
Example 1:  

We define the treatment and the outcome as follows: 

Treatment : getting a dog W=1, not getting a dog W=0 

Outcome :  severe depression symptoms Y=1, mild depression symptoms Y=0 measured after the 

treatment assignment W 

For the depression/dog example, a potential confounder is the severity of depression symptoms 

(denoted by X) before treatment assignment.  

It is reasonable to believe that individuals with severe symptoms of depression pretreatment (X=1) 

are more likely to adopt a dog (W=1) than people with mild symptoms of depression (X=0).  

Furthermore, individuals with severe symptoms of depression before the treatment assignment 

(X=1) are more likely to have severe symptoms of depression after the treatment assignment Y, than 

individuals with mild symptoms of depression (X=0).  

RCTs are the gold standard study design used to estimate causal effects. To assess the causal effect 

on survival of getting a new drug compared to a placebo, we could randomize half of the patients 

enrolled in our study.  

Half would receive the dog (W=1), and the other half would not receive the dog (W=0).  

Randomization is particularly important to establish the efficacy and safety of drugs (new and 

existing). This is because randomizing patients eliminates systematic differences between treated 

and untreated observations. In other words, randomization ensures that these two sets of 

observations are as similar as possible with respect to all potential confounders, regardless of 

whether we measure these potential confounders, and are identical on average. If the distribution 

over the measured and unmeasured confounders are the same in the two groups, then we can use 

the treated observations to infer what would have happened to the untreated observations. 

Unfortunately, randomization is often not possible, either because there are ethical conflicts or 

because it is challenging to implement.  

In the latter case, the most constraining factors are the time and monetary expense of data 

collection. Additional limitations of randomization include inclusion criteria that are too strict and 

cannot study large and representative populations. Moreover, inclusion criteria usually focus on 

simplified interventions (e.g., randomization to a drug versus placebo) that do not mirror the 

complexity of real-world decision-making. While the credibility (internal validity) and ability to 

advance scientific discovery of RCTs is well accepted, there are large classes of interventions and 

causal questions for which results that have a causal interpretation can only be gathered from 

observational data. 

Let’s now assume that in an observational study we compare two samples: one that adopts a dog 

(W=1) (exposed) and one that does not (W=0) (unexposed).  

 

 



Then within each of these two populations, we calculate the rate of experiencing severe symptoms 

of depression Y=1:  

 W=0 W=1 Tot 

Y=1 780 830 1610 

Y=0 220 170 390 

Tot  1000 1000 2000 

  

We found that adopting a dog appears to make the symptoms of depression worse: if you have a 

dog you are 5% more likely (83% versus 78%) to experience severe symptoms of depression: 

𝑃(𝑌 = 1|𝑊 = 0) = 78% <  𝑃(𝑌 = 1|𝑊 = 1) = 83% 

Should we advise people not to own dogs? The problem with this analysis is that we ignore the fact 

that the subjects might be different in ways that would bias the conclusions.  

As mentioned before, a key potential confounder is the degree of severity of their depression 

symptoms before they were “assigned” the treatment (X).  

For example, let’s stratify the two populations (treated and untreated) based on whether they 

experience severe or milder depression symptoms of (X=1 versus X=0) before treatment 

assignment: 

X  Y W=0 W=1 Tot 

 
X=1 

Y=1 231 670 901 

Y=0 18 102 120 

Tot  249 772 1021 

 
X=0 

Y=1 549 160 709 

Y=0 202 68 270 

Tot  751 228 979 

Total  1000 1000 2000 

 

𝑃(𝑌 = 1|𝑋 = 1 , 𝑊 = 0) = 93% >   𝑃(𝑌 = 1|𝑋 = 1, 𝑊 = 1) = 87% 

𝑃(𝑌 = 1|𝑋 = 0 , 𝑊 = 0) = 73% >   𝑃(𝑌 = 1|𝑋 = 0, 𝑊 = 1) = 70% 

We find that within these two population strata, adopting a dog reduces the rate of experiencing 

severe symptoms of depression. This is an example of what is known as Simpson’s paradox. Here 

the paradox occurs because people with severe depression symptoms before treatment assignment 

are more likely to adopt a dog. The solution that we applied corresponds to calculate a “CATE”, i.e. 

a conditional average treatment effect, conditioning on the baseline depression level. [But how to 

estimate an ATE in this kind of situations? See the next example]. If we define:  

𝑒𝑖 = 𝑃(𝑊𝑖|𝑋𝑖) 

as the propensity of adopting a dog conditional to the level of depression symptoms pretreatment 

assignment, then in this example: 

𝑃(𝑊𝑖 = 1 |𝑋𝑖 = 1) =
772

772 + 249
= 0.76 



is higher than: 

𝑃(𝑊𝑖 = 1 |𝑋𝑖 = 0) =
228

228 + 751
= 0.23 

 

In other words, the assignment to treatment, who gets a dog and who does not, is not completely 

random, as in an RCT.  It is influenced by the pre-existing level of depression of the study subjects. 

Situations like these are very common in observational studies!!! We will see in Block 3 how to 

generalize the estimate of the propensity according to multiple confounders.  

Example 2:  

Imagine that first we observe mortality rates among subjects who received treatment A versus 

treatment B in an observational study without measuring their baseline condition:  

 Death Alive  Tot 

Treat A 240 1260 1500 

Treat B  105 445 550 

Tot  345 1705 2050 

 

From these data:  

𝑃(𝐷𝑒𝑎𝑡ℎ|𝐴) = 16% <  𝑃(𝐷𝑒𝑎𝑡ℎ|𝐵) = 19% 

Treatment A seems better than Treatment B.  

Let’s now stratify subjects based on their baseline condition before treatment assignment: 

Condition Death A B Tot 

 
Mild 

Yes 210 5 215 

No 1190 45 1235 

Tot  1400 50 1450 

 
Severe 

Yes 30 100 130 

No 70 400 470 

Tot  100 500 600 

Total  1500 550 2050 

 

Now, if we compute the probability of death under Treatment A and B as follows: 

∑ 𝑃(𝐷|𝐴, 𝑐

𝐶

) ∗ 𝑷(𝑪 = 𝒄|𝑨) =
210

1400
∗

1400

1500
+

30

100
∗

100

1500
= 0.16 

  

∑ 𝑃(𝐷|𝐵, 𝑐

𝐶

) ∗ 𝑷(𝑪 = 𝒄|𝑩) =
5

50
∗

50

550
+

100

500
∗

500

550
= 0.19 

We obtain exactly the initial estimate: this is a naïve approach since we are not considering here 

that the probability of mild and severe conditions is distributed differently between the two 



treatments. This is equivalent to the first computation, when we ignored the fact that there was a 

very different distribution of the baseline condition. But, the vast majority of subjects in Treatment 

A are in a Mild condition, and viceversa for treatment B. The baseline condition is therefore 

associated both to the treatment received and to the final outcome.  

Note that the CATE here is: 

𝑃(𝐷|𝑚𝑖𝑙𝑑 , 𝐴) = 15% >   𝑃(𝐷|𝑚𝑖𝑙𝑑, 𝐵) = 10% 

𝑃(𝐷|𝑠𝑒𝑣𝑒𝑟𝑒 , 𝐴) = 30% >   𝑃(𝐷|𝑠𝑒𝑣𝑒𝑟𝑒, 𝐵) = 20% 

 

So, the direction of the effect is always indicating that B is better than A when conditioning on the 

baseline condition.  How can we recover ATE that is coherent with this finding?  

To taking into account this problem, we could adopt the following approach:  

∑ 𝑃(𝐷|𝐴, 𝑐

𝐶

) ∗ 𝑷(𝑪 = 𝒄) =
210

1400
∗

1450

2050
+

30

100
∗

600

2050
= 0.194 

This represents the effect of Treatment A if we had treated all the Mild subjects in the population 

and all the Severe subjects (all in the population treated with A).  

∑ 𝑃(𝐷|𝐵, 𝑐

𝐶

) ∗ 𝑷(𝑪 = 𝒄) =
5

50
∗

1450

2050
+

100

500
∗

600

2050
= 0.129 

This represents the effect of Treatment B if we had treated all the Mild subjects in the population 

and all the Severe subjects (all in the population treated with B).  

In other words, in this way we weight each treatment effect as if all subjects in the population were 

treated versus all were untreated [and we standardize the effect to the overall observed distribution 

of the confounder in the population].  

This approach is known in causal inference literature as the G-formula*.  

This example is a non-parametric approach to estimate the ATE effect; then it is also possible to use 

regression models (i.e. a parametric approach) to obtain this kind of estimate. Note that ATE is a 

marginal causal effect.  

*It is among a broad class of so-called “g methods” (where the “g” stands for “generalized”) 

developed by James Robins, with deep roots in causal inference research and is widely used in 

biostatistics, epidemiology, and medical sciences to assess time-varying treatment effects in 

longitudinal data; see, e.g., Hernán and Robins (2020, Part III) and Naimi et al. (2016) for 

introductions to g-methods. 

Hernán, M. A., & Robins, J. M. (2023). Causal inference: What if. Chapman & Hall - CRC. 

Naimi, A. I., Cole, S. R., & Kennedy, E. H. (2016). An introduction to g methods. International Journal 

of Epidemiology, 46 (2), 756–762. https://doi.org/10.1093/ije/dyw323 

 


