The Hydroformylation Reaction
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It is a three component reaction: three bonds are cleaved and three
bonds are formed;

It consists in the addition of CO and H, to a C-C double bond, moving
from an alkene to an aldehyde with one carbon atom more than the
starting alkene;

The CO/H,, mixture is called syngas (or synthesis gas);

It was introduced by Otto Roelen in 1938 and it is known as oxo-
synthesis, today is a large scale industrial process, dominated by the
conversion of propene to n-butanal; in 2008 the worlwide production
of aldehydes was about 10.4 milions of metric tons.

The catalysts are based on organometallic complexes of Co or Rh.



Selectivity in hydroformylation reactions
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Products obtained from aldehydes
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Historical Evolution of industrial
processes for hydroformylation

1950’s HCo(CO)x catalysts; Oxo-alcohols
1960’s Shell-catalyst; HCo(CO)x + PPh3
1970’s Rh-catalysts; low pressure process
1980’s Agueous-biphasic hydroformylation
1990’s Up to 99% linear aldehyde

2000’s Asymmetric hydroformylation



Thermodynamics of hydroformylation and
hydrogenation

H,+ CH,CH=CH, + CO — CH,CH,CH,C(O)H
AG 63 -138 117 (1) = -42 kJ.mol-1

AH 21 -109 -238 = -150 kJ.mol-1

H,+ CH,CH-CH, = — CH,CH,CH,
AG 63 25 = -88 kJ.mol"!

AH 21 -105 =-126 kJ.mol-1



Cobalt catalysed processes

Homogeneous Catalyst: [CoOH(CO),]

Reaction conditions: T =100 - 200 °C
P, = 200 — 300 atm

v = k [Co][alkene][H,][CO]2

Scientifically it is interesting to understand how the ratio of
linear and branched product can be influenced and
maximised by varying the ancillary ligands and the kinetic
of the reaction.

[COH(CO),] is an excellent catalyst for isomerisation
reaction of internal alkenes to terminal alkenes.



The catalytic cycle reported in 1953
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Hydroformylation of higher alkenes

[CoH(CO),] is the catalyst industrially applied.

Remarks:

1. The higher alkene feed C,, 4 Iis essentially made of
internal alkenes;

2. The linear aldehyde is the desired product with an
acceptable selectivity around 60 — 80%.

Experimental data:

1. [CoH(CO),] is an excellent catalyst for isomerisation
reaction of internal alkenes to terminal alkenes;

2. [CoH(CO),] has a high preference for
hydroformylation of terminal alkenes: the
hydroformylation rate is 1000 times faster than on
internal alkenes.



Hydroformylation of higher alkenes

[CoH(CO),] is the catalyst industrially applied.
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Rate constants for the hydroformylation of selected alkenes

Alkene k|x10 s !
Hex-1-ene 110
Hex-2-ene 30
Cyclohexene 10

Oct-1-ene 109
Oct-2-ene 31

2-Methylpent-2-ene 8




The Kuhlmann process: the flow scheme and the

catalyst ricycling
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The Shell process

Introduction  of catalysts based on  phosphines:
[COH(CO)4(PRy)].

The introduction of monophosphines resulted in:

1. the reaction is a hundred times slower;

2. the selectivity to linear aldehyde increases;

3. The carbonyl compound formed, [CoH(CO);(PR3)], is much more
stable than [CoH(CO),];

4. The catalyst results to be active also in the hydrogenation reaction.

Cat. Prec. P (bar) T (°C) Pr. lin. (%) Cat. act. alkanes (%)
[COH(CO),] 200—-300 100-180 ald. 70 5(145°C) 1
[COH(CO),(PR3)] 25-100 100-200 alc. 90 1(185°C) 15



Examples of tested monophosphines

phobane mixture

Examples of applied cobalt complexes

Coy(C0O)  HCo(CO)y Co5(CO)5Ls HCo(CO)3L

Effect of the phosphine on activity
Ph,EtP > PhBu,P > Bu,P > Et,P > PhEt,P > Cy,P

Effect of the phosphine on linear/branched ratio (5.5 — 3)

Bu,P > Et,P = PhEt,P = Cy,P = PhBu,P > Ph,EtP



The catalytic systeme based on Rhodium
LPO (Low Pressure Oxo process)

General features:

1

Catalysts are 100 - 10000 times faster than those based on Co;
High catalytic activity in isomerization reactions;

2.
3. They do not catalyze the hydrogenation reaction of aldehydes;
4.
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Rh is much more expensive than Co.

Examples of tested monophosphines and phosphites
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tpp tppms tppts "bulky” phosphite
Cone angle = 195°



Examples of diphosphines and diphosphites

tBu

"BISBI general formula of diphosphite
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Synthetic technology for the production of Vitamin A

The BASF process
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The Rh/tpp system
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The kinetic law

v = k [alkene]![Rh][H,]{PPh,]CO]*

The kinetic law for the industrial synthesis of butanal
d’Oro’s equation V = k [C5H]6[Rh]H,][PPh,]07[CO] 01
(conditions 90-110°C, 1-25 bar CO, 1-45 bar H,, PPh,/Rh ratio 300:1 to 7:1)



Simplified mechanism for hydroformylation of ethene

with Rh/tpp
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Simplified mechanism for hydroformylation of ethene
with Rh/tpp

The catalyst resting state:
1. At high concentration of phosphine: the catalyst resting state is
[RhH(PPh;),COJ;

2. At low concentration of phosphine: the catalyst resting state is
[RhH(PPh,),(CO),].

The rate determining step:

a. At high concentration of phosphine: the catalyst resting state is
[RhH(PPh,;);CO] and rds is alkene coordination and its migratory
Insertion;

b. At high concentration of CO: the catalyst resting state is the Rh-
acyle intermediate and rds is the reaction with H,.



Activity: electronic effects

Ligands with electron-withdrawing substituents increase the rate of
reactions leading to Iintermediates 3 and 7, and increase their
concentration at equilibrium; they decrease the rate of oxidative
addition;

Phosphines with a Lewis basicity higher than tpp lead to slower
catalysts;

In general, phosphites lead to faster catalysts.



Regioselectivity
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Simplified mechanism for hydroformylation with Rh/tpp
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Regioselectivity: steric effects
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Selectivity in linear aldehyde increases:

*on increasing the Tolman cone-angle of phosphine;
‘moving from phosphines to bulky phosphites.

If the Tolman cone-angle is too large, only one P is on Rh:
the reaction is fast, but isomerization takes place.



Rhodium-phosphine

Alkylphosphines: stronger donors, stabilize Rh-CO bond,
very SLOW reactions.
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Smaller arylphosphines give more stable catalysts, which
are less reactive and give less linear product (equil. hand
side);

Larger arylphosphines give more linear product (equil. left
hand side);

Effect of the alkene
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Rhodium-phosphite

Large acceptor-type ligands: lead to unstable catalysts
[RhH(CO),(P)] which are highly reactive. Only one phosphite on Rh
due to space limitation.
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Effect of the alkene

Extremely fast hydroformylation for 1-alkenes with high selectivty in
the linear product;
Fast hydroformylation of 2-alkenes and other internal alkenes.



Other examples of hydroformylations catalysed
from Rh: effect of phosphine

Lineanty 40-96% depending on L

N NP - 8% linear if L= P(OEt)
62% linear if L= P(OCHzCF3)z

BASF, L=FPPh,

700 bar, 120 °C

L= bulky phosphite,
10 bar, 80 °C



The Ruhrchemie/Rhone-Poulenc process

S0aNa Ruhrchemie-Rhone Poulenc 1986
B Propene and 1-butene
P Same chemistry as tpp

Naoag@ so;na  Solubility: 1 kg of ligand in 1 kg of water!

Solubility of alkenes and aldehydes in water
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Solubility of higher alkenes is too low for efficient conversion
In water .



Flow-scheme for Ruhrchemie/Rhone-Poulenc process
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Hydroformylation with diphosphines

Ligand Bite Rate Ratio |I:b
angle m.m-".h"
12 126 2550 2643
BISBI, 11 113/120 3650 25
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Hydroformylation with diphosphines
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Asymmetric hydroformylation
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Phosphine-phosphite ligands

Reaction conditions: T = 60 — 80 °C, P17 = 100 bar.

Conversion > 99 %:

Ligand
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The catalytic active complex in
asymmetric hydroformylation
achieving high e.e.: equatorial-
apical ligand coordination!
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trigonal-bipyramidal
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One of the possible applications of
asymmetric hydroformylation

CO/H,, chiral cat. CHO  oxidation COOH
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(S)-Naproxen (S)-Ibuprofen (R)-Flurbiprofen (S)-Ketoprofen



Hydroformylation:
Application in the synthesis of fragrances

R Rh,Ru,Pt/Sn-cat.,
CO/M, s

Borner A. et al. ChemCatChem 2014, 6, 382.



