Hydrocyanation reactions
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Hydrocyanation reactions

Nitriles are highly versatile compounds, applied in the synthesis
of many other compounds.
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Regioselectivity of hydrocyanation reactions
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Branched nitriles (chiral) are of interest as fine chemical products;
Linear nitriles are of interest as bulk chemical products. The
products have a low cost, thus the process has to be highly efficient,
therefore the catalyst has to be cheap and to give high yields and
high selectivity.

Lewis acids, such as AICl;, ZnCl,, BPh;, are required as
cocatalysts.



The catalytic cycle
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Hydrocyanation reactions

The DuPont process for the synthesis of adiponitrile
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Industrial interest:
Process developped in 1960;
Worldwide production: 1 milion of metric tons per year.

Scientific interest:

Tolman cone-angle @ steric effects.

Tolman parameter for electronic effects: y. It is based on the
IR frequency for CO stretching in complexes [Ni(CO),L];
[NI(CO),(P-tert-Buy)] is the reference compound.



The DuPont process for the synthesis of adiponitrile:
a three steps process

1. Hydrocyanation of butadiene to unsaturated mononitrile
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isomerization

2. Isomerization of branched to linear mononitrile

3. Migration of 3-pentene nitrile to 4-pentene nitrile and its
hydrocyanation to adiponitrile
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The DuPont process for the synthesis of adiponitrile:
bidentate ligands

Activity higher than that obtained with monodentate ligands;
Possibility to use only 3 eq of ligand in place of 15 eq.;

2-methyl-3-butene nitrile is formed in the range 30 - 88 % with both kinds of
ligands.

A diphosphite The diphoshine obtained
from tripticene

TON = 40 times as 100 % convin5h
high as TON obtained Selectivity 93.3 % In
with monophosphites 3-pentene nitrile



The DuPont process for the synthesis of adiponitrile:
the mechanism

1. Hydrocyanation of butadiene to unsaturated mononitrile
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Steric and electronic map of Tolman parameters
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1. Hydrocyanation of butadiene to unsaturated mononitrile
Steric effects

aledin + [NiLz] =————— [(od&linMil;] + L

A 16 electron compound

Reaction of the Ni(0) precatalyst with HCN

[MiL4] + HCN [HNL,] " CN

[HMIL G [HNIL;CN] + L

An excess of HCN leads to [Ni(CN),L,], INACTIVE.



Effect of bite angle

Ligand X R Bn /°
6 DPEphos H,H H 105
7 Sixantphos SiMe, H 112
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The revisited catalytic cycle

s 3

angle
species structure P-Ni-P
A,D, F tetrahedral 109°
[B] trigonal 120°
@ trigonal-bipyr. 120°
E square-planar  90/180°




The DuPont process for the synthesis of adiponitrile:
the mechanism

2. Isomerization of 2-methyl-3-butene nitrile
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2. Isomerization of 2-methyl-3-butene nitrile: the mechanism
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The DuPont process for the synthesis of adiponitrile:
the mechanism

3. Migration of 3-pentene nitrile to 4-pentene nitrile and
its hydrocyanation to adiponitrile
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2PN is the most thermodynamically stable linear
pentenenitrile;

4PN is the kinetic product.

At T = 50°C the equilibrium composition of the mixture
Is: 78.3:20.1:1.5=2PN: 3PN : 4PN.



3. Migration of 3-pentene nitrile to 4-pentene nitrile and
its hydrocyanation to adiponitrile

ESN MGN ADN

Selectivity in ADN:
50 % with AICI;; 82 % with ZnCl,; 91 % with BPh,.

Gives ADN Gives MGN Gives ESN



