., Wiley, 2001 

α = 0.5 

η = 0 (E = Eeq)

i = i0

Low η region
predominant exponential terms 

• i extremely sensitive to E changes 
• ic and ia components are not negligible



The current – overpotential relationship

Bard & Faulkner, 2nd Ed., Wiley, 2001 

α = 0.5 

large η (negative) 

i ≈ ic 
ia ≈ 0 

large η (positive) 

i ≈ ia 
ic ≈ 0 

Large η region
the exponential terms are moderated 
by the concentration factors

𝒊 = 𝒊𝟎[
𝐶𝑂𝑥 0, 𝑡

𝐶𝑂𝑥
∗ 𝑒−𝜶

𝑛𝐹
𝑅𝑇

𝜼 −
𝐶𝑅𝑒𝑑 0, 𝑡

𝐶𝑅𝑒𝑑
∗ 𝑒 𝟏−𝜶

𝑛𝐹
𝑅𝑇

𝜼] Mass transfer-
limited current (iL)

i is limited by mass transport of the reagent at 
the electrode surface (limiting iL plateau)



Approximate i-η equation: negligible mass transfer effects

𝒊 = 𝒊𝟎[𝑒−𝜶
𝑛𝐹
𝑅𝑇

𝜼 − 𝑒 𝟏−𝜶
𝑛𝐹
𝑅𝑇

𝜼]

No mass transfer 
(stirred solution and/or 

very low current )

𝐶𝑂𝑥/𝑅𝑒𝑑 ≈ 𝐶𝑂𝑥/𝑅𝑒𝑑
∗

• Exponential curves 
• No limiting current 
• Charge-transfer control (kinetics of the 

heterogeneous electron transfer is the only 
contribution to the overpotential at a given 
current)

η

i Simplified Butler-Volmer equation



The effect of the exchange current

𝒊 = 𝒊𝟎[𝑒−𝜶
𝑛𝐹
𝑅𝑇

𝜼 − 𝑒 𝟏−𝜶
𝑛𝐹
𝑅𝑇

𝜼]

Bard & Faulkner, 2nd Ed., Wiley, 2001 

α = 0.5 

j0 = 10-9 A/cm2

j0 = 10-6 A/cm2

j0 = 10-3 A/cm2

Large currents with very small η
(very high k0)

Large activation η
(very low k0)



𝒊 = 𝒊𝟎[𝑒−𝜶
𝑛𝐹
𝑅𝑇

𝜼 − 𝑒 𝟏−𝜶
𝑛𝐹
𝑅𝑇

𝜼]

The effect of the symmetry factor

Bard & Faulkner, 2nd Ed., Wiley, 2001 

j0 = 10-6 A/cm2

• For α = 0.5, the anodic and cathodic 
curves are symmetrical 

• For α ≠ 0.5, the anodic and cathodic 
curves do not have the same steepness  

α = 0.5

α = 0.25

α = 0.75



𝒊 = 𝒊𝟎[𝑒−𝜶
𝑛𝐹
𝑅𝑇

𝜼 − 𝑒 𝟏−𝜶
𝑛𝐹
𝑅𝑇

𝜼]

Limiting case: The low overpotential region

For low η values 𝑒𝑥 ≈ 1 + 𝑥

𝒊 = −𝒊𝟎

𝑛𝐹

𝑅𝑇
𝜼

• Linear relationship between i and η in a small potential range near  Eeq (< 100 mV)
• According to the Ohm’s law, the –η/i ratio has units of resistance (i.e. the negative slope 

of the i-η curve) and is called as charge-transfer resistance:   

𝑅𝑐𝑡 = −
𝜼

𝒊
=

𝑅𝑇

𝑛𝐹𝒊𝟎
Rct → 0     for i0 (k0) → ∞  



𝑖 = 𝑖0 𝑒−𝛼
𝑛𝐹
𝑅𝑇

𝜂 − 𝑒 1−𝛼
𝑛𝐹
𝑅𝑇

𝜂 ≈ 𝑖0 𝑒−𝛼
𝑛𝐹
𝑅𝑇

𝜂

Limiting case: The high overpotential regions

For η << 0: 
(cathodic) 

𝑙𝑛 𝑖 = 𝑙𝑛 𝑖0 − 𝛼
𝑛𝐹

𝑅𝑇
𝜂 𝜼 =

𝑅𝑇

𝛼𝑛𝐹
𝑙𝑛 𝑖0 −

𝑅𝑇

𝛼𝑛𝐹
𝒍𝒏 𝒊

𝜼 =
2.3𝑅𝑇

𝛼𝑛𝐹
𝑙𝑜𝑔 𝑖0 −

2.3𝑅𝑇

𝛼𝑛𝐹
𝒍𝒐𝒈 𝒊

𝜼 = 𝒂 + 𝒃 𝒍𝒐𝒈 𝒊

Tafel equation
(empirical) 

𝒂 =
2.3𝑅𝑇

𝛼𝑛𝐹
𝑙𝑜𝑔 𝑖0 𝒃 = −

2.3𝑅𝑇

𝛼𝑛𝐹J. Tafel (1862-1918)



The Tafel plots

Cathodic branch

(linear) 

Anodic branch

(linear) 

Bard & Faulkner, 2nd Ed., Wiley, 2001 

j0 = 10-6 A/cm2

α = 0.5
n = 1

Deviation from linearity 

(in low η region, contribution 

from backward reaction is not 

negligible)

Log |i| vs. η plots 
• α (from the slope) and i0 (from 

the intercept) can be 
experimentally obtained 

• Symmetrical branches for α = 0.5

• Linear region of the Tafel plots 
takes place at large η



The Tafel plots: some considerations 

• Linear Tafel relations require a negligible i contribution (less than 1%) of the backward 
reaction (i.e. anodic) (large η): 

𝑒(1−𝛼)
𝑛𝐹
𝑅𝑇

𝜂

𝑒−𝛼
𝑛𝐹
𝑅𝑇𝜂

= 𝑒
𝑛𝐹
𝑅𝑇𝜂 ≤ 0.01 |η| > 118 mV   (n=1, T=298 K)

• Negative deviations from linearity are experimentally observed for very large η, due to 
mass transfer limitations 

• Linear Tafel plots require the absence of mass-transfer effects on current

• Good Tafel plots are usually obtained for totally irreversible electrode kinetics (sluggish 
ET kinetics, large activation η)



Fast electron transfer kinetics (reversible systems)

very large i0 (k0) 𝑖

𝑖0
→ 0

𝑖

𝑖0
= [

𝐶𝑂𝑥 0, 𝑡

𝐶𝑂𝑥
∗ 𝑒−𝛼

𝑛𝐹
𝑅𝑇

𝜂 −
𝐶𝑅𝑒𝑑 0, 𝑡

𝐶𝑅𝑒𝑑
∗ 𝑒 1−𝛼

𝑛𝐹
𝑅𝑇

𝜂]

𝐶𝑂𝑥 0, 𝑡

𝐶𝑅𝑒𝑑 0, 𝑡
=

𝐶𝑂𝑥
∗

𝐶𝑅𝑒𝑑
∗ 𝑒𝛼

𝑛𝐹
𝑅𝑇𝜂𝑒 1−𝛼

𝑛𝐹
𝑅𝑇𝜂

substitution

𝑒
𝑛𝐹
𝑅𝑇(𝐸𝑒𝑞−𝐸0′

) =
𝐶𝑂𝑥

∗

𝐶𝑅𝑒𝑑
∗

Nernst equation

𝐶𝑂𝑥 0, 𝑡

𝐶𝑅𝑒𝑑 0, 𝑡
= 𝑒𝛼

𝑛𝐹
𝑅𝑇(𝑬−𝑬𝟎′

)

𝑬 = 𝐸0′
+

𝑅𝑇

𝑛𝐹
𝑙𝑛

𝐶𝑂𝑥 0, 𝑡

𝐶𝑅𝑒𝑑 0, 𝑡

Nernst-type Equation  

• Does not depend on kinetic parameters (ET kinetics 
too fast)

• Reversible or nernstian electrochemical systems 
(charge-transfer interface always at equilibrium)

Electrode potential Surface Ox/Red concentration
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