Interferometric images of radio sources

source brightness as a function of the sky coordinates In the previous lessons, we have seen that the correlator response of a radio interferometer is linked to the complex visibility, which is a function of the baseline coordinates and is the 2D Fourier transform of the

$$R = |V| \cos(2\pi\nu\tau_g - \phi)$$

where
$$|V| = \sqrt{R_c^2 + R_s^2}$$
 is the visibility amplitude

 $\phi = tan^{-1}(R_s/R_c)$ is the visibility phase

$$V = (u, v) = \iint A(x, y)I_{\nu}(x, y)e^{-2\pi i(ux+vy)}dxdy$$

$$I = (x, y) = \iint A(u, v)I_{\nu}(u, v)e^{2\pi i(ux+vy)}dudv$$
(quasi-monochromatic interferometer)
$$V(u, v) \leftrightarrow I(x, y)$$

$$V(u, v) \leftarrow I(x, y)$$

Interferometric images of radio sources

source brightness as a function of the sky coordinates In the previous lessons, we have seen that the correlator response of a radio interferometer is linked to the complex visibility, which is a function of the baseline coordinates and is the 2D Fourier transform of the

$$R = |V| \cos(2\pi\nu\tau_g - \phi)$$

where
$$|V| = \sqrt{R_c^2 + R_s^2}$$
 is the visibility amplitude

 $\phi = tan^{-1}(R_s/R_c)$ is the visibility phase

$$V = (u, v) = \iint A(x, y)I_{\nu}(x, y)e^{-2\pi i(ux+vy)}dxdy$$

$$I = (x, y) = \iint A(u, v)I_{\nu}(u, v)e^{2\pi i(ux+vy)}dudv$$
(quasi-monochromatic interferometer)
$$V(u, v) \leftrightarrow I(x, y)$$

$$V(u, v) \leftarrow I(x, y)$$

Interferometric images of radio sources: Fourier transform

Examples of 2D Fourier transform

Amplitude tells us "how much" of a certain spatial frequency

Amplitude tells us "how much" of a certain spatial frequency

Interferometric images of radio sources: Fourier transform

Examples of 2D Fourier transform

synthesized beam of 0.4" x 0.5" (Carniani et al. 2019) Example: Continuum emission for the host-galaxy of a quasar at $z\sim 6$, as seen by ALMA with a

Amplitude tells us "how much" of a certain spatial frequency

Examples of 2D Fourier transform

Amplitude tells us "how much" of a certain spatial frequency

Interferometric images of radio sources: Fourier transform

Examples of 2D Fourier transform

Amplitude tells us "how much" of a certain spatial frequency Phase tells "where" this spatial frequency component is located

Interferometric images of radio sources: Fourier transform

Examples of 2D Fourier transform

Amplitude tells us "how much" of a certain spatial frequency Phase tells "where" this spatial frequency component is located

We aim to sample V(u, v) at enough (u, v) points using distributed (relatively small) antennas to synthesize the equivalent large aperture antenna of size ($u_{\rm max}, v_{\rm max}$)

Use more antennas to increase sampling

- 1 pair of antennas \rightarrow 1 (u, v) sampling at a time
- N telescopes \rightarrow the number of samplings is N(N-1)/2 ("snapshot")

Use more antennas to increase sampling

- fill in (u, v) plane by exploiting Earth rotation ("track")
- I move antennas (observe with different antenna configurations)

Use more frequencies to increase sampling

- I need to determine how source structure changes with frequency
- "multi-frequency synthesis" for continuum imaging

2 antennas

8 antennas

Interferometric images and sampling of the (u,v) plane

Interferometric images and sampling of the (u,v) plane

amenae v 180 v seguetae 8

Interferometric images and sampling of the (u,v) plane

Another example of different sources as seen by ALMA

Convolved	Early Science 10 minutes	(16 antennas) 4 hours	Full Science (10 minutes	(50 antennas) 1 hour
	(0.47 mJy rms)	(0.091 mJy rms)	(0.14 mJy rms)	(0.057 mJy rm
436X 0:1/m66.0 	ADD In find for 000 In	All and the set of the	dot and a second and a second	ADX 61-Index 5
	Tata tata tata tata tata tata tata tata			
Note improved uv-coverage with time for same config.	00 00 00 00 00 00 00 00 00 00 00 00 00			M III California M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M

*Outer boundary (maximum baseline)

- no info on smaller (x,y) scales
- resolution limit

*Inner hole (antenna separation)

- no info on larger (x,y) scales
- extended structures are "invisible"

* Irregular and discrete sampling in between

- Missing information

Interferometric images and sampling of the (u,v) plane

the equivalent large aperture antenna of size ($u_{
m max}, v_{
m max}$) We aim to sample V(u, v) at enough (u, v) points using distributed (relatively small) antennas to synthesize

Use more antennas to increase sampling

- 1 pair of antennas $\rightarrow 1$ (u, v) sampling at a time
- N telescopes \rightarrow the number of samplings is N(N-1)/2 ("snapshot")

Use more antennas to increase sampling

- fill in (u, v) plane by exploiting Earth rotation ("track")
- I move antennas (observe with different antenna configurations)

Definitions:

- $V = 2D \ FT \left\{ B_{\text{primary}}^{\prime} I_{\text{source}} \right\};$ ` `>
- Irregular, limited sampling function:
- -S(u,v) = 1 at (u,v) points where visibilities are measured;
- -S(u,v) = 0 elsewhere;
- $B_{\text{dirty}} = 2D \text{ FT}^{-1} \{S\};$
- $I_{\text{dirty}} = 2D \text{ FT}^{-1} \{S.V\}.$

 $I_{| \text{ dirty }} = B_{\text{ dirty }} * \{B_{\text{ primary}}, I_{\text{ source }}\}.$

Bdirty: Point Spread Function (PSF) of the interferometer

The Fourier transform of the measured V(u, v) to the image plane gives us the **dirty image** $I_{\nu}^{D}(x, y)$

The Fourier transform of the measured V(u, v) to the image plane gives us the **dirty image** $I_{\nu}^{\mu}(x, y)$

However, doing science directly on the dirty image might be difficult: ok for relatively simple sources (e.g. point sources, symmetric disks).

create a clean image in which to perform our science In general, to determine the real $I_{\nu}(x, y)$, we need to <u>deconvolve</u> the dirty beam b(x, y) from $I_{\nu}^{D}(x, y)$ and

sidelobes of the dirty beam from the image) linear techniques to interpolate samples of V(u, v) into unsampled regions of the (u, v) plane (and remove The idea is to find a sensible model of $I_{\nu}(x, y)$ compatible with data: this is typically done by using non-

This requires knowing the beam shape (OK) and a priori assumptions on $I_{\nu}(x,y)$

The Fourier transform of the measured V(u, v) to the image plane gives us the **dirty image** $I_{\nu}^{D}(x, y)$

One of the most common deconvolution algorithms is the CLEAN algorithm (Hogborn 1974)

From visibilities to Images: deconvolution

