Hydrocyanation reactions

For the synchronous addition of HX to the double bond, the overlap integrals of frontier orbitals are nearly zero, thus a catalyst is required.

Hydrocyanation reactions

Nitriles are highly versatile compounds, applied in the synthesis of many other compounds.

Regioselectivity of hydrocyanation reactions

$$R \nearrow HCN \qquad R \nearrow CN \qquad + \qquad R \nearrow CN$$

$$[Co_2(CO)_8] \qquad R \nearrow C - C - C - H \qquad Markovnikov$$

$$R \nearrow C = C \nearrow H \qquad + HCN \qquad H \qquad CN$$

$$R \nearrow C = C \nearrow H \qquad + HCN \qquad H \qquad CN$$

$$R \nearrow C - C - C - H \qquad Anti-Markovnikov$$

$$[Ni{P(OR')_3}_4] \qquad R \nearrow C - C - C - H \qquad Anti-Markovnikov$$

Branched nitriles (chiral) are of interest as fine chemical products; Linear nitriles are of interest as bulk chemical products. The products have a low cost, thus the process has to be highly efficient, therefore the catalyst has to be cheap and to give high yields and high selectivity.

Lewis acids, such as AICI₃, ZnCI₂, BPh₃, are required as cocatalysts.

The catalytic cycle

Hydrocyanation reactions

The DuPont process for the synthesis of adiponitrile

Industrial interest:

Process developped in 1960;

Worldwide production: 1 milion of metric tons per year.

Scientific interest:

Tolman cone-angle θ : steric effects.

Tolman parameter for electronic effects: χ . It is based on the IR frequency for CO stretching in complexes [Ni(CO)₃L]; [Ni(CO)₃(P-tert-Bu₃)] is the reference compound.

The DuPont process for the synthesis of adiponitrile: a three steps process

1. Hydrocyanation of butadiene to unsaturated mononitrile

- 2. Isomerization of branched to linear mononitrile
- 3. Migration of 3-pentene nitrile to 4-pentene nitrile and its hydrocyanation to adiponitrile

2-methylglutaronitrile ethylsuccinonitrile 2-pentenenitrile

The DuPont process for the synthesis of adiponitrile: bidentate ligands

Activity higher than that obtained with monodentate ligands; Possibility to use only 3 eq of ligand in place of 15 eq.; 2-methyl-3-butene nitrile is formed in the range 30 - 88 % with both kinds of ligands.

A diphosphite

TON = 40 times as high as TON obtained with monophosphites

The diphoshine obtained from tripticene

100 % conv in 5 h
Selectivity 93.3 % in
3-pentene nitrile

The DuPont process for the synthesis of adiponitrile: the mechanism

1. Hydrocyanation of butadiene to unsaturated mononitrile

$$NiL_4$$
 + HCN, - L L_3Ni CN L_2Ni CN L_2Ni CN CN

Steric effects Studied through ³¹P NMR

NiL₄ NiL₃ + L L
$$K_1$$
 θ P(O-C₂H₅)₃ -- 109° P(O-p-C₆H₄CH₃)₃ X 128° P(O-o-C₆H₄CH₃)₃ 108 X 141°

Steric and electronic map of Tolman parameters

1. Hydrocyanation of butadiene to unsaturated mononitrile Steric effects

olefin + [NiL₃]
$$\longrightarrow$$
 [(olefin)NiL₂] + L

$$L = P(O-o-C_6H_4CH_3)_3$$

A 16 electron compound

Reaction of the Ni(0) precatalyst with HCN

$$[NiL_4]$$
 + HCN \longrightarrow $[HNiL_4]$ + CN \longrightarrow $[HNiL_3]$ + CN \longrightarrow $[HNiL_3]$ + L

An excess of HCN leads to $[Ni(CN)_2L_2]$, INACTIVE.

Effect of bite angle

	Ligand	X	R	β _n /°
6	DPEphos	н,н	н	105
7	Sixantphos	SiMe ₂	н	112
8	Thixantphos	S	CH ₃	113
9	Xantphos	CMe ₂	н	114
10	CF ₃ -Xantphos*)	CMe ₂	н	117
11	DBFphos	bond	н	140

^{*)} Ar = 3,5-(CF₃)₂C₆H₃

Xantphos ligands

Hydrocyanation of styrene

The revisited catalytic cycle

angle

109°

120°

120°

90/180°

The DuPont process for the synthesis of adiponitrile: the mechanism

2. Isomerization of 2-methyl-3-butene nitrile

2. Isomerization of 2-methyl-3-butene nitrile: the mechanism

The DuPont process for the synthesis of adiponitrile: the mechanism

3. Migration of 3-pentene nitrile to 4-pentene nitrile and its hydrocyanation to adiponitrile

$$L_3Ni$$
 CN
 H
 $CN-A$
 $CN-A$
 $[L_3Ni-H][A(CN)]$

2PN is the most thermodynamically stable linear pentenenitrile;

4PN is the kinetic product.

At T = 50°C the equilibrium composition of the mixture is: 78.3:20.1:1.5 = 2PN:3PN:4PN.

3. Migration of 3-pentene nitrile to 4-pentene nitrile and its hydrocyanation to adiponitrile

Selectivity in ADN:

50 % with AlCl₃; 82 % with ZnCl₂; 91 % with BPh₃.