
Introduzione alle FPGA

Lab 1

Prof. Laura Gonella

Laboratorio di Acquisizione e Controllo Dati

a.a. 2024-25

2

• In these two lab sessions we will learn the basics of

VHDL design and behavioral simulation using

examples of simple combinatorial and sequential

circuits

• We will use a free online software, EDA Playground,

that allows to write VHDL code to design and

simulate digital blocks

3

Examples and exercises

• Example: OR gate

• Exercise 1: AND gate

• Exercise 2: 2to1 MUX

• Example: OR gate with “process”

• Example: D-FF

• Exercise 3: 2to1 MUX with “process” and “if” statement

• Exercise 4: D-FF with synchronous reset

• Exercise 5: Shift register

4

EDA Playground

• https://www.edaplayground.com

• Create an account

https://www.edaplayground.com/

5

Design codeTestbench code

EDA Playground

6

EDA Playground: Examples

7

EDA Playground: Examples

8

DesignTest bench

Example of VHDL code: OR gate

9

VHDL basics

• VHDL is a strongly typed language (like C)

• All objects in VHDL must have a type (signals, variables, ports, etc...)

• Objects can only have value of that type

• Objects must be declared before using them

• Operations are allowed only between same-type objects

• Advantage: Less mistakes. Disadvantage: Longer codes

• VHDL is case insensitive

• Every VHDL statement ends with a semicolumn ;

• Not sensitive to white spaces between statements

• Empty lines ignored by compiler

• Comments start with two dashes −−

10

• Library and packages

• Entity

• Architecture

[Words in purple are VHDL keywords]

Building blocks of VHDL

11

• The entity declares the digital block

• or_gate in this example

• The port within the entity contains statements

to define the interface to the outside world

• Common port modes: in, out, inout

• In this example

• a, b are the inputs to the digital block

• q is the output of the digital block

• a, b, q are of type std_logic (one of

the most common data type in VHDL,

from the IEEE library, more in a bit)

• No semicolumn (;) after the last port

definition

Entity, port

12

• The architecture implements the functionality

of the entity/digital block

• It is composed of two parts

• Declarative part between the is and the

begin keywords

• Implementation part between the begin

and the end keywords

Architecture

13

• The functionality of the digital block is

described in the implementation part of the

architecture

• In this example, the functionality implemented

by the architecture is the OR function

• or reserved keyword in VHDL

Architecture

14

• All signals that are used by the architecture

must be defined in the declarative part

• In this example, the architecture uses the

signal or_g1 of type std_logic

• Optionally declare an initial value (if no

initial value, derived from type definition)

• Examples of signal declaration

Signal declaration

15

• Signal assignment is done with the <=

operator, in the architecture implementation

part

• Note: signal assignments are evaluated

concurrently to each VHDL statement, when

placed outside of a process block (more on

process block in a bit)

• Evaluated at the same time

• The order in which they are written does

not count

• Equivalent implementations:

Signal assignment

16

• Library and packages

• Import definitons (data types, functions,

keywords, etc) from other files

• Use statement to add packages from a

library

• In this example we use the IEEE library, one

of the most common library used in VHDL

designs

• IEEE.std_logic_1164 is one of two main

packages to import when using this library

• The other is IEEE.numeric_std

Library and packages

17

Data types

• Data types

• Built-in; Third parties; User-defined

• Built-in data types

• integer: whole numbers

• real: floating point numbers

• time: used to specify delays - important in simulation

• bit: scalar 1-bit signal (allowed values ‘0’ or ‘1’)

• bit_vector: multiple bits (buses) signals

• boolean: boolean number (true or false)

• Built-in data-types are not enough to describe an actual circuit

• Types can be extended using external libraries (Third parties or User-defined)

18

IEEE packages

• VHDL logic types

• std_logic for single bit signals

• std_logic_vector for multiple-bit signals

(buses)

• signed: vector representation of signed

binary numbers

• unsigned: vector representation of

unsigned binary numbers

• Additional logic values

• ‘U’: unitialised

• ‘X’: unknown logic value

• ‘Z’: high-impedance

• ‘W’: weak signal

• ‘L’: weak low

• ‘H’: weak high

• ‘-’: don’t care

19

• Remember: VHDL code in the testbench will never

be synthesized!

• Non synthesizable code can be used, typically

makes simulation easier and better

• The test bench has library, entity and architecture

• Testbench entity typically empty

Testbench

20

• Declare the component to be simulated in the

declarative region of your architecture

• Instantiate the component to be simulated in the

implementation region architecture

• DUT – Device Under Test

• Sometimes UUT – Unit Under Test

Component declaration & instantiation

21

• The stimuli to be applied to the inputs of the DUT are

defined in the architecture using a process block

(more about process block in a bit)

Simulating input signals

22

• wait statements are used in test benches as delays

to sequence inputs

• Not synthesizable code

• wait for <time>; (this example)

• wait on <signal>;

• Waiting for an event (change of state in a

signal)

• wait until <boolean expression>;

• Wait for a specific signal value

wait statements

23

• assert, report, severity

• Use the assert function to check signal values

against some expectation

• Assert returns always a boolean value

• Default severity is error

Assert, report, severity

24

• wait;

• Stopping all stimuli at the end of the process

Terminating the simulation

25

1

2

EDA Playground: Run a simulation

The name of the top entity is

the name of your testbench

26

1 2 3 4

1

2

3

4

Simulation waveforms show changes to signal values as function of simulation time

a_in, b_in, q_out: internal signals - a, b, q: interface signals

EDA Playground: Simulation waveforms

27

Exercise 1: Design and simulate a 2-input AND gate

1 – Create a copy of

the OR project

2 – Change the name

to AND gate and save

3 – Modify design

4 – Modify tb

5 – Save and

run the

simulation

28

Exercise 1: Solution

29

Exercise 1: Solution

30

Exercise 2: Design and simulate a 2to1 MUX

1- Create a new

project

2

3

4

5 6

Remember that here you need the

name of the testbench entity

Q

31

Conditional statement: when/else

• To describe the MUX functionality in the architecture, you need to use “when/else”

• Conditional signal assignment (implicit if)

• Examples of the sintax:

• Using these examples, implement the syntax needed for your MUX

32

Exercise 2: Solution

Boolean expression

“when/else”

33

Exercise 2: Solution

34

End of part 1

• VHDL basics and building blocks

• Entity, port

• Architecture

• Signal declaration and assignment

• Library and packages

• Data types

• IEEE library

• Conditional statement: when/else

• Component declaration and instantiation in

test bench

• Simulating the input signals

• wait statements

• Asserting, report, severity

• Terminating the simulation

• Run a simulation in EDA playground

• Example: OR gate

• Exercise 1: AND gate

• Exercise 2: 2to1 MUX

	Slide 1: Introduzione alle FPGA Lab 1
	Slide 2
	Slide 3: Examples and exercises
	Slide 4: EDA Playground
	Slide 5: EDA Playground
	Slide 6: EDA Playground: Examples
	Slide 7: EDA Playground: Examples
	Slide 8: Example of VHDL code: OR gate
	Slide 9: VHDL basics
	Slide 10: Building blocks of VHDL
	Slide 11: Entity, port
	Slide 12: Architecture
	Slide 13: Architecture
	Slide 14: Signal declaration
	Slide 15: Signal assignment
	Slide 16: Library and packages
	Slide 17: Data types
	Slide 18: IEEE packages
	Slide 19: Testbench
	Slide 20: Component declaration & instantiation
	Slide 21: Simulating input signals
	Slide 22: wait statements
	Slide 23: Assert, report, severity
	Slide 24: Terminating the simulation
	Slide 25: EDA Playground: Run a simulation
	Slide 26: EDA Playground: Simulation waveforms
	Slide 27: Exercise 1: Design and simulate a 2-input AND gate
	Slide 28: Exercise 1: Solution
	Slide 29: Exercise 1: Solution
	Slide 30: Exercise 2: Design and simulate a 2to1 MUX
	Slide 31: Conditional statement: when/else
	Slide 32: Exercise 2: Solution
	Slide 33: Exercise 2: Solution
	Slide 34: End of part 1

