Spin—Boson model
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Let us consider a spin coupled to a harmonic oscillator
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where S, = ho, /2, a = x,y, z, and G, are the Pauli matrices. Here the
coupling strength v will be taken to be small.

The eigenvalues and the eigenstates of the unperturbed Hamiltonian (v =
0) are given by

Hyln,o.) = (€, — hzi—;azﬂn, 0,) (2)

with €, = hw(n + 1/2), 0, = £1.
We use the Fermi’s golden rule to calculate the transition rates up to the
leading order in ~:
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where we have defined E,, ,, = €, — hzgaz the eigenvalues of the unperturbed
energy eigenbasis. Recalling the equalities

t=4/—(@+a"), G,=-(6"+06), (4)

and inspecting eq. (3), we see that only transitions of the type n — n £ 1
are selected, and furthermore the constraint on the energy change results in
the equality h, = w.

Thus we have
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We now trace on the bath quantum number, and assume that the harmonic
oscillator is in a thermal state with probability
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and obtain
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with ¢ = 7y2h? /8mw. We now consider the Hamiltonian of the spin alone
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and notice that the rates satisfy the detailed balance relation
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