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Nobel Prize in Chemistry in 1998

Photo from the Nobel Foundation

Photo from the Nobel Foundation
archive.

archive.
Walter Kohn John A. Pople

Prize share: 1/2 Prize share: 1/2

The Nobel Prize in Chemistry 1998 was divided equally between
Walter Kohn "for his development of the density-functional theory"

and John A. Pople "for his development of computational methods in
quantum chemistry”
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Postulates of quantum mechanics

Five postulates:
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Postulates of quantum mechanics

Five postulates:

@ The state of the system is completely described by a wave
function ¥

@ Observables are represented by operators
@ The expectation value of the observable represented by Als

_ [vrAvdr

W= Tvwar

@ Probability to find a particle in dr is proportional to ]\II|2
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Postulates of quantum mechanics

Five postulates:

@ The state of the system is completely described by a wave
function ¥

@ Observables are represented by operators
@ The expectation value of the observable represented by Als

_ [vrAvdr
(A = Jv=wdr
@ Probability to find a particle in dr is proportional to ]\II|2

@ Vv evolves in time according to
oV
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Hamiltonian operator

@ Hamiltonian operator H

Hrot

Te

~

Tn

To + Tn + Von + Vee + Vi

2
—Z " V? electron kinetic energy

- Z ~— Vi nuclear kinefic energy

2
e/ .
— E E K electron-nucleus attraction

e? .
Y = electron-electron repulsion
i<j "y

e2ZkZ, .
> nucleus-nucleus repulsion
PR
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Variational principle

@ An approximate wave function has an energy W above or
equal to the exact energy £y
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Variational principle

@ An approximate wave function has an energy W above or
equal to the exact energy £y

@ Proof:

@ Assume that a complete basis is given

Ay, = Ev, 1=0,1,2,...,00
(Wilwy) = oy
@ Approximate wave function

® = i av,
I=0

@ And its energy W

(®]H|)
(0]0)

S50 QW | Al )
> olg=0 QA (V| )

W =




Variational principle

@ W reduces to )
Y Yens

W= &/=0" "1
poyarer
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Variational principle

@ W reduces to

W — Y% O E
Yo af
(] WZEool’(W—Eo)ZO
W_E - Yo OrE £y — >0 af (B — Eo) >0

poyaren >0 a?

@ Ly is the lowest energy
@ Since 0,2 > 0and (E; — Ey) > 0, this completes the proof
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Born-Oppenheimer
approximation
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Born-Oppenheimer approximation

@ Protons and neutrons are ~ 1800 times more massive than
electrons
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Born-Oppenheimer approximation

@ Protons and neutrons are ~ 1800 times more massive than
electrons

@ Nuclei move much more slowly than electrons

@ Electronic dynamics with respect to nuclear motion is
instfantaneous

@ Nuclear and electronic motion are decoupled

@ Electronic energy (and properties) computed at frozen
nuclear geometry

@ Exceptions: conical intersection, photochemistry... (not
tfreated here)
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Born-Oppenheimer approximation

I:Ie = ?e‘i‘\/\/ee‘i‘ \A/eN
Hy = Tn+ Van

Fiot = Ho+Hn
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Born-Oppenheimer approximation
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Hyv = Tn+ Van

Fiot = Ho+Hn

@ Schrédinger equation

FiotViot =  EiotViot
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Born-Oppenheimer approximation

I:Ie = ?e‘i‘\/\/ee‘i‘ \A/eN
Hy = Tn+ Van

Fiot = Ho+Hn

@ Schrédinger equation
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foVo(rR) = Es(R)Vo(r:R)

E. Coccia (DSCF) 10/77



Born-Oppenheimer approximation

I:Ie = ?e‘i‘\/\/ee‘i‘ \A/eN
Hy = Tn+ Van

Fiot = Ho+Hn

@ Schrédinger equation
FrotWior = ErotWior
Viot(,R) = Wn(R)Ve(rR)
FoWo(;R) = Eo(R)Wo(r;R)
(Hn+ Ee(R)VN(R) = EotWn(R)
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Born-Oppenheimer approximation

I:Ie = ?e‘i‘\/\/ee‘i‘ \A/eN
Hyv = Tn+ Van

Fiot = Ho+Hn

@ Schrédinger equation

FiotViot = EiotVior
Viot(I,R) = Wn(R)We(NR)
FeWe(rR) = Eo(R)We(r;R)
(Fn + Eo(R)Wn(R) Eiot¥n(R)

@ Fromhereon, WV =V,, H=H, and E = E,
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Born-Oppenheimer approximation

@ V depends parametrically on the nuclear coordinates

@ V provides a potential energy surface (PES) upon which the
nuclei move: E(R)

@ Electron-nucleus correlation removed
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Born-Oppenheimer approximation

v depends parametrically on the nuclear coordinates

V¥ provides a potential energy surface (PES) upon which the
nuclei move: E(R)

Electron-nucleus correlation removed

Neglect of the nuclear-electron coupling is usually only a
minor approximation compared with other (numerical)
errors

Error in H, is about 104 Hartree
Even better for heavier nuclei
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Born-Oppenheimer approximation

v depends parametrically on the nuclear coordinates

V¥ provides a potential energy surface (PES) upon which the
nuclei move: E(R)

Electron-nucleus correlation removed

Neglect of the nuclear-electron coupling is usually only a
minor approximation compared with other (numerical)
errors

Error in H, is about 104 Hartree
Even better for heavier nuclei
Vv is an additive constant to E(R)
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Potential energy surface

@ PES: hypersurface of the potential energy of a collection of atoms
over all possible arrangements

@ In general, 3K — 6 degrees of freedom (K number of nuclei)
@ Chemically interesting regions of the PES

ABC molecule "AB

120
80

40 |

Energy (kcal mol™")
Energy (kcal mol™)

\
1 25 4
rag (A) ’ s (A)
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Hartree-Fock method
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Solving the Schrédinger equation

HY = EY

l‘}’ = single determinant
HF equations

Additional Addition of
approximations more determinants

Semi-empirical Convergence to
methods exact solution
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Solving the Schrédinger equation

HIGHER ACCURACY
>
CONFIGURATION
HARTREE -
HARTREE-FOCK INTERACTION
*Independent electrons «Correct antisymmetry *More Slater determinants
*Molecular orbitals + +Slater determinant +Electronic correlation

E. Coccia (DSCF) 15/77



Hartree product

@ Independent-particle model

~ N ~
Hp = Z h;
i
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Hartree product

@ Independent-particle model
~ N ~
He = Y h
i
K

A T o 2
h,’ — —EV, - Z a
K
@ Eigenfunctions of h; (one-electron molecular orbitals)
higi = €
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Hartree product

@ Independent-particle model
~ N ~
He = Y h
i
K
R Zi
h, — —EV, - Z a
K
@ Eigenfunctions of h; (one-electron molecular orbitals)

higi = eio;

@ Eigenfunctions of I:/|p (product of ¢;)
Vpp = 192N

N
HpWup = (ZG/) Wip

i

E. Coccia (DSCF) 16/77



Hartree Hamiltonian

@ Including interelectronic repulsion is challenging
@ Vp good to estimate the energy from the “true”
Hamiltonian H?
@ Orbitals ¢; minimizing (Wyp|H|Wyp) are eigenfunctions of
K
O 1 2 Zk ,
hi = —5Vi- zk:f/k + Vij}

= h+ Vi{j}
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Hartree Hamiltonian

@ Including interelectronic repulsion is challenging

@ Vp good to estimate the energy from the “true”
Hamiltonian A?

@ Orbitals ¢; minimizing (\UHP]I:IWHF)) are eigenfunctions of

K

2 . ] 2 Zk ,
hi = —5Vi _zk:r,-k+\/’{j}
= h/+\/i{j}
vty = 3 [ Har
A
p = lol
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Hartree Hamiltonian

@ Including interelectronic repulsion is challenging

@ Vp good to estimate the energy from the “true”
Hamiltonian A?

@ Orbitals ¢; minimizing (\UHP]I:IWHF)) are eigenfunctions of

5 1, &2 .
hi = —5Vi- zk:f/k + Vij}
= h+ Vi{j}
iy = 3 [ e
A
p = lol
Biﬁbi = €0

@ V;{j} describes the repulsion between electron in ¢; and the
others in all ¢;
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Hartree Hamiltonian

@ Solving

>

i

€idi M
implies knowledge of ¢;
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Hartree Hamiltonian

@ Solving

>

i = € M
implies knowledge of ¢;
@ Self-consistent field (SCF) method

@ Initial guess for ¢; to get ﬁ);
@ Solving Eq. (1) = new ¢,
@ Update h;, and solve again Eq. (1)
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Hartree Hamiltonian

@ Solving

>

i = € M
implies knowledge of ¢;
@ Self-consistent field (SCF) method
@ Initial guess for ¢; to get ﬁ);
@ Solving Eq. (1) — new ¢,

@ Update h;, and solve again Eq. (1)
© Repeat points 2 and 3 until convergence

@ Convergence criterion: (Estep a+i — Estep a) < Ethr OF €aCh
(gi,s’rep a+l — gi,s‘re|o 0) < Efpr
@ Tight convergence: more SCF cycles needed
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Hartree Hamiltonian

@ Vp is eigenfunction of
2 N 2
He = Y h
i
N

Ep = Z €
i
@ Near independent-particle model: each electron sees an
average repulsiog from the other electrons
@ Overcounting in Ep

=] |61[%|¢512
E - E'P_2.Z// e
i#]
~ 1
= EIP_QZJIJ
i




Antisymmmetry

@ Spin quantum number for electrons
@ Spin functions o (1, +4) and 3 (1. —4) eigenfunctions of 5,
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Antisymmmetry

@ Spin quantum number for electrons
@ Spin functions o (1, +4) and 3 (1. —4) eigenfunctions of 5,

@ Pauli exclusion principle: no two electrons with the same set
of quantum numbers

@ One a and one § electron in a given molecular orbital

@ Electronic V is anfisymmetric: ¥ changes sign when the
coordinates of two electrons are interchanged

Islj v (q]7"'7q/'7”'7qj7'”7qN)
W(q]7"‘ 7qj7"' 7qi7"' 7qN)
— _\U(q];"'th"'7qj7"‘7qN)

@ q;: spatial + spin coordinates for electron i
° IA?,-,-: operator exchanging coordinates of electrons i and j
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Antisymmmetry
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Antisymmmetry

) W = ga(1)a(1)dp(2)a(2)
Pralpa(1)a(1)66(2)a(2)] = ép(1)a(1)¢a(2)a(2)
# —pa()a(1)p(2)a(2) = —*Wpp

—_ o~
R R —
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Antisymmmetry

) Wip = da(Na(1)gp(2)a(2)
Pralpa(1)a(1)66(2)a(2)] = ép(1)a(1)¢a(2)a(2)
# —pa()a(1)p(2)a(2) = —*Wpp

While

Sugp = \}E[%(])a(])%@)a(?)—¢o(2)a(2)¢b(1)a(1)1
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Antisymmmetry

) Wip = da(Na(1)gp(2)a(2)
Pralpa(1)a(1)66(2)a(2)] = ép(1)a(1)¢a(2)a(2)
# —pa()a(1)p(2)a(2) = —*Wpp

While
Sugp = \/]§[¢o(])a(])¢b(2)0‘(2)_¢o(2)0‘(2)¢b(])0‘(])]

Pr’Vsp = L[qﬁa(?)a(?)%(])a(])—¢a(1)a(1)¢b(2)a(2)1
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Slater Determinant

@ Slater determinant (SD)

1
SWep = —=

V2

@ P, interchanges the two rows: property of a determinant
(Math overview)

¢a(a(1) Cbb(])a(])‘
¢a(2)a(2)  dp(2)a(2)
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Slater Determinant

@ Slater determinant (SD)

1
SWep = —=

V2

@ P, interchanges the two rows: property of a determinant
(Math overview)

@ In general

¢a(a(1) Cbb(])a(])‘
¢a(2)a(2)  dp(2)a(2)

i(1) 1) - (1)

1 |1(2) o(2) - N (2)

Yoo = NIl N
P1(N) o(N) --- Pn(N)

Vsp = [th1¢hofs - )
@ v; is a spin-orbital
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Slater determinant

@ Electron repulsion energy with 3Wgp

1
Cusp| L Pug) = / W Wspaty o oyl

n2
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Slater determinant

@ Electron repulsion energy with 3Wgp

1
Cusp| L Pug) = / W Wspaty o oyl

n2

1 1
= 5/\¢a(1)|2|04(1)l2f |66(2) % |a(2)[? i Aoy Aty Ao
12
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Slater determinant

@ Electron repulsion energy with 3Wgp

n2

sl & [PWsp) = [ S SWspa duratader
12
1 1
= 5 [ 162D Pla(DP - [66(@)Pla(2)Pdn o cirpdly

- /(150(])‘1513(])|a(])|2r]]72¢b(2)¢a(2)|04(2)|2dr1dwldTQdWQ
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Slater determinant

@ Electron repulsion energy with 3Wgp
CWsp| £ PUsp) :/S\USD%SWSandW]erde
= 5 [ eVl lon(2)Pla(2)dr dr ity
- /(150(1)¢b(])|a(])|2r;|72¢b(2)¢a(2)|04(2)|2dr1dwldTQdWQ

1 1
+ 5/\¢o(2)|2|04(2)|2f|¢b(1)|2\04(1)|2df1dw1drzdwz
12
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Slater determinant

@ Electron repulsion energy with 3Wgp
1
vl L o) = [V SWsoah dditpdl
12
1 1
= 5 / 6a(1)Pla(1)2-106(2) Pla(2) o dun atodlcy
12
1
- / 6a(1)66()|a(1)/*06(2)00(2)|o(2)| 0 clr Ol
1 1
+ 5 [106@Pla@)R L 66(1)Pa()Pdn dorditodes
= 5 [ bV los@Panct (Joo)
- / %(1)%(1)—<z>b(2)¢o(2)c/ndr2 (Kob)

+ / 6a(2 |2—\¢b1)|2dndr2 (Joo)
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Slater determinant

@ Electron repulsion energy with 3Wgp
CWsp| £ PUsp) :/S\USD%SWSandW]erde
= %/\%(1)|2|04(])|2r3*2|¢b(2)|2\04(2)|2df1dwdf2dw2
- /(150(])¢b(])|a(])|2r;|72¢b(2)¢a(2)|04(2)|2dr1dwldTQdWQ
+ 5 [ 16a(2Pla@ P lon(1Pla(1)dn draitacluy
= 5 [ bV los@Panct (Joo)
- / 6a(66(1)=00(2)sa(2)nclty (Kot)

+ / 6a(2 |2—\¢b1)|2dndr2 (Joo)

- ob_
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Slater determinant

@ Exchange integral K, Fermi hole around each electron
@ Correlation effect with the same spin
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Slater determinant

@ Exchange integral K, Fermi hole around each electron
@ Correlation effect with the same spin
@ Instead, with

1
V2

@ Electron repulsion energy

"Wsp =

[Pa(1)a(1)¢6(2)5(2) — ¢a(2)a(2)¢p(1)5(1)]

ha

1
("Wsp| - ["Wgp) :/1WSDE1\USDdr1dW1dr2dW2
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Slater determinant

@ Exchange integral K, Fermi hole around each electron
@ Correlation effect with the same spin
@ Instead, with

1
V2

@ Electron repulsion energy

"Wsp =

[Pa(1)a(1)¢6(2)5(2) — ¢a(2)a(2)¢p(1)5(1)]

1
("Wsp| - ["Wgp) :/1WSDE1\USDdr1dW1dr2dW2

ha

= 5 [ eI L 0n(@)PI3) o cen it
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Slater determinant

@ Exchange integral K, Fermi hole around each electron
@ Correlation effect with the same spin
@ Instead, with
1
Wgp = \—@[%(1)&(1)%(2)&2) — ¢a(2)a(2)dp(1)5(1)]
@ Electron repulsion energy

1
("Weo| 7> |'Wsp) :/1WSDE1\USDdr1dW1dr2dW2

= 5 [ eI L 0n(@)PI3) o cen it

- /¢a(1)¢b(1)a(1)6(1)%%(2)%(2)@(2)5(2)%dw1dr2dw2
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Slater determinant

@ Exchange integral K, Fermi hole around each electron
@ Correlation effect with the same spin
@ Instead, with

1

\@[%(1 )a(1)¢6(2)B(2) — da(2)a(2)gp(1)B(1)]

@ Electron repulsion energy

"Wsp =

1
("Wsp| - ["Wgp) :/1wSDE1\USDdr1dW1dr2dW2

= 5 [ eI L 0n(@)PI3) o cen it
_ /¢O(])¢b(] )04(] )6(] )ﬁ%¢b(2)¢o(2)a(2)ﬁ(2)dr] dUJ] erdW2

1 1
+ §/\¢a(2)|2|a(2)|2f|¢b(1)|]\5(2)|2df1dw1dfzdw
12

1 1
= §Job + EJab = Job
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Hartree-Fock method

@ SCF extension to Slater determinants
@ Orbitals ¢; eigenfunctions of the Fock operator

- 1

g2 =k (e
f 5Vi Zk:,ik+\/, U}
VI = Z(J,-—k,-)
J#
J62) = [ o dn]¢>(2>

Kioy(2) = [ / ¢,-(1),12</>j(1)dr1] 51(2)
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Hartree-Fock method

@ Hartree-Fock energy

N 1 N N
R S 9 YT
i

i
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Hartree-Fock method

@ Hartree-Fock energy
N 1NN
B = Y4 =52 >0
i i

@ Koopmans’ theorem

e Frozen MO approximation
e lonization energy equal to —ef
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Restricted and unrestricted Hartree-Fock

@ RHF: Restricted Hartree-Fock

@ Same spatial orbital for o and 3
e Even number of electrons, singlet state
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Restricted and unrestricted Hartree-Fock

@ RHF: Restricted Hartree-Fock

@ Same spatial orbital for o and 3
e Even number of electrons, singlet state

@ UHF: Unrestricted Hartree-Fock
@ No restriction on the form of spatial orbitals
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Restricted and unrestricted Hartree-Fock

@ RHF: Restricted Hartree-Fock

@ Same spatial orbital for o and 3
e Even number of electrons, singlet state

@ UHF: Unrestricted Hartree-Fock
@ No restriction on the form of spatial orbitals

@ ROHF: Restricted Open-shell Hartree-Fock
e Same spatial part of doubly-occupied orbitals

. .
o+ o+
L
L S

singlet doublet doublet
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Restricted and unrestricted Hartree-Fock

@ RHF:

e Ethanol CH3CH,OH
e 26 electrons, closed-shell molecule
e 13 different occupied spatial MOs
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Restricted and unrestricted Hartree-Fock

@ RHF:
e Ethanol CH3CH,OH
@ 26 electrons, closed-shell molecule
e 13 different occupied spatial MOs
@ ROHF:
e Methyl radical CH;
e 9 electrons, open-shell system
@ 4 doubly-occupied MQOs, 1 for the ninth electron
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Restricted and unrestricted Hartree-Fock

@ RHF:

e Ethanol CH3CH,OH

@ 26 electrons, closed-shell molecule

e 13 different occupied spatial MOs
@ ROHF:

e Methyl radical CH;

e 9 electrons, open-shell system

@ 4 doubly-occupied MQOs, 1 for the ninth electron
@ UHF:

@ Same system

@ 5aMOs, 4 3 MOs

e Spin contamination: UHF wave function is not a pure spin

state
e (5% =0.75 for a doublet, = 2 for a friplet
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Linear combination of atomic orbitals (LCAO)

@ Molecular orbitals represented by a basis set (see Basis sets)

o = Z CLX,LL
n
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Linear combination of atomic orbitals (LCAO)

@ Molecular orbitals represented by a basis set (see Basis sets)

o = Z CLX,LL
n

@ Atomic orbital (AO) on each nucleus
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Linear combination of atomic orbitals (LCAO)

@ Molecular orbitals represented by a basis set (see Basis sets)

o = Z CLX,LL
n

@ Atomic orbital (AO) on each nucleus
@ Effective linear combination:

e AO energies are comparable
e AO must overlap
@ Same symmetry properties
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LCAO: Ny

Atomic orbital Molecular orbital

2 QO 22 SO

\+\’O®@02p
Q P
o O

2px,2py .
O =
3 ,2p
>

7529

o 0 O
25 ' ’

e @ ) e
s
T
@ ogls
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LCAQO: water

/
2p, /’2p,(,,-"2p,.

o
— ™ ss0ev
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LCAQO: uracil

HOMO
15=10.04 eV

:&

0&

HOMO-1
15=11.89 eV

)

k

HOMO-2
15=12.25 eV

HOMO-3

1,=13.17 eV

F

&i

HOMO-4

1,=14.29 eV
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Electron density: ethylene

p=>_ |6

Isodensity surface
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Configuration Interaction
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Correlation energy

@ Correlation energy
Ecorr = EO - EHF

@ Ly is the lowest energy with a single Slater determinant, with
MOs from HF equations
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Correlation energy

@ Correlation energy
Ecorr = EO - EHF

@ Ly is the lowest energy with a single Slater determinant, with
MOs from HF equations

@ Even lower energy considering a more sophisticated wf

V=cCcoVur+ 1V + Vs + ...

@ Electronic correlation: dynamical and static

E. Coccia (DSCF) 35/77



Dynamical correlation

@ Correlated motion of each electron with every other is
neglected in HF

@ HF does not account for dynamical correlation
@ Due to electron-electron interaction
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Dynamical correlation
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neglected in HF

@ HF does not account for dynamical correlation
@ Due to electron-electron interaction

@ Recovered in density functional theory (see Density
functional theory) in different flavours
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Dynamical correlation

@ Correlated motion of each electron with every other is
neglected in HF

@ HF does not account for dynamical correlation
@ Due to electron-electron interaction

@ Recovered in density functional theory (see Density
functional theory) in different flavours

@ Explicit electron-electron distance in ¥ (quantum Monte
Carlo)
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Static correlation

Ethylene torsional barrier
V= cygVg+ 1V,

SINGLET ETHYLENE

T T T T T T T T T T

100 - *
@ -8 method 1 with two dets
= 80+ =--» method 2 with two dets 4
g +  method 3 with two dets S
HOMO = 60F 4 method 4 with one det o * i
L ¥ method 5 with one det e -*
o 40F ridd B
< e
4
LUMO
PLANAR TWISTED ‘s,
-LOE, L L L 1 1 1 L L ? 1
Qo 900 0 10 20 30 40 S50 60 70 80 90

Torsional angle (deg)
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Configuration Interaction

occ vir occ vir
} :} : ayra } :§ : ab,yab
i a ij a,b

@ Post-HF method

@ V¢: singly-excited Slater determinant

@ V2. doubly-excited Slater determinant
° H# Slater determinant as reference

1
|

F—

_}_
_l_

_l_I_ |1 | |1 1
v v v |
|t | ¢ |1 |t | t
v v v v v

L Y J L T J
Singl Doubl
e exlgi?e); egiltez
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Configuration Interaction

@ Optimization of the CI coefficients cq, cf, c,.jc.’b...
@ MOs are not re-optimized, MOs from HF calculation
@ Secular equation in Slater-determinant space

Hyw—E  Hp - Hin
Hay Hopp—E --- Hon 0
Hni Hno - Hw-—E

e With )

@ V,, and V¥, are Slater determinants
@ H: electronic Hamiltonian
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Which excitations to include?

occ vir occ vir occ Vir
leNTte] ab,yab obc abc
V= COWHF"’EECW—FEEC\U—FE gc,jk 50C
ij ab ij:k a,b,c
N g "
Brillouin’s theorem: (We|H|W¢) =0
Whe Wi Wi e
Wue | Eyp o dense 0
w0 dense sparse very sparse
d
e
W,/a” n sparse sparse extremely sparse
:
wie | o | ol e’;gi’r'::'y extremely sparse
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Example: H, energy

@ H-H distance of 0.75 A
@ Minimal basis set STO-6G (see Basis sets)

W = Wy + C V22
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Example: H, energy

@ H-H distance of 0.75 A
@ Minimal basis set STO-6G (see Basis sets)

W = Wy + C V22

® Eye =-1.12473 Ha
Eci =-1.14574 Ha (> 50 kJ mol~! lower)
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Example: H, energy

@ H-H distance of 0.75 A
@ Minimal basis set STO-6G (see Basis sets)

W = Wy + C V22

® Eye =-1.12473 Ha
Eci =-1.14574 Ha (> 50 kJ mol~! lower)

@ |col2 = 0.986, |ci |2 =0.013

E. Coccia (DSCF) 41/77



Cl with doubles (CID)

@ Example: Hy, with a minimal basis set
@ Two HF orbitals, ¢ and o*
@ Double excitatfion: both electrons in o*
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Cl with doubles (CID)

@ Example: Hy, with a minimal basis set

@ Two HF orbitals, o and o*

@ Double excitation: both electrons in o*
@ Secular equation

‘HH — Ecip Ha | _ g

Hp; Hos — Ecip

@ With solutions

Ecp+ = 5

Hiy + Hao £ \/(H22 — Hi)? +4H122}

@ Ecp,_ is the CID ground-state energy
@ Eyp = Hyyand Hyp > 0
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Role of multiple excitations

@ H,O energy with cc-pVDZ basis set (see Basis sets)
@ 90% of Ecorr recovered with double excitations

Level E (Hartree) | Econr (Hartree) | Econ (kd mol—1)
HF -76.02129 0.00000 0.00
CISD -76.22749 -0.20620 -541.37
CISDT -76.23066 -0.20937 -549.70
clisb1Q | -76.23970 -0.21841 -573.43
Full ClI -76.24006 -0.21877 -574.38
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Size of the Cl matrix

Electron
correlation

Full CI

CISDTQ
CISDT
CISD

CIS

HF HF limit

SZ DZP TZP QZP SZP 6ZP ..

@ Full CI: all excited determinants are included, provided a finite
basis set

@ With N electrons and B basis functions (2B spin orbitals), the
number S of Slater determinants is

- )

@ N=10,B=20 - S~85x 108

E. Coccia (DSCF)



Density functional theory
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Electronic density

@ Vis a complicated function of 3N and N spin coordinates
@ Also, V is not directly referencing to a physical quantity
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Electronic density

@ Vis a complicated function of 3N and N spin coordinates
@ Also, V is not directly referencing to a physical quantity

@ Some physical observable of a reference object?

@ Electronic density

N = /p(r)dr

0p(Ra)
ORA

= —2Zap(Ra)

@ R4 position of nucleus A
@ ;. rotationally-averaged p
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Electronic density

@ Vis a complicated function of 3N and N spin coordinates
@ Also, V is not directly referencing to a physical quantity

@ Some physical observable of a reference object?

@ Electronic density

N = /p(r)dr

0p(Ra)
ORA

= —2Zap(Ra)

@ R4 position of nucleus A
@ ;. rotationally-averaged p

@ How fo get the energy from p? — Density functional theory
(DFT

E. Coccia (DSCF) 46/77



Rigorous foundation of DFT

@ Electrons interact with each other and with an external
potential

@ External potential: nuclear attraction in atoms and
molecules
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First Hohenberg-Kohn theorem

@ Existence theorem

@ The external potential (and hence the total energy) is a
unigue functional of the electron density

@ Reductio per absurdum
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First Hohenberg-Kohn theorem

@ Existence theorem

@ The external potential (and hence the total energy) is a
unigue functional of the electron density

@ Reductio per absurdum

@ Two different external potentials V4 and v, define the same
nondegenerate ground-state density pg

Vg — Ha — Vo q; EO,o

Vo — Hp — Vo p, Eop

@ According to the variational principle

Fo.o < (Wop|Ha|Wop)

E. Coccia (DSCF) 48 /77



First Hohenberg-Kohn theorem

Foa < (WoplHalWop)

Fooa < (Wop|Ha— Hp+ HplWop)
< (WoplHa — FplWop) + (Vo bl Hp|Wo )
< (VoplVa— W|Vop) + Eop
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First Hohenberg-Kohn theorem

Foa < (WoplHalWop)

Fooa < (Wop|Ha— Hp+ HplWop)
< (WoplHa — FplWop) + (Vo bl Hp|Wo )
< (VoplVa— W|Vop) + Eop

@ Infegral form
oo < [ (ValD) ~ To(0)po(n)0l + Eos @
oo < [ (%(r) ~ %00l + Eo ©)

@ (2)+(3)



First Hohenberg-Kohn theorem

Foo+Eop < / (U6(r) — Va()po()dr + / (Uo(r) — Un(r))po(r)dit
+ EO,b + EO,G
< / (1) — Valr) + Valr) — O6(0))po(r)ar + Eop + Eo

< FEyp+ Eye impossible!

@ Initial assumption incorrect

@ The nondegenerate ground-state density pg must determine ¥, H
and Vg
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Second Hohenberg-Kohn theorem

@ The first theorem only states a pg exists
@ Variational principle applied to the density
@ Given an approximate p’

N:/,o’(r)dr

@ /' is positive definite everywhere
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Second Hohenberg-Kohn theorem

@ The first theorem only states a pg exists
@ Variational principle applied to the density
@ Given an approximate p’

N = / o (nar
@ /' is positive definite everywhere

E[p'] > Eolpol

@ Equality holds when p’ is the exact ground-state density pg

E. Coccia (DSCF) 51/77



Kohn-Sham approach

@ Fictitious system: non-interacting electrons
@ Same ground-state p(r) as for the real system (electrons do
intferact!)
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Kohn-Sham approach

@ Fictitious system: non-interacting electrons
@ Same ground-state p(r) as for the real system (electrons do

intferact!)
@ Energy functional
Ep(M = Talp(0] + Vaelp(n)] + Veolp(D)] + AT[p(1)] + AVee[p(1)]
Tnilp(n)] — kinetic energy for noninteracting electrons
Vielp()] — nucleus-electron interaction
Veelp(n)] — classical electron-electron repulsion
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Kohn-Sham approach

@ Fictitious system: non-interacting electrons
@ Same ground-state p(r) as for the real system (electrons do

intferact!)
@ Energy functional
Elp(n)] Tilp(O] + Vae[o(N] + Veelp(1)] + AT[p(N)] + AVeo[o(1)]
Tnilp(n)] — kinetic energy for noninteracting electrons
Vielp()] — nucleus-electron interaction
Veelp(n)] — classical electron-electron repulsion
AT[p(n] — correction to kinetic energy
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Kohn-Sham approach

@ Fictitious system: non-interacting electrons
@ Same ground-state p(r) as for the real system (electrons do

intferact!)
@ Energy functional
Ep(M = Talp(0] + Vaelp(n)] + Veolp(D)] + AT[p(1)] + AVee[p(1)]
Tnilp(n)] — kinetic energy for noninteracting electrons

Vielp()] — nucleus-electron interaction
Veelp(n)] — classical electron-electron repulsion
AT[p(n] — correction to kinetic energy

AVeelp(n)] — nonclassical electron-electron repulsion

nuclei

Vhelp(r) Z / |r—Rk\
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Kohn-Sham approach

@ Fictitious system: non-interacting electrons
@ Same ground-state p(r) as for the real system (electrons do

intferact!)
@ Energy functional
Ep(M = Talp(0] + Vaelp(n)] + Veolp(D)] + AT[p(1)] + AVee[p(1)]
Tnilp(n)] — kinetic energy for noninteracting electrons

Vielp()] — nucleus-electron interaction
Veelp(n)] — classical electron-electron repulsion
AT[p(n] — correction to kinetic energy

AVeelp(n)] — nonclassical electron-electron repulsion

nuclei

Veelp(n] = Z / / |r, clr,dr,

i<j

@ T.: sum of kinetic energy of the electrons
E. Coccia (DSCF) 52/77




Kohn-Sham approach

@ Using molecular orbitals

N
p="> (¢ile)

i
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Kohn-Sham approach

@ Using molecular orbitals

N
p="> (¢ile)

i

@ the energy becomes

N

nuclei
Elp(n] = Z <<¢/’ - %VIQMSI (¢il Z |r "(bl )

i

N
+ Z<¢I ;/ |I‘p£r2','| ar|¢;) + Exc[p(r)]

@ Exc[p(r)]: exchange-correlation energy (contains AT and
Avee)
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Kohn-Sham approach

@ Find the ¢; set minimising E

¢ = ey
1 nuclei 7 (r)
ks _ oo f P
M= T L R T g Ve
OE
ch = 8;c

@ In principle, one gets exact ground-state energy £
@ Exact density p provided by orbitals ¢;
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Kohn-Sham approach

@ Separable non-interacting Hamiltonian Ay, = S hS
@ Slater determinant of optimized ¢; as eigenfunction of I:In,-

N

Fnilérdz - on) = eildrda--- on)

li

@ Fictitious system of non-interacting electrons with exact
density

@ T, is alarge fraction of the actual system
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Kohn-Sham approach

@ Separable non-interacting Hamiltonian Ay, = S hS

@ Slater determinant of optimized ¢; as eigenfunction of I:In,-

N

Fnilérdz - on) = eildrda--- on)

li

@ Fictitious system of non-interacting electrons with exact
density

@ T, is alarge fraction of the actual system

@ LCAO approach to represent molecular orbitals

E. Coccia (DSCF) 55/77



Exchange-correlation functionals

@ HF theory is approximate, DFT is in principle exact
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Exchange-correlation functionals

HF theory is approximate, DFT is in principle exact
No guidance 1o find Exc
Practical use of DFT implies approximations in Exc

DFT can violate the variational principle, because of Ex

o H atom energy with BPW91 = -0.5042 Hartree
e Exact H energy is -0.5 Hartree

In general Exc = Ex + E¢
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Exchange-correlation functionals

Evelo(1)] = / p(Dexclp(n)] i

@ ¢xc: exchange-correlation energy density
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Exchange-correlation functionals

Evelo(1)] = / p(Dexclp(n)] i

@ ¢xc: exchange-correlation energy density
@ Local density approximation (LDA):
@ e, (Exo) only from density values
e Local functional
e Uniform electron gas: p has the same value at every position
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Exchange-correlation functionals

Evelo(1)] = / p(Dexclp(n)] i

@ ¢xc: exchange-correlation energy density
@ Local density approximation (LDA):

@ ey (Exe) only from density values
e Local functional

e Uniform electron gas: p has the same value at every position
@ Exchange energy Ex computed analytically

) = ~Ce [ po(ar
dDA _ o)
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Exchange-correlation functionals

Evelo(1)] = / p(Dexclp(n)] i

@ ¢xc: exchange-correlation energy density
@ Local density approximation (LDA):
@ e, (Exo) only from density values
e Local functional
e Uniform electron gas: p has the same value at every position

@ Exchange energy Ex computed analytically

) = ~Ce [ po(ar

dDA )8

@ E. estimated by accurate quantum Monte Carlo
calculations

E. Coccia (DSCF) 57 /77



Exchange-correlation functionals

@ LDA is widely used in condensed-matter community

@ Approximation of a slowly varying electron density is rather
valid (metals)
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@ Approximation of a slowly varying electron density is rather
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@ LDA in a molecule: €24 at every ris the same as it would be
for the uniform electron gas with the same p atr

@ In molecules, p is not spatially uniform!
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Exchange-correlation functionals

@ LDA is widely used in condensed-matter community

@ Approximation of a slowly varying electron density is rather
valid (metals)

@ LDA in a molecule: €24 at every ris the same as it would be
for the uniform electron gas with the same p atr

@ In molecules, p is not spatially uniform!
@ LDA for molecules is a rough approximation

E. Coccia (DSCF) 58/77



Exchange-correlation functionals

@ Correction to LDA: include nonlocal effects, i.e. the gradient
of the density

@ Generalized gradient approximation (GGA)

XC — =XC

GGA _ DA [Vp(r)]
€ € + Aexe [p4/3(r)
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Exchange-correlation functionals

@ Correction to LDA: include nonlocal effects, i.e. the gradient
of the density

@ Generalized gradient approximation (GGA)

XC — =XC

GGA _ DA [Vp(r)]
€ € + Aexe [p4/3(r)

@ PBE is likely the most known GGA functional

&= P
a
F = 1 -
(x) +a 1T b2
[Vo(r)|
X =
A3
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Exchange-correlation functionals

- (°)
14+ AQ?
_ ~f3 2
B(g) = cf3in|1+dg <1+AQQ+A2QA)]

-1

ELDA
A = d|exp —C3—1
cfy

60 = Sl01+0%°+(1- 0%

— 2B
_ Pa—pPB
C Pa +pﬂ

@ 0, b, c and d are parameters
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Exchange-correlation functionals

@ Meta-GGA: including a dependence from the Laplacian of
the density V2p
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Exchange-correlation functionals

@ Meta-GGA: including a dependence from the Laplacian of
the density V2p

@ Hybrid functionals: including a part of exact (HF) exchange
Exe = (1 — a)ERT + qEHF

@ DFT = LDA or GGA etc.
@ ais an empirical parameter
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Exchange-correlation functionals

@ Meta-GGA: including a dependence from the Laplacian of
the density V2p

Hybrid functionals: including a part of exact (HF) exchange

Exe = (1 - a)Eg' + aB’

DFT = LDA or GGA etc.
a is an empirical parameter
B3LYP hybrid functional

EBYP — (1 — @)ELPA + aEHF + bAER + (1 — ¢)EPA + cELP

a=0.20, b=0.72 and ¢ = 0.81 (fitted parameters)
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Exchange-correlation functionals

Jacobs Ladder of DFT Ta——

Chemical Accuracy

As you go up =
the rungs of fully non-local

Jacob's Ladder hybl’ld meta GGA

the functional i
forms get more hybrid GGA

complex but the meta GGA
energies get

more accurate GGA

(and more

expensive to LSDA
compute)

‘Earth’
Hartree Theory
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DFT vs wave-function methods

@ DFT scales as B3, HF as B4
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DFT vs wave-function methods

@ DFT scales as B3, HF as B*
@ KS orbitals are successfully used for qualitative analysis
@ DFT extension fo excited states is challenging

@ DFT and wave function: improvability by increasing the basis
set

@ Clis systematically improvable; Jacob’s ladder for DFT (less
quantitative)

@ Parameters in DFT functionals

@ DFT election method for large-size applications (catalysis,
biomolecules etc.)

E. Coccia (DSCF) 63/77



DFT problems

@ Weak interactions poorly described by DFT

@ Noble gases show slight interaction (pure repulsion in DFT)
e No correct R~¢ behaviour
o Ad hoc corrections
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DFT problems

@ Weak interactions poorly described by DFT
@ Noble gases show slight interaction (pure repulsion in DFT)
e No correct R~¢ behaviour
o Ad hoc corrections
@ Loosely bound electrons
@ Anions
e Positive HOMO energy with inadequate basis sets
@ Infer- and intra-molecular charge transfer is badly described
e Range-separated functionals mitigate the issue
@ Different spin multiplicity

e Transition metal systems: several low-energy spin states are
often possible

e Such states cannot be described by a single determinant

@ Broken-symmetry DFT

E. Coccia (DSCF) 64/77



DFT performances

@ RMS: root mean square deviation \/ln S (i — Xi)?

@ MAD: mean absolute deviation 1 37, |y, — x|

@ Over alarge set of molecules (atomization energies,
ionization potentials, electron and proton affinities)

@ Against experimental data

@ Residual gradient — accuracy of optimized geometries

Functional RMS (gradient) RMS (kJ/mol) MAD (kJ/mol)

HF 35 649 885
LSDA 16 439 510
PWO1 15 80 99

PBE 16 87 93

PKBZ 21 75 29

BLYP 19 41 40

PBEO 11 50 28

OLYP 14 40 25

B3LYP 11 40 21

VSXC 11 39 14

HTCT 11 33 30

7-HCTH 11 31

7-HCTH-hybrid 10 26

TPSS 24

TPSSh 16
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Basis sets
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Basis functions

@ Molecular orbitals are represented using a basis set

o = Z CLX,u
I
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Basis functions

@ Molecular orbitals are represented using a basis set
=) Cuxu
"

@ Two types of basis functions (atomic orbitals):
o Slater-type orbitals (STO)

X(,n,/,m(ra 9, ¢)) = NYI,m(ev ¢)rﬂ—] e_cr
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Basis functions

@ Molecular orbitals are represented using a basis set
=) Cuxu
M

@ Two types of basis functions (atomic orbitals):
o Slater-type orbitals (STO)

X(,n,/,m(ra 9, ¢)) = NYI,m(ev ¢)rﬂ—] e—{f

o Gaussian-type orbitals (GTO)

XC,n,/,m(ra 03 ¢) = Nyl,m(ga ¢)r2n727/efo2

@ N normalization constant

@ n principal quantum number
@ / electron angular momentum
@ m projection of | on an axis

@ Y m(0, ¢) spherical harmonics
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STO vs GTO

@ At the nucleus STO has a cusp, GTO has zero slope
@ GTO falls off too rapidly at large distances
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STO vs GTO

@ At the nucleus STO has a cusp, GTO has zero slope
@ GTO falls off too rapidly at large distances
@ But GTOs are computationally more efficient

1 —
0.9 4
0.8 4
0.7 4
0.6 4
0.5+
0.4 4
0.3 4
0.2 4
0.1 4

0

Amplitude

0 1 2 3 4
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GTO contraction

STO-3G = 01 GTO-1 + o, GTO-2 + a3 GTO-3

0.6||||||||||||||||||||||||||||

05
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Classification of a basis set

@ GITOs centered on nuclei
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Classification of a basis set

@ GTOs centered on nuclei

@ Minimal basis set:
e Single s function for H and He
e 1s,2s,2py. 2py, and 2p;, for first-row atoms
o Efc.
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Classification of a basis set

@ GTOs centered on nuclei
@ Minimal basis set:
e Single s function for H and He
e 1s,2s,2py. 2py, and 2p;, for first-row atoms
e FEtc.
@ Double Zeta (D2): doubling all the basis functions
e lsand 1¢ for H and He
e Four s and six p functions for first-row atoms
e FEtc.

@
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Classification of a basis set

@ GTOs centered on nuclei
@ Minimal basis set:
e Single s function for H and He
e 1s,2s,2py. 2py, and 2p;, for first-row atoms
e FEtc.
@ Double Zeta (D2): doubling all the basis functions
e lsand 1¢ for H and He
e Four s and six p functions for first-row atoms
e FEtc.

@

@ Triple (T2), quadruple (Q2), quintuple (62) and sextuple (62)
@ Split-valence type
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Polarization functions

@ Higher angular momentum functions
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Polarization functions

@ Higher angular momentum functions

@ Ammonia umbrella inversion (actvation energy 5.8 kcal/mol)

@ With only s and p functions, HF predicts the planar geometry
as a minimum structure

0
inversion coordinate
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Polarization functions

@ Higher angular momentum functions

@ Ammonia umbrella inversion (actvation energy 5.8 kcal/mol)

@ With only s and p functions, HF predicts the planar geometry
as a minimum structure

0
inversion coordinate

@ d functions in H,O improve hydrogen bond description

@ . X2 o
o ISR |
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Diffuse functions

@ Standard basis sets fail in describing large spatial extension
o Molecular orbitals of anions
o Rydberg electronic states
@ Supramolecular complexes
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Diffuse functions

@ Standard basis sets fail in describing large spatial extension
@ Molecular orbitals of anions
o Rydberg electronic states
e Supramolecular complexes
@ “Augmentation” with diffuse GTOs
e Smaller exponent than valence GTOs
e Same angular momentum as valence GTOs
e Uncontfracted GTOs

0
Distance
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Pople-type basis sets

@ STO-ng:
o n GTO primitives (PGTO) fitting a STO
@ Minimal basis set (n = 3 is accurate)
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Pople-type basis sets

@ STO-ng:
o n GTO primitives (PGTO) fitting a STO
@ Minimal basis set (n = 3 is accurate)
@ 3-21G:

e Split-valence basis: 3 PGTOs for core, inner (outer) valence
with 2 (1) PGTOs
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Pople-type basis sets

@ STO-ng:
o n GTO primitives (PGTO) fitting a STO
o Minimal basis set (n = 3 is accurate)
@ 3-21G:
e Split-valence basis: 3 PGTOs for core, inner (outer) valence
with 2 (1) PGTOs
@ 6-31G:
e Split-valence basis: 6 PGTOs for core, inner (outer) valence
with 3 (1) PGTOs
@ 6-311G:
o Triple split-valence basis: 6 PGTOs for core, valence with 3
functions: 3, 1 and 1 PGTOs

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

STO-3G 1s 3s 2slp 6s3p 3s2p 9s6p
321G 2s 3s 3s2p 6s3p 4s3p 9s6p
6-31G(d.p) 2slp 4s 3s2pld 10s4p 4s3pld 16s10p
6-311G(2df2pd)  3s2pld 5s 4s3p2d1f 11s5p 6s4p2d1f* 13s9p*
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Dunning-type basis sets

@ Correlation consistent (cc) basis sets

@ Functions with similar amount of correlation energy included
at the same stage

@ s and p exponents optimized at HF level, polarization
exponents at CISD level

@ cc-pVXZ: correlation consistent polarized Valence X Zeta
X=D,T,Q, 5, 6)

Basis Hydrogen First row elements Second row elements
Contracted Primitive  Contracted Primitive Contracted Primitive
cc-pVDZ  2slp 4s 3s2pld 9sdp 4s3p2d 12s8p
cc-pVTZ  3s2pld Ss 4s3p2d1f 10s5p Ssdp3d1f 15s9p
cc-pVQZ  4s3p2d1f 6s Ss4p3d2flg 12s6p 6s5p4d2flg 16s11p
cc-pVSZ  Ssdp3d2flg 8s 6s5p4d3f2glh  14s8p 7s6p5d3f2glh  20s12p
cc-pV6Z  6s5p4d3f2glh  10s 7s6p5d4f3g2hli  16s10p 8s7p6d4f3g2hli  21s14p
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Ahlrichs-type basis sets

@ Baisis sets of DZ, TZ and QZ quality
@ Split Valence Polarized (SVP)

@ Triple Zeta Valence (TZV)

@ Quadruple Zeta Valence (QZV)

Basis Hydrogen First row elements Second row elements
Contracted Primitive Contracted Primitive Contracted Primitive
SVp 2slp 4s 3s2pld Ts4p 4s3pld 10s7p
TZV 3s2pld Ss 5s3p2d1f 11s6p Ssdp2d1f 14s9p
QzVv 4s3p2dif Ts Ts4p3d2flg 15s8p 9s6p4d2flg 20s14p
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HF limit
@ HF solutfion with infinite basis set
@ Extrapolation

Property

—
o -
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Effective core potentials

@ Heavy elements are challenging for quantum chemistry
@ Large number of electrons — large number of basis functions
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Effective core potentials

@ Heavy elements are challenging for quantum chemistry
@ Large number of electrons — large number of basis functions
@ Core electrons need only a minimal representation
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Effective core potentials

@ Heavy elements are challenging for quantum chemistry

@ Large number of electrons — large number of basis functions

@ Core electrons need only a minimal representation

@ Replace core electrons with analytical functions: effective
core potential (ECP)

@ ECP describes the nuclear-electronic core to explicit
electrons
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Effective core potentials

@ Heavy elements are challenging for quantum chemistry

@ Large number of electrons — large number of basis functions

@ Core electrons need only a minimal representation

@ Replace core electrons with analytical functions: effective
core potential (ECP)

@ ECP describes the nuclear-electronic core to explicit
electrons

@ Also relativistic effects included

all-electron

Is 2s 2p 3s 3p 4s 3d 4p
(0] (0] [O0]8] (9 [OT6]0) () [GRTHTONTORTH) [T]E]

small-core

2s 3s 3p 4p

Is 2p -
[ [ [FR [ B ||1 1«»|u1u|4»| [0 ] B

large-core

Is 2s 2p 3s 3p 4s 3d 4p
(0] (] [0 ][9] [0T44]8F) [8F] [RRTORTOVTORTH) (] ]




