# The overpotential $(\eta)$

**Overpotential (** $\eta$ **):** deviation from the equilibrium potential (thermodynamic) required to drive a reaction at a certain rate (faradaic current density)



L. Chen et al., Energy Environ. Sci., 2014, 7, 329–334

$$\boldsymbol{\eta} = E - E_{eq}$$

- It is an indicator of the **efficiency** of an electrochemical system (the energetic cost required to drive a reaction at a certain rate)
- The rate constant for a heterogeneous electron transfer process is dependent on the applied potential

# The origin of the overpotential



#### Transition state theory



#### Arrhenius equation

$$k = Ae^{-E_a/RT}$$

*Pre-exponential factor* (*frequency* or collision factor ) Activation energy (energy barrier)

Eyring-Polanyi equation

$$k = \kappa \frac{\aleph_B T}{h} e^{-\Delta G^{\neq}/RT}$$

- Analogous description of the energetic pathway on an electrode reaction through a reaction coordinate
- The energetics of electrode processes are dependent on the applied potential



- Analogous description of the energetic pathway on an electrode reaction through a reaction coordinate
- The energetics of electrode processes are dependent on the applied potential



- Analogous description of the energetic pathway on an electrode reaction through a reaction coordinate
- The energetics of electrode processes are dependent on the applied potential



#### **Kinetics of electrode reactions**



#### Kinetics of electrode reactions



**Reaction coordinate** 



#### *Reaction coordinate*

$$\Delta G_c^{\neq} = \Delta G_{0,c}^{\neq} + \alpha n F(E - E^{0'}) \qquad \Delta G_a^{\neq} = \Delta G_{0,a}^{\neq} - (1 - \alpha) n F(E - E^{0'})$$

$$k_{Red} = A_{Red} \exp\left(-\frac{\Delta G_c^{\neq}}{RT}\right) = A_{Red} \exp\left(-\frac{\Delta G_{0,c}}{RT}\right) \exp\left[-\alpha \frac{nF}{RT}(E - E^{0'})\right]$$
$$k_{Ox} = A_{Ox} \exp\left(-\frac{\Delta G_a^{\neq}}{RT}\right) = A_{Ox} \exp\left(-\frac{\Delta G_{0,a}}{RT}\right) \exp\left[(1 - \alpha)\frac{nF}{RT}(E - E^{0'})\right]$$

Potential-independentPotential-dependent

At equilibrium with  $C_{Ox}^{*} = C_{Red}^{*}$ (E = E<sup>0</sup>')

k,

(C\* = bulk concentration)

#### Electrode kinetics: The Butler-Volmer equation

$$k_{Red} = \mathbf{k}^{\mathbf{0}} \exp\left[-\alpha \frac{nF}{RT}(E - E^{\mathbf{0}'})\right]$$
$$k_{Ox} = \mathbf{k}^{\mathbf{0}} \exp\left[(\mathbf{1} - \alpha) \frac{nF}{RT}(E - E^{\mathbf{0}'})\right]$$

Recalling ...

$$\mathbf{i} = i_c - i_a = nFA \left[ k_{Red} \cdot C_{Ox}(0, t) - k_{Ox} \cdot C_{Red}(0, t) \right]$$

we obtain ...

$$\mathbf{i} = nFAk^{0} [C_{Ox}(0,t)e^{-\alpha \frac{nF}{RT}(E-E^{0'})} - C_{Red}(0,t)e^{(1-\alpha)\frac{nF}{RT}(E-E^{0'})}]$$

#### **Butler-Volmer equation** (current-potential)

# Electrode kinetics: The Butler-Volmer equation







Max Volmer's paper published in 1930

Zur Theorie der Wasserstoffüberspannung.

Von T. Erdey-Grúz und M. Volmer. (Mit 3 Figuren im Text.) (Eingegangen am 31. 7. 30.)

Betrachtungen über die Ursache der Überspannung. — Kinetische Theorie der elektrolytischen Wasserstoffentwicklung und Erklärung der TAFELschen Gleichung. — Das Abklingen der Überspannung.

Um Wasserstoff an einer Metallelektrode zu entwickeln, benötigt man bekanntlich ein unter Umständen viel negativeres Elektroden-

M. Volmer (1885–1965)

# The Standard Rate Constant (k<sup>0</sup>)

- Measures the **intrinsic kinetics of heterogeneous electron transfer** of a redox couple (intrinsic ability of a redox couple to exchange electrons with the electrode)
- Large k<sup>0</sup> indicate fast heterogeneous electron transfer (short timescale, k<sup>0</sup> ≈ 1-10 cm/s), usually observed for redox processes that do not involve significant molecular reorganization (only e<sup>-</sup> transfer + resolvation, e.g. aromatic hydrocarbons)
- Small k<sup>0</sup> indicate sluggish heterogeneous electron transfer (k<sup>0</sup> < 10<sup>-9</sup>-10<sup>-11</sup> cm/s), typically being accompanied by significant molecular rearrangement and/or involving complicated mechanisms (multistep, e.g. ORR, HER)
- Extreme variability in the *k*<sup>0</sup> range
- Even for systems with small k<sup>0</sup>, the electrode reaction kinetics (k<sub>Ox</sub>, k<sub>Red</sub>) can be increased by applying E >> E<sup>0</sup> or E << E<sup>0</sup> !!!

what's the extent of the potential effect on electrode reaction kinetics??

# The transfer coefficient ( $\alpha$ )

- Measures the symmetry of the energetic barrier for a redox process ( $0 \le \alpha \le 1$ )
- It can be obtained experimentally and is generally considered equal to 0.5
- $\alpha = 0.5$  for a symmetrical barrier,  $\alpha \neq 0.5$  for asymmetrical barriers (angles  $\vartheta$  and  $\varphi$ )
- Dissects the effect of change in potential on the barriers to the cathodic  $(\Delta G_c^{\neq})$  and anodic reaction  $(\Delta G_a^{\neq})$



# Verification of the Butler-Volmer model: the equilibrium

Equilibrium: 
$$i = 0$$
  $i_{c} = i_{a}$   $E = E_{eq}$   
 $0 = nFAk^{0} [C_{Ox}(0,t)e^{-\alpha \frac{nF}{RT}(E_{eq}-E^{0'})} - C_{Red}(0,t)e^{(1-\alpha) \frac{nF}{RT}(E_{eq}-E^{0'})}]$   
 $nFAk^{0} C_{Ox}(0,t)e^{-\alpha \frac{nF}{RT}(E_{eq}-E^{0'})} = nFAk^{0} C_{Red}(0,t)e^{(1-\alpha) \frac{nF}{RT}(E_{eq}-E^{0'})}$   
 $= C_{Ox}^{*}$   $= C_{Red}^{*}$   
 $e^{\frac{nF}{RT}(E_{eq}-E^{0'})} = \frac{C_{Ox}^{*}}{C_{Red}^{*}}$   $E_{eq} = E^{0'} + \frac{RT}{nF}ln\left(\frac{C_{Ox}^{*}}{C_{Red}^{*}}\right)$   
Nernst Equation

The exchange current  $(i_0)$ 

Equilibrium:
$$\mathbf{i} = \mathbf{0}$$
 $\mathbf{i}_{c} = \mathbf{i}_{a} = \mathbf{i}_{0}$  $E = E_{eq}$  $\mathbf{i}_{0} = nFAk^{0}C_{0x}^{*}e^{-\alpha \frac{nF}{RT}(E_{eq}-E^{0'})}$  $substitution$  $e^{\frac{nF}{RT}(E_{eq}-E^{0'})} = \frac{C_{0x}^{*}}{C_{Red}^{*}}$  $e^{levate to -\alpha}$  $e^{-\alpha \frac{nF}{RT}(E_{eq}-E^{0'})} = \left(\frac{C_{0x}^{*}}{C_{Red}^{*}}\right)^{-\alpha}$ Exchange current  
(bidirectional) $\mathbf{i}_{0} = nFAk^{0}C_{0x}^{*} \stackrel{(1-\alpha)}{C_{Red}^{*}} C_{Red}^{*}$  $\mathbf{i}_{0} \propto \mathbf{k}^{0}$  $\mathbf{j}_{0} = \frac{\mathbf{i}_{0}}{A}$ Exchange current density $\mathbf{k}_{0}$ 

*Exercise: derive the*  $i_0$  *equation from*  $i_a$  *instead of*  $i_c$ 

$$i = nFAk^{0} [C_{Ox}(0,t)e^{-\alpha \frac{nF}{RT}(E-E^{0'})} - C_{Red}(0,t)e^{(1-\alpha) \frac{nF}{RT}(E-E^{0'})}]$$
Butler-Volmer
Exchange current
$$-i_{0} = nFAk^{0}C_{Ox}^{*} (1-\alpha)C_{Red}^{*} \alpha$$

By dividing  $i/i_0$  and recalling the Nernst equation and the definition of **overpotential** ( $\eta$ ) ...

$$e^{\frac{nF}{RT}(E_{eq}-E^{0'})} = \frac{C_{Ox}^*}{C_{Red}^*} \qquad \qquad \eta = E - E_{eq}$$

#### **Current-overpotential equation**



*Current* is a function of the *potential* and the *amount of reagent available* at the electrode surface with respect to its bulk concentration

Exercise: derive the *i* (*η*) equation





# Approximate *i-η* equation: negligible mass transfer effects



$$C_{Ox/Red} \approx C^*_{Ox/Red}$$

$$\mathbf{i} = \mathbf{i}_0 \left[ e^{-\alpha \frac{nF}{RT} \eta} - e^{(1-\alpha) \frac{nF}{RT} \eta} \right]$$

#### Simplified Butler-Volmer equation

- Exponential curves
- No limiting current
- Charge-transfer control (kinetics of the heterogeneous electron transfer is the only contribution to the overpotential at a given current)

#### The effect of the exchange current



#### The effect of the symmetry factor

$$\mathbf{i} = \mathbf{i}_{\mathbf{0}} \left[ e^{-\alpha \frac{nF}{RT} \eta} - e^{(\mathbf{1} - \alpha) \frac{nF}{RT} \eta} \right]$$



### Limiting case: The low overpotential region

$$i = i_0 \left[ e^{-\alpha \frac{nF}{RT} \eta} - e^{(1-\alpha) \frac{nF}{RT} \eta} \right]$$
  
For low  $\eta$  values  $e^x \approx 1 + x$   
 $i = -i_0 \left( \frac{nF}{RT} \eta \right)$ 

- Linear relationship between i and η in a small potential range near E<sub>eq</sub> (< 100 mV)</li>
- According to the Ohm's law, the –η/i ratio has units of resistance (i.e. the negative slope of the *i*-η curve) and is called as charge-transfer resistance:

$$R_{ct} = -\frac{\eta}{i} = \left(\frac{RT}{nFi_0}\right)$$

$$R_{ct} \rightarrow 0$$
 for  $i_0 (k^0) \rightarrow \infty$ 

# Limiting case: The high overpotential regions

**For η << 0:** (cathodic)



J. Tafel (1862-1918)

# The Tafel plots



 α (from the slope) and i<sub>0</sub> (from the intercept) can be experimentally obtained

- Symmetrical branches for  $\alpha = 0.5$
- Linear region of the Tafel plots takes place at large η

Deviation from linearity (in low η region, contribution from backward reaction is not negligible)

Bard & Faulkner, 2<sup>nd</sup> Ed., Wiley, 2001

# The Tafel plots: some considerations

Linear Tafel relations require a negligible *i* contribution (less than 1%) of the backward reaction (i.e. anodic) (large η):

$$\frac{e^{(1-\alpha)\frac{nF}{RT}\eta}}{e^{-\alpha\frac{nF}{RT}\eta}} = e^{\frac{nF}{RT}\eta} \le 0.01 \qquad |\eta| > 118 \, \text{mV} \ (n=1, T=298 \, \text{K})$$

- Linear Tafel plots require the **absence of mass-transfer effects** on current
- Negative deviations from linearity are experimentally observed for very large η, due to mass transfer limitations
- Good Tafel plots are usually obtained for totally irreversible electrode kinetics (sluggish ET kinetics, large activation η)

# Fast electron transfer kinetics (reversible systems)

(charge-transfer interface always at equilibrium)

Nernst-type Equation