
Exercise set 1

AI

1 Thermalization

Consider a system with 3 energy levels, kϵ, k = 0, 1, 2.
At t ≤ 0 the system is at equilibrium at T0 = Tc, then at t > 0 it is

connected to a bath at temperature Th > Tc. Introduce the jump rates
between the states 0 ⇄ 1 ⇄ 2, assume they satisfy the detailed balance,
and express the general solution of the master equations as an expansion in
eigenfunctions along the lines of section V.7 in van Kampen’s book.

Repeat the calculation with T0 = Th, and Tc at t > 0.
Which processes converges faster to equilibrium, heating or cooling? Can

you change the system parameters to change the order of the convergence
rates?

2 Fokker-Planck equation

A particle in a viscous medium (temperature T , friction coefficient ζ) moves
in a 1D potential U(x). In the following assume the overdamped regime.

a)

1. Show that the differential operator in the Smoluchowski equation is not
Hermitian.

2. Can you make the equation self-adjoint?

3. Assume that the Brownian particle diffuses in a harmonic potential
U(x) = kx2/2 and find the general solution to the Smoluchowski equa-
tion. Hint: use the result from the previous point.

b) Now consider a periodic potential U0(x), with period L: U0(0) = U0(L).
By using the Smoluchowski equation:
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1. find the steady state probability distribution function (PDF) for the
particle position P (x, t → ∞), with 0 ≤ x ≤ L

2. find the steady state PDF when the same particle is also subject to a
constant force f , so the total potential reads U(x) = U0(x)− fx.

Hint: consider the general solution discussed during class, and impose the
boundary conditions.

3 Quantum Langevin equation for the har-

monic oscillator

Consider the expression for the steady state variance of the oscillator as given
in the notes (kB = 1)

〈
x(t)2

〉
=

∫
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.

In the upper half complex plane the integral has

• two simple poles at z± = i

2m
(γ ±

√
∆) with ∆ = γ2 − 4m2ω2

s .

• an infinite (but isolated) number of poles along the positive complex
axis zn = 2πinT/ℏ, n = 1, 2 . . .

The residues read
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 ,
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(ℏ2mω2
s + 2πnT (2πnmT − γℏ)) (ℏ2mω2

s + 2πnT (γℏ+ 2πnmT ))
.

Calculate the value of ⟨x(t)2⟩ first taking the weak coupling limit γ → 0 and
then the classical limit ℏ → 0. Repeat the calculation by inverting the order
of the limits.
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