Advanced

Electrophysiology

Lesson 3
26 March 2025

Patch-clamp recordings



Calendar

Th 27 March (14:00-18:00): Acute brain slice preparation (Room 309, Building Q)
W 2 April (14:00-16:00): Data analysis project (ex-Cla; Bring a laptop!)
Th 3 April (14:00-18:00): Patch-clamp (group 1; Room 309, Building Q)
Th 10 April (14:00-18:00): Patch-clamp (group 2; Room 309, Building Q)

Th 17 April (14:00-18:00): Patch-clamp (group 3; Room 309, Building Q)



Patch-clamp recordings

Learning objective:

To understand why patch-clamp recordings are so important

for neuroscience investigations
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The ‘inventors’ of the patch-clamp

Erwin Neher Bert Sakmann

Nobel Prize in Physiology or

edicine ‘
e 122 My A

"for their discoveries concerning the

function of single ion channel in cells"

Inventors of the patch-clamp technique which for the first time allowed

for direct recording of the current flowing through a single ion channels



‘Pre-patch-clamp’ single cell electrophysiology

The first AP recording

From 1939 to 1952, with a 5-year break due to the war, Hodgkin
and Huxley, exploiting the work of Young (who found the best way
to insert electrodes into the squid axon), gave an elegant and (still)
correct explanation of the AP without ever mentioning the word
channel. The concept of channel gained acceptance from the early
1970s thanks to the development of the patch-clamp technique

(Neher and Sackman).
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‘Pre-patch-clamp’ single cell electrophysiology

Much of the pioneering research on quantal
synaptic transmission was conducted in the
frog neuromuscular junction by Bernard Katz

and collaborators at UCL in the 1950-1960s .

Synaptic transmission either does not occur
or if it does occur it does so as a multiple of

an indivisible basic unit (the quantum)

Synaptic strength=N * P .* q

N = number of release sites

P. = release probability

g = quantal size (amplitude of 1
quantum, i.e. of 1 mEPP)
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Sharp microelectrodes

Much of the pioneering research on quantal
synaptic transmission was conducted in the
frog neuromuscular junction by Bernard Katz

and collaborators at UCL in the 1950-1960s .

Neuromuscular junction: highly specialized
synapse that convey a potent electrical
signal to a very large post- synaptic cell.

The size of the end-plate current typically

reaches 100 nA, roughly 3 to 4 orders of

magnitude larger than synaptic currents at

small central mammalian synapses




Sharp microelectrodes vs. patch-clamp electrodes
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Noise High Low
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Patch-clamp methods
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Perforated-patch configuration
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Loose-patch and cell-attached configuration

In common: extracellular recordings of single cell activity

Differences: loose vs. tight contact
of a glass micropipette onto the cell membrane
(R...;= MQvs. GQ)

seal =

Loose-patch pro: less invasive
Cell-attached pro: more sensitive

For both configurations:
» Pros: easy (high success rate),
no wash-out of ions and metabolites

» Cons: no controlonV,

no possibility to use intracellular drugs

Both are suitable for the recording of action potentials from single neurons
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Whole-cell patch-clamp

Rupture of the membrane under the pipette without rupture of the 1) Cell-attached
giga-seal to obtain chemical and electrical access to the cell
» Pros: - control onV, (voltage-clamp) or current (current-clamp)

- possibility to use intracellular drugs

Gigaseal
» Cons: - relatively skill-demanding
- invasive (wash-out of ions and metabolites)
_ ) _ Suction
» In current-clamp configuration suitable Zap

for recording of APs and synaptic
potentials (E/IPSPs)
» In voltage-clamp configuration suitable

for recording macroscopic currents

(voltage-gated or synaptic; e.g. E/IPSCs),

Cytoplasm is continuous
but generally not suitable for with pipette interior

2) Whole-cell

single-channel recordings
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» Single channel recordings

» Fast application of drugs (e.g. to study activation

and inactivation kinetics of channels)
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Outside-out nucleated patches

» Pro: Perfect space-clamp (space-clamp is
poor in the whole-cell configuration for a
neuron with a complex dendritic tree)

% » Con: Lost connectivity
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Cell-attached
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Current-clamp vs. voltage-clamp

In current-clamp, one applies a known constant or time-varying current and measures the
change in V _ caused by the applied current. This type of experiment is ‘more physiological’

because it mimics the currents produced by synaptic inputs.



Current-clamp vs. voltage-clamp

In voltage-clamp, one holds constant (= clamps) V., and measures ion channel currents.
Although voltage-clamp does not mimic a process found in nature, there are 3 reasons to

do such an experiment:

1) Usually, one has no interest in membrane currents per se but in the activity of a
(homogeneous) group of ion channels (Conductance (G,,.,,) = humber of open ion

channel (N,,.,) times their single channel conductance (G;)).

open

By holding V,, (i.e. the driving-force) constant, one ensures that G,,,, is proportional to

the recorded macroscopic current (i, ... We measure it (for each V_)
T X
l
= macro Ohm’s (first) law
Gmacm (Vm — Erev) ( ( ) )

We hold it constant (or we
change it step-wise as we please)

We estimate it using the Nernst
equation and/or we empirically
determine it



Current-clamp vs. voltage-clamp

Classical AMPAR currents

1l
GluA2 GluAl G = slope of the linear
V (mV (= ohmic) I/V plot
60 -40-20" | 20 40 6
+++++++++ +++++++++
Linear
|-V curve
We measure it (for each V, )
B x
— l macro ’ B
G acro = V. —Erev (Ohm'’s (first) law)

/ \

We hold it constant (or we
change it step-wise as we please)

We estimate it using the Nernst
equation and/or we empirically
determine it



Current-clamp vs. voltage-clamp

In voltage-clamp, one holds constant (= clamps) V., and measures ion channel currents.
Although voltage-clamp does not mimic a process found in nature, there are 3 reasons to

do such an experiment:

2) If the gating of the channel is voltage-dependent (i.e. G; itself depends on V),
voltage-clamp offers control over a key variable that determines opening and closing

of the ion channel.

L macro (Ohm’s BXst) law)
m — Erev)




Current-clamp vs. voltage-clamp

GluA2-lacking AMPAR currents

The I/V plot is not linear
-> G. is voltage-dependent

GluAl GluAl
 f V (mV)
‘ —60-40-20"| 20 40 60
+++++++++Q +++++++++ i
Inward
rectification

Spermine ‘

(Ohm’s BXst) law)



Current-clamp vs. voltage-clamp

In voltage-clamp, one holds constant (= clamps) V., and measures ion channel currents.
Although voltage-clamp does not mimic a process found in nature, there are 3 reasons to

do such an experiment:

3) Clamping V,, eliminates the capacitive current, except for a brief time following a

step to a new voltage.

. dv
ir()=C d_l:n




Voltage-clamp configuration

In voltage-clamp, one holds constant (= clamps) V,, and ‘measures ion channel currents’.

How?

The voltage-clamp circuit is a negative feedback device designed to monitor V_, and inject

current into the cell to hold V_, constant ‘ The amplifier ‘knows’ the ion channel currents

by the current it needs to inject to keep Vm constant!!!

In the whole-cell patch-clamp configuration, one single pipette is used to simultaneously

monitor V. and inject current!!!!

Patch
pipette




Voltage-clamp configuration

Problem of using one single pipette to

simultaneously monitor V_ and inject current: V

is recorded by the amplifier at the top of the

pipette (V, rather than V,,); this is the sum of V_

(which we wish to control) and the AV drop

across the pipette resistance (AV =i Ry).

To avoid introducing voltage errors:

1)

2)

R, must be as small as possible (<20 MQ, this
is possible only with patch-clamp
electrodes!!!); R, must also be as constant as
possible;

Recorded currents must be as small as
possible (tens of pA range): the amplifier
does not measure directly ion channel
currents but the current it needs to inject to

keep V,, constant!!!)

V.=V_ +iR,

AV =i R

patch pipet

cell




The formation of a giga-seal

10 mVv
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3) Clamping V,_ eliminates the capacitive
current, except for a brief time following
a step to a new voltage.




Voltage-clamp configuration

3) Clamping V,_ eliminates the capacitive
current, except for a brief time following
a step to a new voltage.
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Learning objectives

. To know the major differences between sharp and patch-clamp electrodes
. To know the major patch-clamp configurations and what they are good for
. To understand the differences between current-clamp and voltage-clamp

. To understand advantages (and limitations) of the whole-cell voltage clamp

configuration
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