
Instruments for Radioastronomy

Why Interferometers?

We have seen that a parabolic dish coherently sums 
all electromagnetic fields at the focus. The same result 
can be achieved by adding in a network voltages from 
individual antennas: interferometry.

Interferometer: ensemble of  dishes. N ≥ 2

NOEMA (Plateau de Bure, FR)

bmax

✴The collecting area of an interferometer is  
and can be arbitrarily increased as  is the # of 
antennas.

NπD2/4
N

✴The angular resolution is  where  
is the longest baseline, i.e. the largest distance 
between two antennas in the array.

ΘHPBW ∼ λ /bmax bmax



The two-element quasi-monochromatic interferometer

The simplest radio interferometer is a pair of radio telescopes whose voltage outputs are correlated. More 
elaborate interferometers with  antennas can be treated as N(N-1)/2 independent two element 
interferometers.

N > > 2

 # antenna pairs

The output of antenna 1 is therefore the same of antenna 
2 but it lags in time by the geometric delay

τg =
⃗b ⋅ ̂s
c

=
bcosθ

c

We considered a quasi-monochromatic interferometer 
that responds to radiation in a narrow band  
centered on frequency .

Δν < < ν
ν = ω/(2π)

R = < V1V2 > =
E2

2
cos(ωτg)

Correlator response: spatial correlation of the signal

Sinusoidal variation: fringes



Example: signals in phase

V1

V2

V1V2

<V1V2>

Example: voltages in phase 
b ⋅ s = nλ, τg = nν

τg =
⃗b ⋅ ̂s
c

ν = 2GHz

R = < V1V2 > =
E2

2
cos(ωτg)



V1

V2

V1V2

<V1V2>

Example: voltages in quadrature phase
b ⋅ s = (n ± 1/4)λ, τg = (4n ± 1)/4ν

ν = 2GHz

τg =
⃗b ⋅ ̂s
c

Example: signals in quadrature phase

R = < V1V2 > =
E2

2
cos(ωτg)



V1

V2

V1V2

<V1V2>

Example: voltages out of phase
b ⋅ s = (n ± 1/2)λ, τg = (2n ± 1)/2ν

ν = 2GHz

τg =
⃗b ⋅ ̂s
c

Example: signals out of phase

R = < V1V2 > =
E2

2
cos(ωτg)



Fringe pattern: whole sky perspective

We can rewrite the correlator response as

R =
E2

2
cos(2πul)

where   is the baseline lengths in wavelength units and . How does this pattern look on the 
sky?

u = b/λ l = cosθ

u = 10

Th e re a re 2 1 
fringe maxima 
and 20 fringe 
minima over the 
hemisphere

Th e re a re 5 1 
fringe maxima 
and 50 fringe 
minima over the 
hemisphere

u = 25

τg =
⃗b ⋅ ̂s
c

π /2



Fringe pattern: angular perspective

We can rewrite the correlator response as

R =
E2

2
cos(2πul)

where   is the baseline lengths in wavelength units and . How does this pattern look on the 
sky?

u = b/λ l = cosθ

u = 10

u = 25

Th e re a re 2 1 
fringe maxima 
and 20 fringe 
minima over the 
hemisphere

These patterns assume 
that the power pattern 
of the antennas was 
isotropic..but this is 
not true!

The separation between lobes of the same sign is  radδθ ∼ 1/u = λ /b



Correlator response: properties

τg =
⃗b ⋅ ̂s
c

=
bcosθ

c
R = < V1V2 > =

E2

2
cos(ωτg) =

E2

2
cosϕ

In general, the correlator response depends on: 

- the received power  

- the geometric delay  and hence on the baseline orientation and source direction

P ∝ E2

τg

It does not depend on: 

- the time of the observation, assuming that the source is not variable 

- the location of the baseline, assuming the far field approximation 

- the phase of the incoming signal (i.e. the distance of the source), assuming the far field 
approximation

We have seen that the electric field (or power) pattern depends on the antenna size and aperture efficiency, 

but these factors can be calibrated for.



Fringe pattern and source position

The fringe phase   depends on  as followsϕ = ωτg =
ω
c

bcosθ θ

Also, an interferometer whose baseline is horizontal is not 
affected by the plane-parallel component of atmospheric 
refraction (Both V1 and V2 are delayed equally)

dϕ
dθ

= −
ω
c

bsinθ = − 2π ( bsinθ
λ )

The fringe period    corresponds to an angular shift . Therefore, the fringe phase is 

an accurate measurement of the source position if the projected baseline 

Δϕ = 2π Δθ = λ /(bsinθ)
bsinθ > > λ .

The fringe phase is not affected by tracking errors of individual antennas. It depends on time, and times 
can be measured with much higher accuracy than angles.

Interferometers can determine absolute positions with errors as small as 10-3 arcsec and differential 
positions down to 10-5 arcsec



Fringe pattern in the case of realistic antenna power patterns
In a more realistic case, the response  a two-element interferometer with directive antennas is the cos 
sinusoid multiplied by the product of the voltage patterns of the individual antennas.  

Normally the two antennas are identical, so this product is the power pattern of the individual antennas, 
i.e. the primary beam of the interferometer.   The synthesized beam, that is the response obtained by 
averaging the output of all two-elements interferometers, rapidly approaches a Gaussian. 

main lobe

side lobes

Fringes are modulated by the 
~Gaussian response of an interferometer  

(N>>1 antennas)



Fringe pattern in the case of realistic antenna power patterns

The response a two-element interferometer with directive antennas is the cos sinusoid multiplied by the 
product of the voltage patterns of the individual antennas.  
Normally the two antennas are identical, so this product is the power pattern of the individual antennas, 
i.e. the primary beam of the interferometer. 

fringe period  
~ synthesized  

beam

beam width 
~primary beam

An interferometer with N antennas contains N(N-1)/
2 pairs of antennas, each of which is a two-element 
interferometer. 

As N increases, the synthesized beam, that is the 
point source response obtained by averaging the 
output of all two-elements interferometers, rapidly 
approaches a Gaussian. 



Fringe pattern in the case of realistic antenna power patterns

The response a two-element interferometer with directive antennas is the cos sinusoid multiplied by the 
product of the voltage patterns of the individual antennas.  
Normally the two antennas are identical, so this product is the power pattern of the individual antennas, 
i.e. the primary beam of the interferometer. 

An interferometer with N antennas contains N(N-1)/
2 pairs of antennas, each of which is a two-element 
interferometer. 

As N increases, the synthesized beam, that is the 
point source response obtained by averaging the 
output of all two-elements interferometers, rapidly 
approaches a Gaussian. 

ΘHPBW ∼ λ /bmax synthesized beam

ΘFOV ∼ λ /D

due to the lack of spacings < D, where D is the 
diameter of an individual antenna (zero spacing)

primary beam



Response for an extended source
We have so far derived the cosinusoidal correlator response for the quasi-monochromatic two-element 
correlator in the case of a point source. For simplicity, we assume again a uniform antenna response. 

The response to an extended source, that is larger than the synthesized beam (but still smaller than the 
primary beam) can be derived as the same of many independent point sources.

R = ∫Ωsource
Iν( ̂s)cos(2πν ⃗b ⋅ ̂s/c)dΩ τg =

⃗b ⋅ ̂s
c geometric delay

R = < ∫Ωsource
V1dΩ1 ∫Ωsource

V2dΩ2 >

That can be written using the definition of brightness as (for an 
incoherent source  and  are interchangeable)⋅ ∫

The response is the integral of the source brightness, modulated by 
the cosinusoidal interferometer pattern.

This relation links what we can measure (R) to what we would like to know ( ).  

Can we recover  from R?

Iν( ̂s)

Iν( ̂s)



Example of fringes: Cygnus A

Composite image: Chandra (X-ray) + Hubble (Optical) + VLA (Radio)



Example of fringes: Cygnus A seen by the VLA (uniform response)

ν ∼ 2.5GHz(λ ∼ 15cm)

same baseline 
(1km) 

different 
orientations

θ ∼ λ /b

Different 
baselines, 
different 

fringes width



Example of real fringes: Cygnus A seen by the VLA
The interferometer casts a cosinusoidal pattern on the sky, with the result that we obtain a response which 

is some function of the source brightness and the fringe separation and orientation. How does that get us 

to our goal of determining the actual brightness?

Actual brightness 
of the source 
(single dish) How a 5-km baseline interferometer “sees” the source

ν ∼ 2.5GHz(λ ∼ 15cm)



Example of real fringes: Cygnus A seen by the VLA

Actual brightness 
of the source 
(single dish) How a 5-km baseline interferometer “sees” the source

ν ∼ 2.5GHz(λ ∼ 15cm)

The interferometer measures the integral (sum) of the product of this pattern with the source brightness



• For a point source (by definition << then the fringe spacing), the interferometer response is the same 
for every baseline. 

• The interferometer response to a real source can be negative 
• As the baseline gets longer, the response goes to zero (the source is resolved out) 
• As the baseline gets shorter, the response goes to the total source flux (zero spacing)

The interferometer measures the integral (sum) of the product of this pattern with the source brightness

How a 5-km baseline interferometer “sees” the source

ν ∼ 2.5GHz(λ ∼ 15cm)

Actual brightness 
of the source 
(single dish)

Basic considerations

Example of fringes: Cygnus A seen by the VLA (uniform response)



The correlator response

Rc = ∫Ωsource
Iν( ̂s)cos(2πν ⃗b ⋅ ̂s/c)dΩ

is not enough to recover the actual brightness…why?

Let’s recall that any real function can be written as the sum of an even and an odd part

Response for an extended source: the complex correlator



The correlator response

Rc = ∫Ωsource
Iν( ̂s)cos(2πν ⃗b ⋅ ̂s/c)dΩ

is not enough to recover the actual brightness…why?

Suppose that the source has a component with odd symmetry, for which . We have thatIν,O( ̂s) = − Iν,O( ̂−s)

Rc = ∫Ωsource
Iν,O( ̂s)cos(2πν ⃗b ⋅ ̂s/c)dΩ = 0

odd even

Response for an extended source: the complex correlator

To detect  we need a sinusoidal correlator, whose output is oddIν,O

Rs = ∫Ωsource
Iν( ̂s)sin(2πν ⃗b ⋅ ̂s/c)dΩ

and that can be implemented as a second correlator that follows a  delay inserted into the ouput of 
the antenna, as 

π /2
sin(ωτg) = cos(ωτg − π /2)

The combination of cosine and sine correlators is called a complex correlator, because it is 
mathematically convenient to treat cos and sin as complex exponentials using Euler’s formula

eiϕ = cosϕ + isinϕ



The correlator response

Rc = ∫Ωsource
Iν( ̂s)cos(2πν ⃗b ⋅ ̂s/c)dΩ

is not enough to recover the actual brightness…why?

Suppose that the source has a component with odd symmetry, for which . We have thatIν,O( ̂s) = − Iν,O( ̂−s)

Rc = ∫Ωsource
Iν,O( ̂s)cos(2πν ⃗b ⋅ ̂s/c)dΩ = 0

odd even

Response for an extended source: the complex visibility

To detect  we need a sinusoidal correlator, whose output is oddIν,O

Rs = ∫Ωsource
Iν( ̂s)sin(2πν ⃗b ⋅ ̂s/c)dΩ

We define the complex visibility V from the two independent (real) correlator outputs  and  as:Rc Rs

V = Rc − iRs = Ae−iϕ

where  is the visibility amplitudeA = R2
c + R2

s

 is the visibility phaseϕ = tan−1(Rs /Rc)



We define the complex visibility V from the two independent (real) correlator outputs  and  as:Rc Rs

V = Rc − iRs = Ae−iϕ

 is the visibility phaseϕ = tan−1(Rs /Rc)

This gives us the relation between the source brightness and the response of an interferometer:

V = ∫Ωsource
Iν( ̂s)e−2πiν ⃗b ⋅ ̂s/cdΩ

which (under some circumstances) is a 2D Fourier transform, giving us a well established way to recover  
 from V.Iν( ̂s)

As   is a real function, V is a complex function and is hermitian: Iν( ̂s) V*(ϕ) = V(−ϕ)

Response for an extended source: the complex visibility

where  is the visibility amplitudeA = R2
c + R2

s



We define the complex visibility V from the two independent (real) correlator outputs  and  as:Rc Rs

V = Rc − iRs = Ae−iϕ

 is the visibility phaseϕ = tan−1(Rs /Rc)

This gives us the relation between the source brightness and the response of an interferometer:

V = ∫Ωsource
Iν( ̂s)e−2πiν ⃗b ⋅ ̂s/cdΩ

The power measured by the correlator is then 

P = < V1V*2 > = A2e−iω ⃗b ⋅ ̂s/c where
V1 = Acos(ωt) = Re(A2e−iωt)
V2 = Acos[ω(t − ⃗b ⋅ ̂s/c)] = Re(A2e−iω ⃗b ⋅ ̂s/c)
ω = 2πν

Response for an extended source: the complex visibility

where  is the visibility amplitudeA = R2
c + R2

s

which (under some circumstances) is a 2D Fourier transform, giving us a well established way to recover  
 from V.Iν( ̂s)



We now have two real correlators, whose patterns are phase shifted by 90 deg on the sky:

Basic considerations

• The complex visibility amplitude is independent of the source location, and is linearly related to the 
source flux density 

• The complex visibility phase is a function of source location, and independent of source flux density  
• The visibility is a unique function of the source brightness  

Example of fringes: Cygnus A seen by the VLA (uniform response)



We now have two real correlators, whose patterns are phase shifted by 90 deg on the sky:

Basic considerations
• The two functions are related through a Fourier transform  where (u,v) are baseline 

coordinates and (l,m) are source coordinates 
• An interferometer, at a given time, makes one measurement of the visibility, at baseline coordinate (u,v).  
• Sufficient knowledge of the visibility function (as derived from an interferometer) will provide us a 

“reasonable estimate” of the source brightness   

V(u, v) = I(l, m)

Example of fringes: Cygnus A seen by the VLA (uniform response)



Earth rotation aperture synthesis
Most astronomical sources are stationary , that is their brightness does not change on the timescale of the 
observation. Earth rotation and moving antennas can be exploited to increase the number of effective 
“antenna pairs”.

δ

Consider an east–west two-element 
interferometer at latitude +40º as seen by a 
source at declination º.δ = + 30 -6h 

-3h
0h

3h

6h

During a 12-hour period, the interferometer traces out a complete ellipse in the (u,v) plane. The 
maximum value of u equals the actual antenna separation in wavelengths, and the maximum value of v is 
smaller by the projection factor  , where   is the source declination 

If the interferometer has N>2 antennas, or if the spacing of the two antennas is changed daily, the  
(u,v) coverage will become a number of concentric ellipses having the same shape. Thus the synthesized 
beam obtained can approach an elliptical Gaussian. 

sinδ δ

The projected east-west component (in 
wavelength units) is u and the north-south 
projected component is v. 



Earth rotation aperture synthesis
Most astronomical sources are stationary , that is their brightness does not change on the timescale of the 
observation. Earth rotation and moving antennas can be exploited to increase the number of effective 
“antenna pairs”.

δ

Consider an east–west two-element 
interferometer at latitude +40º as seen by a 
source at declination º.δ = + 30

The projected east-west component (in 
wavelength units) is u and the north-south 
projected component is v. 

-6h 
-3h

0h
3h

6h

The synthesized beamwidth is ~ u-1 rad east–west and ~u−1  rad in the north–south direction.  

The synthesized beam is almost circular for a source near the celestial pole, but the north–south 

beamwidth is very large for a source near the celestial equator.

/sinδ



Earth rotation aperture synthesis

IRAM PdBI (now NOEMA) 
4 to 6 antennas in 3 configurations 
On source time ~27 hours
De Breuck et al. 2003

Two ALMA configurations 
compact (left) and extended (right) 
On source time ~1 (left) and ~2(right) hours

Yamaguchi  et al. 2020 





Solutions


