
Instruments for Radioastronomy

Interferometers
We have introduced define the complex visibility V from the two independent (real) correlator outputs 

 and  as:Rc Rs

V = Rc − iRs = |V |eiϕ

where  is the visibility amplitude|V | = R2
c + R2

s

 is the visibility phaseϕ = tan−1(Rs /Rc)

 cosine response (even) 

 sine response (odd)

Rc

Rs

We have seen the relation between the source brightness and the response of an interferometer:

which is a 2D Fourier transform, giving as a well established way to recover  from V.  

This relation is valid in the ideal case of an interferometer with isotropic response and in the quasi-
monochromatic approximation. 

Iν( ̂s)

τg =
⃗b ⋅ ̂s
c

geometric delay
V = ∫Ωsource

Iν( ̂s)e−2πiν ⃗b ⋅ ̂s/cdΩ



Visibility-brightness relation for a realistic antenna response

We know consider the relation between source brightness and complex visibility (for an extended source) 
in the case of a realistic (direction dependent) antenna response, in the quasi-monochromatic 
approximation. We have:

V = ∫Ωsource

A( ̂s)Iν( ̂s)e−2πiν ⃗b ⋅ ̂s/cdΩ

where  is the effective area of each (identical) antenna. A( ̂s)

bTypically, source positions are expressed as with respect to 
the phase-center: ̂s = ̂s0 + ̂σ

V = ∫Ωsource
A( ̂σ)Iν( ̂σ)e−2πiν ⃗b ⋅ ̂σ/cdΩ



Visibility-brightness relation for a realistic antenna response
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where  is the effective area of each (identical) antenna. A( ̂s)

bTypically, source positions are expressed as with respect to 
the phase-center: ̂s = ̂s0 + ̂σ

V = ∫Ωsource
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Let’s now express the correlator response as a function of the visibility….



Correlator response and visibility

We have seen that the correlator response in the case of a realistic (direction dependent) antenna 
response, in the quasi-monochromatic approximation, is:

b

R = ∫Ωsource

A( ̂s)Iν( ̂s)cos(2πν ⃗b ⋅ ̂s/c)dΩ

= cos (2πν
⃗b ⋅ ̂s0

c )∫Ωsource

A( ̂σ)Iν( ̂σ)cos(2πν ⃗b ⋅ ̂σ/c)dΩ

−sin (2πν
⃗b ⋅ ̂s0

c )∫Ωsource

A( ̂σ)Iν( ̂σ)sin(2πν ⃗b ⋅ ̂σ/c)dΩ =

= cos (2πν
⃗b ⋅ ̂s0

c ) |V |cosϕ − sin (2πν
⃗b ⋅ ̂s0

c ) |V |sinϕ =

= |V |cos(2πντg − ϕ)

Note: 

We do not measure  

We measure R = something related to V, which resembles the 

r = FT(I )

FT(I )



The definition of visibility for quasi-monochromatic interferometers may be generalized to interferometers 
with finite bandwidths and integration times, which are necessary for high sensitivity. 

Complex visibility for a finite bandwidth interferometer

quasi-monochromatic

V = ∫Ωsource
(∫

ν0+Δν/2

ν0−Δν/2
A( ̂s)Iν( ̂s)e−2πiντgdν) dΩ finite bandwidth  centered on frequency Δν ν0

integral over the 
observation 
bandwidth

V = ∫Ωsource

A( ̂s)Iν( ̂s)e−2πiντgdΩ



The definition of visibility for quasi-monochromatic interferometers may be generalized to interferometers 
with finite bandwidths and integration times, which are necessary for high sensitivity. 

Complex visibility for a finite bandwidth interferometer

If the source brightness and response of the interferometer are ~constant over , the integral over 
frequency is just the FT of a rectangle function: 

Δν

V ≃ ∫ A( ̂s)Iν( ̂s)sinc(Δντg)e−2πiντgdΩ

For a finite bandwidth  and delay , 
the fringe amplitude is attenuated by a 
factor  . This effect is called 
bandwidth smearing.

Δν τg

sinc(Δντg)

quasi-monochromatic

finite bandwidth  centered on frequency Δν ν0

integral over the 
observation 
bandwidth
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The definition of visibility for quasi-monochromatic interferometers may be generalized to interferometers 
with finite bandwidths and integration times, which are necessary for high sensitivity. 

Complex visibility for a finite bandwidth interferometer

If the source brightness and response of the interferometer are ~constant over , the integral over 
frequency is just the FT of a rectangle function: 

Δν

For a finite bandwidth  and delay , 
the fringe amplitude is attenuated by a 
factor  . This effect is called 
bandwidth smearing.

Δν τg

sinc(Δντg)

quasi-monochromatic

finite bandwidth  centered on frequency Δν ν0

integral over the 
observation 
bandwidth

R = |V |cos(2πν0τg − ϕ)
sin(πΔντg)

πΔντg

Correlator response

V = ∫Ωsource
(∫

ν0+Δν/2

ν0−Δν/2
A( ̂s)Iν( ̂s)e−2πiντgdν) dΩ

V = ∫Ωsource

A( ̂s)Iν( ̂s)e−2πiντgdΩ

V ≃ ∫ A( ̂s)Iν( ̂s)sinc(Δντg)e−2πiντgdΩ



Complex visibility for a finite bandwidth interferometer

This attenuation can be eliminated in a given direction  (called the phase reference position or phase 
center) by introducing a compensating delay  in the signal path of the “leading” antenna. 

̂s0
τ0 ∼ τg

This is usually done with digital electronics by introducing an 
instrumental delay in the correlator. As Earth rotates,  must 
be continuously adjusted so that | |<< . If the delay is 
compensated, one can measure 

τ0
τ0 − τg Δν

R = |V |cosϕ

However:  varies with direction, so delay compensation can be 
exact in only one direction.

τg



Complex visibility for a finite bandwidth interferometer

This attenuation can be eliminated in a given direction  (called the phase reference position or phase 
center) by introducing a compensating delay  in the signal path of the “leading” antenna. 

̂s0
τ0 ∼ τg

Example: three wavelength components for the same physical baseline. For each , the separation 
between the fringes is . They get increasingly out of step at increasing offset from the phase center

λ
∼ λ /b
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Complex visibility for a finite bandwidth interferometer

This attenuation can be eliminated in a given direction  (called the phase reference position or phase 
center) by introducing a compensating delay  in the signal path of the “leading” antenna. 

̂s0
τ0 ∼ τg

The angular radius  of the “usable” field within which the 
bandwidth smearing is small can be derived by requiring that 

Δθ

ΔνΔτg < < 1

which implies
Δθ
θs

< <
ν

Δν

At larger angular offsets from the phase reference position, bandwidth smearing will broaden the 
synthesized beam by convolving it with a rectangle function of angular width .ΔθΔν/ν

This is why wide field images (large  can be made only by dividing the bandwidth into a number of 
narrower frequency channels, each satisfying *

Δθ)

*

using      and the synthesized beamwidth    |cΔτg | = bsinθΔθ θs ∼ λ /(bsinθ)

This is usually done with digital electronics by introducing an 
instrumental delay in the correlator. As Earth rotates,  must 
be continuously adjusted so that | |<< . If the delay is 
compensated, one can measure 

τ0
τ0 − τg Δν

R = |V |cosϕ



Complex visibility for a finite bandwidth

Δθ
θs

< <
ν

Δν

Δν < <
νθs

Δθ
=

1.5 × 109Hz ⋅ 4 arcsec
900 arcsec

∼ 7MHz

For example, the synthesized beam of the VLA “B” configuration 
(maximum b~10 km) at  cm is  rad ~ 4 arcsec.  

We want to image an angular radius =15 arcmin = 900 arcsec,  
corresponding to ~  (primary beam) of the VLA.

λ ∼ 20 θs ∼ 0.2/104

Δθ
θp /2

How small does our bandwidth need to be, in order to ensure little bandwidth smearing within a given  
offset ?Δθ

VLA

This imply a bandwidth



Complex visibility for a finite bandwidth and averaging times

Δν < <
νθs

Δθ
=

1.5 × 109Hz ⋅ 4 arcsec
900 arcsec

∼ 7MHz

For example, the synthesized beam of the VLA “B” configuration 
(maximum b~10 km) at  cm is  rad ~ 4 arcsec.  

We want to image an angular radius =15 arcmin = 900 arcsec,  
corresponding to ~  (primary beam) of the VLA.

λ ∼ 20 θs ∼ 0.2/104

Δθ
θp /2

How small does our bandwidth need to be, in order to ensure little bandwidth smearing within a given  
offset ?Δθ

VLA

This imply a bandwidth

Additionally, the synthesized beam might be broadened by time smearing, due to excessively large 
correlator averaging times. To avoid this, the correlator averaging time  must be short enough that Earth’s 
rotation will not significantly change the source position in the frame of the interferometer.

Δt

If the phase center is set to track the celestial pole, a source   away from the celestial pole will move with 
an angular rate  [rad/s], where P is the Earth’s sidereal rotation period.  

Δθ
2πΔθ/P

Δθ
θs

< <
ν

Δν



Complex visibility for a finite bandwidth and averaging times
How small does our averaging time need to be, in order to ensure little time smearing in an image of 
angular radius ?Δθ

VLA

Δt
1.4 × 104s

< <
θs

Δθ

P ∼ 104 s
2πΔθ

P
Δt < < θs

Again, for the VLA “B” configuration (maximum b~10 km) at  cm 
we have  rad ~ 4 arcsec 

We want to image an angular radius =15 arcmin = 900 arcsec,  
corresponding to ~  (primary beam) of the VLA.

λ ∼ 20
θs ∼ 0.2/104

Δθ
θp /2

Δt < <
θs

Δθ
⋅ 1.4 × 104s =

4 arcsec
900 arcsec

⋅ 1.4 × 104 s ∼ 60s





Interferometers in three dimensions

In general a baseline  is described by a set of three coordinates ( ). The -axis is in the reference 
direction  usually chosen to point the source.  

⃗b u, v, w w
̂so

The  and  axes point east and north in the  plane normal 
to the -axis. , ,  are the components of  in wavelength 
units.

u v (u, v)
w u v w ⃗b /λ

An arbitrary unitary vector has components ( ), where ̂s l, m, n
n = cosθ = 1 − m2 − l2

Because dΩ =
dldm

1 − m2 − l2

the three-dimensional generalization of the complex visibility definition  isV = ∫Ωsource

A( ̂s)Iν( ̂s)e−2πiντgdΩ

V(u, v, w) = ∫ ∫
Iν(l, m)

1 − m2 − l2
exp[−i2π(ul + vm + wn)]dldm

which is NOT a FT unless w = 0



Interferometers in three dimensions

V(u, v, w) = ∫ ∫
Iν(l, m)

1 − m2 − l2
exp[−i2π(ul + vm + wn)]dldm

For any interferometer, if we consider only directions close to  we have  and̂so n = cosθ ∼ 1 − θ2/2

V(u, v, w) ∼ exp(−i2πw)∫ ∫
Iν(l, m)

1 − m2 − l2
exp[−i2π(ul + vm − wθ2/2)]dldm

The factor  can be kept ~1 if , that is by imaging a field of view whose radius exp[i2πwθ2/2] wθ2 < < 1

θ < < w−1/2 ∼ (λ /b)1/2

For example, a   rad is sufficiently small for a baseline of . Then θ < < 0.01 104λ

V(u, v) = ∫ ∫
Iν(l, m)

1 − m2 − l2
exp[−i2π(ul + vm)]dldm

Approximation ok in (sub)mm domain, problems start at wavelengths > cm. 
A wider field image can be imaged with two-dimensional Fourier transforms by breaking it up into smaller 
facets, much like a fly’s eye, and merging the facets to make the final image.



Interferometer field of view



Interferometer aperture synthesis



Examples of realistic fringes
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