
Radiative processes relevant to radioastronomy
Summary of 

A solid knowledge of the astrophysics behind radio observables is necessary to achieve a 
complete understanding of the various phenomena/astrophysical sources that will be 
investigated in this course.

Line emission/absorption processes

Chapters 12, 13, 14, 15, 16
Orion nebula, radio spectrum



Basic definitions

Thermal black body 
Thermal free-free 

Synchrotron 
Inverse Compton 

Rotational transitions (molecules) 
Fine structure transitions (e.g. [CII]) 

Hyperfine structure transitions (H 21cm) 
Amplified stimulated emission (masers)

dIν

ds
= − kνIν + ϵν

ϵν

kν

emission coefficient
absorption coefficient



Rotational spectrum of a molecule

For a transition from J to J-1 the energy released is:

ΔHrot =
ℏ2J

I
And the frequency of the emitted photons is therefore:

ν =
ΔHrot

h
=

ℏJ
2πI

=
hJ

4π2mr2
e

(angular momentum of the upper level)J = 0,1,2,...

The radio spectrum of a particular molecular species will look like 
a  ladder whose steps are all harmonics of the fundamental 
frequency.

CO ladder

ν ∝ m−1r−2
esmall molecules —-> mm  

large molecules —-> cm

Tmin ∼
Hrot

k
∼

νh(J + 1)
2k

Minimum temperature to excite the upper level J (via collisions):



Atomic lines: fine structure and hyperfine structure

fine structure: transitions between energy levels with different J (total angular momentum

hyperfine structure: transitions between energy levels with different F (total magnetic spin momentum)





Microwave amplification by stimulated emission of radiation: masers
In the previous lessons, we have seen that in the low-frequency regime stimulated emission and ordinary 
absorption are nearly equal.

kν =
c2

8πν2
0

gU

gL
NLAUL[1 − exp(−hν0/kT )]ϕ(ν)

ordinary 
absorption

stimulated 
emission

dIν

ds
= − kνIν + ϵν

In the Rayleigh-Jeans regime we have hν0 < < kT

[1 − exp(−hν0/kT )] ∼ hν0/kT < < 1

Net absorption coefficient or “line opacity coefficient”

NU

NL
=

gU

gL
exp (−

hν0

kTex )
     excitation temperature

We have also seen that, for a system in which both radiation and collisions regulate the transitions between 
energy levels, the populations of the different levels are linked by the relation



Amplified stimulated emission occurs when the upper energy level U is overpopulated, that is when

NU

NL
>

gU

gL

This implies that the excitation temperature has to be negative

NU

NL
=

gU

gL
exp (−

hν0

kTex )
>1

The line opacity is also negative

kν =
c2

8πν2
0

gU

gL
NLAUL[1 − exp(−hν0/kT )]ϕ(ν)

<0

A negative opacity implies brightness gain instead of loss; the intensity of a background source at 
frequency  will be amplified. But how much?ν0

Microwave amplification by stimulated emission of radiation: masers



Microwave amplification by stimulated emission of radiation: masers

dIν

ds
= −

hν0

c
(NLBLU − NUBUL)ϕ(ν)Iν+( hν0

4π ) NU AULϕ(ν)

Let’s assume for simplicity that  . The equation of detailed balance tells us that  ,  

so that 

gU = gL gLBLU = gUBUL

BLU = BUL ≡ B

dIν

ds
= −

hν0

c
(NL − NU)Bϕ(ν)Iν

A negative opacity implies brightness gain instead of loss; the intensity of a background source at 
frequency  will be amplified. But how much?ν0



Microwave amplification by stimulated emission of radiation: masers

dIν

ds
= −

hν0

c
(NL − NU)Bϕ(ν)Iν

We have seen that in the case of line broadening due to thermal motions  is a Gaussian whose FWHM 
 is related to the Doppler width . 

ϕ(ν)
Δν ΔνD

Iν =
1

πΔvD

exp[−
(ν − ν0)2

Δv2
D

]

It can be easily derived that    ϕ(ν0) ∼
1

ΔvD
∼

1
ΔνFWHM

dIν

ds
= −

hν0(NL − NU)BIν

cΔν

From which the maser optical depth is

τ = ∫ − kνds = ∫
dIν

Iν
=

hν0B
cΔν ∫ (NU − NL)ds maser gain

Iν(s) = Iν(0)exp(τ)

Radiation is amplified by a factor eτ

for ν ∼ ν0



Microwave amplification by stimulated emission of radiation: masers

Maser emission quickly depopulates the upper energy level, so masers have to be “pumped” to emit 
continuously. Typically one or more higher energy levels absorb radiation from a pump source (e.g., 
infrared continuum from a star or an AGN), and radiative decays preferentially repopulate the upper 
energy level. 

If the maser photon emission rate is limited by the pump luminosity, the maser is described as 
being saturated; if the pump power is more than adequate, the maser is unsaturated.

dIν

ds
= −

hν0(NL − NU)BIν

cΔν



Microwave amplification by stimulated emission of radiation: masers

OH maser in the Milky Way at ~1.6 GHz (18 cm)

CO OH maser stars



Microwave amplification by stimulated emission of radiation: masers
NGC4258

H20 megamaser at 22 GHz
hundreds of narrow lines clustered in three groups around the systemic 
recession velocity ( ~450 km/s)vgal

vgal vgal − vrotvgal + vrot

vrot ∼ 900 km/s



Microwave amplification by stimulated emission of radiation: masers
NGC4258

Keplerian velocity curve

vgal vgal − vrotvgal + vrot

vrot ∼ 900 km/s

vrot ≃
GM
R

R~0.26 pc
M ∼ 3.8 × 107M⊙

~104 times larger than the 
m a s s ex p e c t e d f o r t h e 
densest nuclear star clusters. 
Evidence for a 
supermassive BH!





Instruments for Radioastronomy

Elements of a radio telescope
A radio telescope is a specialized antenna and radio receiver, used to detect radio waves from 
astronomical radio sources in the sky. 

An antenna is a passive device that converts electromagnetic radiation in space into electrical currents in 
conductors, or vice versa, depending on whether it is used for receiving or for transmitting. Radio 
telescopes are receiving antennas

A radio receiver is an electronic device which receives alternating currents from the antenna and converts 
the information carried by them into a usable form. It uses electronic filters to select the desired 
frequencies and an electronic amplifier to increase the power of the signal for further processing.



Due to the wide range of frequencies that makes up the radio spectrum (tens of MHz - hundreds of GHz), 
the type of antennas used as radio telescopes widely vary in design, size and configuration. 

At frequencies >>100 MHz parabolic antennas or “dish” predominate 

At frequencies < 100 MHz directional antennas are typically used

LOw-Frequency ARray (LOFAR) 
10-80 MHz

IRAM 30-meter (Pico Veleta, ES)
120-360 GHz

Hardware:  
- a main mirror/collector, a secondary mirror/subreflector (and possibly more) which drive the radiation 

into a small area (focus) 
- a detector, sensible to the incoming electromagnetic waves (feed horn). The easiest component to 

detect is the electric field of the wave.

Elements of a radio telescope



Antenna fundamentals
The most important characteristic of an antenna is its ability to absorb radio waves incident upon it. This is 
typically described in terms of antenna effective aperture:

Ae =
Power density available at the antenna terminals

Flux density of the incident wave
= [

W/Hz
W/m2/Hz

] = [m2]

The effective area depends on the direction of the incident wave: the antenna works better is some 
directions than in others:

Ae = Ae(θ, ϕ)

This directional property of the antenna is often described in the 
form of a power pattern, i.e. an effective area normalized to be 
unity at the maximum

P(θ, ϕ) =
Ae(θ, ϕ)

Amax
e

The pattern of antenna is the same regardless it is used as a 
transmitter or as a receiver. This is called reciprocity.

Main lobe: primary maximum of the antenna pattern

Side lobes: subsidiary maxima of the antenna pattern

Half Power Beamwidth : angular distance between the two points at which P = Pmax/2ΘHPBW



Antenna fundamentals

From simple diffraction theory it can be shown that for a reflecting telescope

ΘHPBW ∼
λ
D

where D is the physical dimension of the telescope. The larger the telescope, the 
better the resolution.

IRAM 30-meter (Pico Veleta, ES)

250 GHz ~ m1.2 × 10−3

ΘHPBW ∼
1.2 × 10−3

30
∼ 4 × 10−5 rad ∼ 8.3′ ′ 

Arecibo 300-meter (Porto Rico)

1.4 GHz  ~21cm

ΘHPBW ∼
0.21
300

∼ 10−2 rad ∼ 2.4′ 



Antenna fundamentals

Another patter often used to describe antennas is the gain:

G(θ, ϕ) = Power emitted into (θ, ϕ)
(Total power input)/4π

For any lossless antenna, energy conservation requires that the gain averaged over all directions is 
<G>=1, from which

∫sphere
G(θ, ϕ)sin(θ)dθdϕ = 4π

ΩA ≡
1

Gmax ∫4π
G(θ, ϕ)sin(θ)dθdϕ = 4π/Gmax

beam solid angle

The main beam solid angle is defined as the region containing the principal response out to the first zero

ΩMB =
1

Gmax ∫MB
G(θ, ϕ)sin(θ)dθdϕ

And we can define the concept of main beam efficiency as ηMB ≡
ΩMB

ΩA

where Gmax is the maximum gain



Antenna fundamentals

Another patter often used to describe antennas is the gain:

G(θ, ϕ) = Power emitted into (θ, ϕ)
(Total power input)/4π

For reflector antennas, the aperture efficiency is defined as:

η =
Amax

e

Ag
where Ag is the geometric cross-sectional area of the main reflector

Consider observing a source with brightness distribution  with a radiotelescope with power pattern 
. The power available at the antenna terminals is

B(θ)
P(θ)

W(θ′ ) =
1
2 ∫ B(θ)Ae(θ − θ′ )dθ

1 polarization
pointing direction  
of the telescope

And in two dimensions

W(θ′ , ϕ′ ) =
1
2 ∫ B(θ, ϕ)Ae(θ − θ′ , ϕ − ϕ′ )sin(θ)dθdϕ

In temperature units, this become

TA(θ′ , ϕ′ ) =
Amax

e

λ2 ∫ TB(θ, ϕ)P(θ − θ′ , ϕ − ϕ′ )sin(θ)dθdϕ Antenna temperature
weighted average of the sky temperature. The weight 
is the antenna power pattern.



Antenna fundamentals

This implies that an increase in  could mean either that there is a source in the main beam, or that a 
collection of fainter sources have combined to give a large total power.  

TA

Antenna temperature

If P is a single infinitely sharp spike, then TA(θ′ , ϕ′ ) ≃ TB(θ, ϕ)

For a real telescope P has a finite width:  is therefore a smoothed version of TA TB

In the case of point sources (e.g. stars), the confusion limit is ~ . Below this limit, one cannot be sure 
that a  increase corresponds to a single source. 

ΘHPBW
TA

Antenna temperature is not the physical temperature of the antenna; it is the temperature of a matched 
resistor whose thermally generated power per unit frequency (in the Nyquist approximation  , the 
equivalent for electrical power of Rayleigh-Jeans)  equals that produced by the antenna

Pν = kTA

TA(θ′ , ϕ′ ) =
Amax

e

λ2 ∫ TB(θ, ϕ)P(θ − θ′ , ϕ − ϕ′ )sin(θ)dθdϕ



Antenna fundamentalsAntenna fundamentals

Consider an antenna coupled with a resistor, with the entire system being placed in a black box at 
temperature T. After TE has been reached, the power flowing from the resistor to the antenna is:  
PR→A = kT

The power flow from the antenna to the resistor is:  

PA→R =
Amax

e kT
λ2 ∫ P(θ, ϕ)sin(θ)dθdϕ as  T(θ, ϕ) = T

In thermal equilibrium the net power flow has to be zero 
PR→A = PA→R

Amax
e =

λ2

∫ P(θ, ϕ)sin(θ)dθdϕ
The maximum effective area (at given  depends only on the power patternλ)

From which

For a reflecting telescope ∫ P(θ, ϕ)sin(θ)dθdϕ ∼ Θ2
HPBW ∼

λ2

D2
hence Amax

e ∼ D2

The effective area scales as the geometric area of the reflector 



Reflector antenna

We have seen that, at relatively high frequency (  mm) most radio telescopes use large  reflectors  to 
collect and focus power onto small feed antennas, that are connected to receivers. The most common 
reflector shape is a paraboloid of revolution: it can focus the plane wave from a distant point source onto a 
single focal point.

λ < 1

f : focal lent

incoming plane wave

v: vertex r=0, z=0

z: height with respect to v

v

To do this, the reflector must keep all parts of an on-axis plane 
wavefront in phase at its focal point. Thus the total path lengths to 
the focus must all be the same:

f + h = (h − z) + r2 + ( f − z)2

z =
r2

4f equation of a paraboloid



Reflector antenna 

We have seen that, at relatively high frequency (  m) most radio telescopes use large  reflectors  to 
collect and focus power onto small feed antennas, that are connected to receivers. The most common 
reflector shape is a paraboloid of revolution: it can focus the plane wave from a distant point source onto a 
single focal point.

λ < 1

f : focal lent

incoming plane wave

v: vertex r=0, z=0

z: height with respect to v

v

To do this, the reflector must keep all parts of an on-axis plane 
wavefront in phase at its focal point. Thus the total path lengths to 
the focus must all be the same:

f + h = (h − z) + r2 + ( f − z)2

z =
r2

4f equation of a paraboloid

This applies in the case of plane waves (distant source). Otherwise path-length errors will introduce 
significant phase errors in the waves coming from the off-axis portions of the reflector, reducing the effective 
collecting area and degrading the antenna pattern.



Antenna aperture

How far away must a point source be for the received waves to satisfy the assumption that they are planar 
across the reflector?

R2 = (R − Δ)2 + (
D
2

)2

Consider a spherical wave emitted by a point source at finite 
distance R from a flat aperture of diameter D

The maximum departure Δ from a plane wave occurs at the edge of the aperture, at which

R =
Δ
2

+
D2

8Δ R ∼
D2

8Δ
(in the limit )Δ < < D

Rff ∼
2D2

λ

far-field distance

(typically plane-wave if )Δ < λ /16

Arecibo: D~300 m,  cmλ ∼ 21 Rff ∼ 8600 km

R>>Rff for astronomical sources



Antenna aperture

How far away must a point source be for the received waves to satisfy the assumption that they are planar 
across the reflector?

R2 = (R − Δ)2 + (
D
2

)2

Consider a spherical wave emitted by a point source at finite 
distance R from a flat aperture of diameter D

The maximum departure Δ from a plane wave occurs at the edge of the aperture, at which

R =
Δ
2

+
D2

8Δ R ∼
D2

8Δ
(in the limit )Δ < < D

Rff ∼
2D2

λ

far-field distance

(typically plane-wave if )Δ < λ /16

The aperture of a paraboloidal reflector antenna is the plane circle, 
normal to the rays from a distant point source, that covers the 
paraboloid. The phase of the plane wave from a distant point source 
would be constant across the aperture plane when the aperture is 
perpendicular to the line of sight.

dish diameter





Patterns of Aperture Antennas
How to calculate the beam pattern, or power gain as a function of direction, of an antenna aperture? 

Consider the case of a 1-dimensional aperture and for simplicity 
assume that the antenna is transmitting. We want to calculate the 
electric field pattern at a large distance R.

R source distance
D aperture size

x distance from aperture center

The antenna feed illuminates the antenna aperture with a sine wave. 
Illumination induces currents in the reflector. Currents vary with 
position and time.

I ∝ g(x)exp(−iωt) ν = ω/(2π)
g(x)

wave frequency

electric field strength



Patterns of Aperture Antennas
How to calculate the beam pattern, or power gain as a function of direction, of an antenna aperture? 

Consider the case of a 1-dimensional aperture and for simplicity 
assume that the antenna is transmitting. We want to calculate the 
electric field pattern at a large distance R.

R source distance
D aperture size

x distance from aperture center

The antenna feed illuminates the antenna aperture with a sine wave. 
Illumination induces currents in the reflector. Currents vary with 
position and time.

I ∝ g(x)exp(−iωt) ν = ω/(2π)
g(x)

wave frequency

electric field strength

Huygens’s principle: the aperture is an ensemble of small elements 
individually acting as small antennas. The electric field produced by 
the whole aperture at large distances is just the vector sum of the 
elemental electric fields from these small antennas.

df ∝ g(x)
exp(−i2πr(x)/λ)

r(x)
electric field strength
r(x) distance between the source and aperture element at position x



Patterns of Aperture Antennas
How to calculate the beam pattern, or power gain as a function of direction, of an antenna aperture? 

Consider the case of a 1-dimensional aperture and for simplicity 
assume that the antenna is transmitting. We want to calculate the 
electric field pattern at a large distance R.

R source distance
D aperture size

x distance from aperture center

The antenna feed illuminates the antenna aperture with a sine wave. 
Illumination induces currents in the reflector. Currents vary with 
position and time.

I ∝ g(x)exp(−iωt) ν = ω/(2π)
g(x)

wave frequency

electric field strength

Huygens’s principle: the aperture is an ensemble of small elements 
individually acting as small antennas. The electric field produced by 
the whole aperture at large distances is just the vector sum of the 
elemental electric fields from these small antennas.

df ∝ g(x)
exp(−i2πr(x)/λ)

r(x)
electric field strength
r(x) distance between the source and aperture element at position x

As R>>Rff the plane wave approximation is valid and   usually written as r ∼ R + xsinθ r ∼ R + xl
(l = sinθ)



Patterns of Aperture Antennas

R source distance
D aperture size

x distance from aperture center

df ∝ g(x)
exp(−i2π(R + xl)/λ)

R 1
r

∼
1
R

constant

df ∝ g(x)
exp(−i2πxl)/λ)

R

The phase varies linearly across the aperture. Different 
parts of the aperture add constructively or destructively to the 
total electric field.

2πxl /λ

Defining the position along the aperture in units of wavelength 
u = x /λ

f(l) = ∫aperture
g(u)e−i2πludu

In the far field, the electric-field pattern of an aperture antenna is the Fourier transform of the electric 
field distribution illuminating that aperture.



Patterns of a uniformly illuminated antenna

f(l) = ∫aperture
g(u)e−i2πludu

In the far field, the electric-field pattern of an aperture 
antenna is the  Fourier transform of the electric field 
distribution illuminating that aperture.

Uniform illumination:  g(u) = constant −D
2λ

< u <
D
2λ

Unit rectangle function:  Π(u) = 1 −1/2 < u < 1/2

f(l) = ∫
1/2

−1/2
Π(u)e−i2πludu = ∫

1/2

−1/2
e−i2πludu

Unit aperture ( )D = λ

=
e−iπl − eiπl

−i2πl
=

sin(πl)
πl

= sinc(l)

electr ic-field pattern of a 
uniformly illuminated antenna



Patterns of a uniformly illuminated antenna

f(l) = ∫aperture
g(u)e−i2πludu

In the far field, the electric-field pattern of an aperture 
antenna is the  Fourier transform of the electric field 
distribution illuminating that aperture.

Uniform illumination:  g(u) = constant −D
2λ

< u <
D
2λ

The power pattern is the square of the field pattern

Unit aperture ( )D = λ

power pattern of a uniformly illuminated antenna

P(l) = sinc2(l)



Patterns of a uniformly illuminated antenna

f(l) = ∫aperture
g(u)e−i2πludu

In the far field, the electric-field pattern of an aperture 
antenna is the  Fourier transform of the electric field 
distribution illuminating that aperture.

Uniform illumination:  g(u) = constant −D
2λ

< u <
D
2λ

The power pattern is the square of the field pattern

Unit aperture ( )D = λ

power pattern of a uniformly illuminated antenna

Main beam: peak of the power pattern between the first 
nulls ( )l = ± 1

P(l) = sinc2(l)



Patterns of a uniformly illuminated antenna

f(l) = ∫aperture
g(u)e−i2πludu

In the far field, the electric-field pattern of an aperture 
antenna is the  Fourier transform of the electric field 
distribution illuminating that aperture.

Uniform illumination:  g(u) = constant −D
2λ

< u <
D
2λ

The power pattern is the square of the field pattern

P(l) = sinc2(l)

Unit aperture ( )D = λ

power pattern of a uniformly illuminated antenna

S i d e l o b e s : s m a l l e r p ea ks s e p a rat e d b y n u l l s 
( )l = ± 2, ± 3,...


