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Postulates of quantum mechanics

Five postulates:

1 The state of the system is completely described by a wave
function Ψ

2 Observables are represented by operators
3 The expectation value of the observable represented by Â is

〈A〉 =

∫
Ψ∗ÂΨdτ∫
Ψ∗Ψdτ

4 Probability to find a particle in dτ is proportional to |Ψ|2
5 Ψ evolves in time according to

i~
∂Ψ

∂t
= ĤΨ
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Hamiltonian operator

Hamiltonian operator Ĥ

Ĥtot = T̂e + T̂N + V̂eN + V̂ee + V̂NN

T̂e = −
∑

i

~2

2me
∇2

i electron kinetic energy

T̂N = −
∑

k

~2

2mN
∇2

k nuclear kinetic energy

V̂eN = −
∑

i

∑
k

e2Zk

rik
electron-nucleus attraction

V̂ee =
∑
i<j

e2

rij
electron-electron repulsion

V̂NN =
∑
k<l

e2ZkZl

rkl
nucleus-nucleus repulsion
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Variational principle
An approximate wave function has an energy W above or
equal to the exact energy E0

Proof:
Assume that a complete basis is given

ĤΨI = EIΨI I = 0, 1, 2, ...,∞
〈ΨI |ΨJ〉 = δIJ

Approximate wave function

Φ =
∞∑

I=0

aIΨI

And its energy W

W =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

=

∑∞
I,J=0 aIaJ〈ΨI |Ĥ|ΨJ〉∑∞

I,J=0 aIaJ〈ΨI |ΨJ〉

E. Coccia (DSCF) 6 / 77



Variational principle
An approximate wave function has an energy W above or
equal to the exact energy E0
Proof:
Assume that a complete basis is given
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〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

=

∑∞
I,J=0 aIaJ〈ΨI |Ĥ|ΨJ〉∑∞
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Variational principle

W reduces to

W =

∑∞
I=0 a2

I EI∑∞
I=0 a2

I

W ≥ E0 or (W − E0) ≥ 0

W − E0 =

∑∞
I=0 a2

I EI∑∞
I=0 a2

I

− E0 =

∑∞
I=0 a2

I (EI − E0)∑∞
I=0 a2

I

≥ 0

E0 is the lowest energy
Since a2

I ≥ 0 and (EI − E0) ≥ 0, this completes the proof
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Born-Oppenheimer
approximation

E. Coccia (DSCF) 8 / 77



Born-Oppenheimer approximation

Protons and neutrons are ≈ 1800 times more massive than
electrons

Nuclei move much more slowly than electrons
Electronic dynamics with respect to nuclear motion is
instantaneous
Nuclear and electronic motion are decoupled
Electronic energy (and properties) computed at frozen
nuclear geometry
Exceptions: conical intersection, photochemistry... (not
treated here)
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Born-Oppenheimer approximation

Ĥe = T̂e + V̂ee + V̂eN

ĤN = T̂N + V̂NN

Ĥtot = Ĥe + ĤN

Schrödinger equation

ĤtotΨtot = EtotΨtot

Ψtot(r,R) = ΨN(R)Ψe(r; R)

ĤeΨe(r; R) = Ee(R)Ψe(r; R)

(ĤN + Ee(R))ΨN(R) = EtotΨN(R)

From here on, Ψ ≡ Ψe, Ĥ ≡ Ĥe and E ≡ Ee
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ĤtotΨtot = EtotΨtot

Ψtot(r,R) = ΨN(R)Ψe(r; R)
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Born-Oppenheimer approximation

Ψ depends parametrically on the nuclear coordinates
Ψ provides a potential energy surface (PES) upon which the
nuclei move: E(R)

Electron-nucleus correlation removed

Neglect of the nuclear-electron coupling is usually only a
minor approximation compared with other (numerical)
errors
Error in H2 is about 10−4 Hartree
Even better for heavier nuclei
V̂NN is an additive constant to E(R)
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Potential energy surface
PES: hypersurface of the potential energy of a collection of atoms
over all possible arrangements
In general, 3K − 6 degrees of freedom (K number of nuclei)
Chemically interesting regions of the PES

ABC molecule
B

A
C

rAB
rBC
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Hartree-Fock method
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Solving the Schrödinger equation
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Solving the Schrödinger equation
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Hartree product

Independent-particle model

ĤIP =
N∑
i

ĥi

ĥi = −1
2
∇2

i −
K∑
k

Zk

rik

Eigenfunctions of ĥi (one-electron molecular orbitals)

ĥiφi = εiφi

Eigenfunctions of ĤIP (product of φi)

ΨHP = φ1φ2 · · ·φN

ĤIPΨHP =

(
N∑
i

εi

)
ΨHP
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Hartree Hamiltonian

Including interelectronic repulsion is challenging
ΨHP good to estimate the energy from the ”true”
Hamiltonian Ĥ?
Orbitals φi minimizing 〈ΨHP|Ĥ|ΨHP〉 are eigenfunctions of

ˆ̃hi = −1
2
∇2

i −
K∑
k

Zk

rik
+ Vi{j}

= ĥi + Vi{j}

Vi{j} =
∑
j 6=i

∫
ρj

rij
dr

ρj = |φj |2

ˆ̃hiφi = ε̃iφi

Vi{j} describes the repulsion between electron in φi and the
others in all φj
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Hartree Hamiltonian

Solving
ˆ̃hiφi = ε̃iφi (1)

implies knowledge of φj

Self-consistent field (SCF) method
1 Initial guess for φj to get ˆ̃hi
2 Solving Eq. (1)→ new φi

3 Update ˆ̃hi , and solve again Eq. (1)
4 Repeat points 2 and 3 until convergence

Convergence criterion: (Estep a+i − Estep a) < Ethr or each
(ε̃i,step a+1 − ε̃i,step a) < ε̃thr

Tight convergence: more SCF cycles needed
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Hartree Hamiltonian

ΨHP is eigenfunction of

ˆ̃HIP =
N∑
i

ˆ̃hi

ẼIP =
N∑
i

ε̃i

Near independent-particle model: each electron sees an
average repulsion from the other electrons
Overcounting in ẼIP

E = ẼIP −
1
2

∑
i 6=j

∫ ∫ |φi |2|φj |2

rij
dridrj

= ẼIP −
1
2

∑
i 6=j

Jij
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Antisymmetry

Spin quantum number for electrons
Spin functions α (↑, +1

2) and β (↓, −1
2) eigenfunctions of Ŝz

Pauli exclusion principle: no two electrons with the same set
of quantum numbers
One α and one β electron in a given molecular orbital
Electronic Ψ is antisymmetric: Ψ changes sign when the
coordinates of two electrons are interchanged

P̂ij Ψ (q1, · · · ,qi , · · · ,qj , · · · ,qN)

= Ψ(q1, · · · ,qj , · · · ,qi , · · · ,qN)

= −Ψ(q1, · · · ,qi , · · · ,qj , · · · ,qN)

qi : spatial + spin coordinates for electron i

P̂ij : operator exchanging coordinates of electrons i and j
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Antisymmetry

3ΨHP = φa(1)α(1)φb(2)α(2)

P̂12[φa(1)α(1)φb(2)α(2)] = φb(1)α(1)φa(2)α(2)

6= −φa(1)α(1)φb(2)α(2) = −3ΨHP

While

3ΨSD =
1√
2

[φa(1)α(1)φb(2)α(2)− φa(2)α(2)φb(1)α(1)]

P̂12
3ΨSD =

1√
2

[φa(2)α(2)φb(1)α(1)− φa(1)α(1)φb(2)α(2)]

= −3ΨSD
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Slater Determinant

Slater determinant (SD)

3ΨSD =
1√
2

∣∣∣∣φa(1)α(1) φb(1)α(1)
φa(2)α(2) φb(2)α(2)

∣∣∣∣
P̂12 interchanges the two rows: property of a determinant
(Math overview)

In general

ΨSD =
1√
N!

∣∣∣∣∣∣∣∣∣
ψ1(1) ψ2(1) · · · ψN(1)
ψ1(2) ψ2(2) · · · ψN(2)
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Slater determinant
Electron repulsion energy with 3ΨSD

〈3ΨSD| 1
r12
|3ΨSD〉 =

∫
3ΨSD

1
r12

3ΨSDdr1dω1dr2dω2

=
1
2

∫
|φa(1)|2|α(1)|2 1

r12
|φb(2)|2|α(2)|2dr1dω1dr2dω2

−
∫
φa(1)φb(1)|α(1)|2 1

r12
φb(2)φa(2)|α(2)|2dr1dω1dr2dω2

+
1
2

∫
|φa(2)|2|α(2)|2 1

r12
|φb(1)|2|α(1)|2dr1dω1dr2dω2

=
1
2

∫
|φa(1)|2 1

r12
|φb(2)|2dr1dr2 (Jab)

−
∫
φa(1)φb(1)

1
r12
φb(2)φa(2)dr1dr2 (Kab)

+
1
2

∫
|φa(2)|2 1

r12
|φb(1)|2dr1dr2 (Jab)

= Jab − Kab
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Slater determinant

Exchange integral Kab: Fermi hole around each electron

Correlation effect with the same spin

Instead, with

1ΨSD =
1√
2

[φa(1)α(1)φb(2)β(2)− φa(2)α(2)φb(1)β(1)]

Electron repulsion energy

〈1ΨSD| 1
r12
|1ΨSD〉 =

∫
1ΨSD

1
r12

1ΨSDdr1dω1dr2dω2

=
1
2

∫
|φa(1)|2|α(1)|2 1

r12
|φb(2)|2|β(2)|2dr1dω1dr2dω2

−
∫
φa(1)φb(1)α(1)β(1)

1
r12
φb(2)φa(2)α(2)β(2)dr1dω1dr2dω2

+
1
2

∫
|φa(2)|2|α(2)|2 1

r12
|φb(1)|1|β(2)|2dr1dω1dr2dω2

=
1
2

Jab +
1
2

Jab = Jab
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Hartree-Fock method

SCF extension to Slater determinants
Orbitals φi eigenfunctions of the Fock operator

f̂i = −1
2
∇2

i −
K∑
k

Zk

rik
+ V HF

i {j}

V HF
i {j} =

∑
j 6=i

(Ĵi − K̂i)

Ĵiφj(2) =

[∫
φi(1)

1
r12
φi(1)dr1

]
φj(2)

K̂iφj(2) =

[∫
φi(1)

1
r12
φj(1)dr1

]
φi(2)
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Hartree-Fock method

Hartree-Fock energy

EHF =
N∑
i

εHF
i −

1
2

N∑
i

N∑
j

(Jij − Kij)

Koopmans’ theorem
Frozen MO approximation
Ionization energy equal to −εHF

i
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Restricted and unrestricted Hartree-Fock

RHF: Restricted Hartree-Fock
Same spatial orbital for α and β
Even number of electrons, singlet state

UHF: Unrestricted Hartree-Fock
No restriction on the form of spatial orbitals

ROHF: Restricted Open-shell Hartree-Fock
Same spatial part of doubly-occupied orbitals
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Restricted and unrestricted Hartree-Fock

RHF:
Ethanol CH3CH2OH
26 electrons, closed-shell molecule
13 different occupied spatial MOs

ROHF:
Methyl radical CH·3
9 electrons, open-shell system
4 doubly-occupied MOs, 1 for the ninth electron

UHF:
Same system
5 α MOs, 4 β MOs
Spin contamination: UHF wave function is not a pure spin
state
〈Ŝ2〉 = 0.75 for a doublet, = 2 for a triplet
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Linear combination of atomic orbitals (LCAO)

Molecular orbitals represented by a basis set (see Basis sets)

φi =
∑
µ

ci
µχµ

Atomic orbital (AO) on each nucleus

Effective linear combination:

AO energies are comparable
AO must overlap
Same symmetry properties
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LCAO: N2
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LCAO: water
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LCAO: uracil
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Electron density: ethylene

ρ =
∑

i

|φi |2

Isodensity surface

E. Coccia (DSCF) 33 / 77



Configuration Interaction
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Correlation energy

Correlation energy
Ecorr = E0 − EHF

EHF is the lowest energy with a single Slater determinant, with
MOs from HF equations

Even lower energy considering a more sophisticated wf

Ψ = c0ΨHF + c1Ψ1 + c2Ψ2 + ...

Electronic correlation: dynamical and static
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Dynamical correlation

Correlated motion of each electron with every other is
neglected in HF
HF does not account for dynamical correlation
Due to electron-electron interaction

Recovered in density functional theory (see Density
functional theory) in different flavours
Explicit electron-electron distance in Ψ (quantum Monte
Carlo)
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Static correlation

Ethylene torsional barrier

Ψ = c0Ψ0 + c1Ψ1

method 1 with two dets
method 2 with two dets
method 3 with two dets
method 4 with one det
method 5 with one det

C1/C0

HOMO

LUMO

0o 90o
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Configuration Interaction

Ψ = c0ΨHF +
occ∑

i

vir∑
a

ca
i Ψa

i +
occ∑
i,j

vir∑
a,b

cab
ij Ψab

ij + ...

Post-HF method
Ψa

i : singly-excited Slater determinant
Ψab

ij : doubly-excited Slater determinant
HF Slater determinant as reference
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Configuration Interaction

Optimization of the CI coefficients c0, ca
i , cab

ij ...
MOs are not re-optimized, MOs from HF calculation
Secular equation in Slater-determinant space∣∣∣∣∣∣∣∣∣

H11 − E H12 · · · H1N
H21 H22 − E · · · H2N

...
...

. . .
...

HN1 HN2 · HNN − E

∣∣∣∣∣∣∣∣∣ = 0

With
Hmn = 〈Ψm|Ĥ|Ψn〉

Ψm and Ψn are Slater determinants
Ĥ: electronic Hamiltonian
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Which excitations to include?

Ψ = c0ΨHF +
occ∑

i

vir∑
a

ca
i Ψa

i +
occ∑
i,j

vir∑
a,b

cab
ij Ψab

ij +
occ∑
i,j,k

vir∑
a,b,c

cabc
ijk Ψabc

ijk + ...

Brillouin’s theorem: 〈ΨHF|Ĥ|Ψa
i 〉 = 0
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Example: H2 energy

H-H distance of 0.75 Å
Minimal basis set STO-6G (see Basis sets)

Ψ = c0ΨHF + c1Ψ22
11

EHF = -1.12473 Ha
ECI = -1.14574 Ha (> 50 kJ mol−1 lower)
|c0|2 = 0.986, |c1|2 = 0.013
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CI with doubles (CID)

Example: H2 with a minimal basis set
Two HF orbitals, σ and σ∗

Double excitation: both electrons in σ∗

Secular equation∣∣∣∣H11 − ECID H12
H21 H22 − ECID

∣∣∣∣ = 0

With solutions

ECID,± =
1
2

[
H11 + H22 ±

√
(H22 − H11)2 + 4H2

12

]
ECID,− is the CID ground-state energy
EHF ≡ H11 and H12 > 0

E. Coccia (DSCF) 42 / 77



CI with doubles (CID)

Example: H2 with a minimal basis set
Two HF orbitals, σ and σ∗

Double excitation: both electrons in σ∗

Secular equation∣∣∣∣H11 − ECID H12
H21 H22 − ECID

∣∣∣∣ = 0

With solutions

ECID,± =
1
2

[
H11 + H22 ±

√
(H22 − H11)2 + 4H2

12

]
ECID,− is the CID ground-state energy
EHF ≡ H11 and H12 > 0
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Role of multiple excitations

H2O energy with cc-pVDZ basis set (see Basis sets)
90% of Ecorr recovered with double excitations

Level E (Hartree) Ecorr (Hartree) Ecorr (kJ mol−1)
HF -76.02129 0.00000 0.00

CISD -76.22749 -0.20620 -541.37
CISDT -76.23066 -0.20937 -549.70

CISDTQ -76.23970 -0.21841 -573.43
Full CI -76.24006 -0.21877 -574.38
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Size of the CI matrix

Full CI: all excited determinants are included, provided a finite
basis set

With N electrons and B basis functions (2B spin orbitals), the
number S of Slater determinants is

S =

(
2B
N

)
N = 10, B = 20→ S ≈ 8.5× 108
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Density functional theory
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Electronic density

Ψ is a complicated function of 3N and N spin coordinates
Also, Ψ is not directly referencing to a physical quantity

Some physical observable of a reference object?
Electronic density

N =

∫
ρ(r)dr

∂ρ̄(RA)

∂RA
= −2ZAρ(RA)

RA: position of nucleus A

ρ̄: rotationally-averaged ρ

How to get the energy from ρ? → Density functional theory
(DFT)
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Rigorous foundation of DFT

Electrons interact with each other and with an external
potential
External potential: nuclear attraction in atoms and
molecules
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First Hohenberg-Kohn theorem

Existence theorem
The external potential (and hence the total energy) is a
unique functional of the electron density
Reductio per absurdum

Two different external potentials v̂a and v̂b define the same
nondegenerate ground-state density ρ0

v̂a → Ĥa → Ψ0,a, E0,a

v̂b → Ĥb → Ψ0,b, E0,b

According to the variational principle

E0,a < 〈Ψ0,b|Ĥa|Ψ0,b〉
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First Hohenberg-Kohn theorem

E0,a < 〈Ψ0,b|Ĥa|Ψ0,b〉
E0,a < 〈Ψ0,b|Ĥa − Ĥb + Ĥb|Ψ0,b〉

< 〈Ψ0,b|Ĥa − Ĥb|Ψ0,b〉+ 〈Ψ0,b|Ĥb|Ψ0,b〉
< 〈Ψ0,b|v̂a − v̂b|Ψ0,b〉+ E0,b

Integral form

E0,a <

∫
(v̂a(r)− v̂b(r))ρ0(r)dr + E0,b (2)

E0,b <

∫
(v̂b(r)− v̂a(r))ρ0(r)dr + E0,a (3)

(2) + (3)
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< 〈Ψ0,b|v̂a − v̂b|Ψ0,b〉+ E0,b

Integral form

E0,a <

∫
(v̂a(r)− v̂b(r))ρ0(r)dr + E0,b (2)

E0,b <

∫
(v̂b(r)− v̂a(r))ρ0(r)dr + E0,a (3)

(2) + (3)

E. Coccia (DSCF) 49 / 77



First Hohenberg-Kohn theorem

E0,a + E0,b <

∫
(v̂b(r)− v̂a(r))ρ0(r)dr +

∫
(v̂a(r)− v̂b(r))ρ0(r)dr

+ E0,b + E0,a

<

∫
(v̂b(r)− v̂a(r) + v̂a(r)− v̂b(r))ρ0(r)dr + E0,b + E0,a

< E0,b + E0,a impossible!

Initial assumption incorrect

The nondegenerate ground-state density ρ0 must determine v̂ , Ĥ
and Ψ0
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Second Hohenberg-Kohn theorem

The first theorem only states a ρ0 exists
Variational principle applied to the density
Given an approximate ρ′

N =

∫
ρ′(r)dr

ρ′ is positive definite everywhere

E[ρ′] ≥ E0[ρ0]

Equality holds when ρ′ is the exact ground-state density ρ0
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Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)

Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons
Vne[ρ(r)] → nucleus-electron interaction
Vee[ρ(r)] → classical electron-electron repulsion
∆T [ρ(r)] → correction to kinetic energy

∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons

E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)
Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons
Vne[ρ(r)] → nucleus-electron interaction
Vee[ρ(r)] → classical electron-electron repulsion
∆T [ρ(r)] → correction to kinetic energy

∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons

E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)
Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons

Vne[ρ(r)] → nucleus-electron interaction
Vee[ρ(r)] → classical electron-electron repulsion
∆T [ρ(r)] → correction to kinetic energy

∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons

E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)
Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons
Vne[ρ(r)] → nucleus-electron interaction

Vee[ρ(r)] → classical electron-electron repulsion
∆T [ρ(r)] → correction to kinetic energy

∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons

E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)
Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons
Vne[ρ(r)] → nucleus-electron interaction
Vee[ρ(r)] → classical electron-electron repulsion

∆T [ρ(r)] → correction to kinetic energy
∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons

E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)
Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons
Vne[ρ(r)] → nucleus-electron interaction
Vee[ρ(r)] → classical electron-electron repulsion
∆T [ρ(r)] → correction to kinetic energy

∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons

E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)
Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons
Vne[ρ(r)] → nucleus-electron interaction
Vee[ρ(r)] → classical electron-electron repulsion
∆T [ρ(r)] → correction to kinetic energy

∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons

E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)
Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons
Vne[ρ(r)] → nucleus-electron interaction
Vee[ρ(r)] → classical electron-electron repulsion
∆T [ρ(r)] → correction to kinetic energy

∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons

E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Fictitious system: non-interacting electrons
Same ground-state ρ(r) as for the real system (electrons do
interact!)
Energy functional

E[ρ(r)] = Tni [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)]

Tni [ρ(r)] → kinetic energy for noninteracting electrons
Vne[ρ(r)] → nucleus-electron interaction
Vee[ρ(r)] → classical electron-electron repulsion
∆T [ρ(r)] → correction to kinetic energy

∆Vee[ρ(r)] → nonclassical electron-electron repulsion

Vne[ρ(r)] = −
nuclei∑

k

∫
Zk

|r− Rk |
ρ(r)dr

Vee[ρ(r)] =
N∑

i<j

∫ ∫
ρ(ri)ρ(rj)

|ri − rj |
dridrj

Tni : sum of kinetic energy of the electrons
E. Coccia (DSCF) 52 / 77



Kohn-Sham approach

Using molecular orbitals

ρ =
N∑
i

〈φi |φi〉

the energy becomes

E[ρ(r)] =
N∑
i

(
〈φi | −

1
2
∇2

i |φi〉 − 〈φi |
nuclei∑

k

Zk

|ri − Rk |
|φi〉

)

+
N∑
i

〈φi |
1
2

∫
ρ(r)
|r− ri |

dr|φi〉+ Exc[ρ(r)]

Exc[ρ(r)]: exchange-correlation energy (contains ∆T and
∆Vee)
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Kohn-Sham approach

Find the φi set minimising E

hKS
i φi = εiφi

hKS
i = −1

2
∇2

i −
nuclei∑

k

Zk

|ri − Rk |
+

∫
ρ(r)
|r− ri |

dr + Vxc

Vxc =
∂Exc

∂ρ

In principle, one gets exact ground-state energy E

Exact density ρ provided by orbitals φi
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Kohn-Sham approach

Separable non-interacting Hamiltonian Ĥni =
∑N

i hKS
i

Slater determinant of optimized φi as eigenfunction of Ĥni

Ĥni |φ1φ2 · · ·φN〉 =
N∑
i

εi |φ1φ2 · · ·φN〉

Fictitious system of non-interacting electrons with exact
density
Tni is a large fraction of the actual system

LCAO approach to represent molecular orbitals
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Exchange-correlation functionals

HF theory is approximate, DFT is in principle exact

No guidance to find Exc

Practical use of DFT implies approximations in Exc

DFT can violate the variational principle, because of Exc

H atom energy with BPW91 = -0.5042 Hartree
Exact H energy is -0.5 Hartree

In general Exc = Ex + Ec
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Exchange-correlation functionals

Exc[ρ(r)] =

∫
ρ(r)εxc[ρ(r)]dr

εxc: exchange-correlation energy density

Local density approximation (LDA):
εxc (Exc) only from density values
Local functional
Uniform electron gas: ρ has the same value at every position

Exchange energy Ex computed analytically

ELDA
x [ρ(r)] = −Cx

∫
ρ4/3(r)dr

εLDA
x = −Cxρ

1/3

Ec estimated by accurate quantum Monte Carlo
calculations
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Exchange-correlation functionals

LDA is widely used in condensed-matter community
Approximation of a slowly varying electron density is rather
valid (metals)

LDA in a molecule: εLDA
xc at every r is the same as it would be

for the uniform electron gas with the same ρ at r
In molecules, ρ is not spatially uniform!
LDA for molecules is a rough approximation
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Exchange-correlation functionals

Correction to LDA: include nonlocal effects, i.e. the gradient
of the density
Generalized gradient approximation (GGA)

εGGA
xc = εLDA

xc + ∆εxc

[
|∇ρ(r)|
ρ4/3(r)

]

PBE is likely the most known GGA functional

εPBE
x = εLDA

x F(x)

F(x) = 1 + a − a
1 + bx2

x =
|∇ρ(r)|
ρ4/3
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Exchange-correlation functionals

εPBE
c = εLDA

c + B(g)

B(g) = cf 3
3 ln

[
1 + dg2

(
1 + Ag2

1 + Ag2 + A2g4

)]

A = d

[
exp

(
−ε

LDA
c

cf 3
3

− 1

)]−1

f3(ζ) =
1
2

[(1 + ζ)2/3 + (1− ζ)2/3]

g = [2(3π3)1/3f3]−1x

ζ =
ρα − ρβ
ρα + ρβ

a, b, c and d are parameters
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Exchange-correlation functionals

Meta-GGA: including a dependence from the Laplacian of
the density ∇2ρ

Hybrid functionals: including a part of exact (HF) exchange

Exc = (1− a)EDFT
xc + aEHF

x

DFT = LDA or GGA etc.
a is an empirical parameter
B3LYP hybrid functional

EB3LYP
xc = (1− a)ELDA

x + aEHF
x + b∆EB

x + (1− c)ELDA
c + cELYP

c

a = 0.20, b = 0.72 and c = 0.81 (fitted parameters)
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Exchange-correlation functionals
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DFT vs wave-function methods

DFT scales as B3, HF as B4

KS orbitals are successfully used for qualitative analysis
DFT extension to excited states is challenging
DFT and wave function: improvability by increasing the basis
set
CI is systematically improvable; Jacob’s ladder for DFT (less
quantitative)
Parameters in DFT functionals
DFT election method for large-size applications (catalysis,
biomolecules etc.)
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DFT problems

Weak interactions poorly described by DFT
Noble gases show slight interaction (pure repulsion in DFT)
No correct R−6 behaviour
Ad hoc corrections

Loosely bound electrons
Anions
Positive HOMO energy with inadequate basis sets

Inter- and intra-molecular charge transfer is badly described
Range-separated functionals mitigate the issue

Different spin multiplicity
Transition metal systems: several low-energy spin states are
often possible
Such states cannot be described by a single determinant
Broken-symmetry DFT
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DFT performances

RMS: root mean square deviation
√

1
n
∑n

i=1(yi − xi)2

MAD: mean absolute deviation 1
n
∑n

i=1 |yi − xi |
Over a large set of molecules (atomization energies,
ionization potentials, electron and proton affinities)
Against experimental data
Residual gradient→ accuracy of optimized geometries
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Basis sets
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Basis functions

Molecular orbitals are represented using a basis set

φi =
∑
µ

ci
µχµ

Two types of basis functions (atomic orbitals):
Slater-type orbitals (STO)

χζ,n,l,m(r , θ, φ) = NYl,m(θ, φ)rn−1e−ζr

Gaussian-type orbitals (GTO)

χζ,n,l,m(r , θ, φ) = NYl,m(θ, φ)r2n−2−le−ζr2

N normalization constant
n principal quantum number
l electron angular momentum
m projection of l on an axis
Yl,m(θ, φ) spherical harmonics
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STO vs GTO

At the nucleus STO has a cusp, GTO has zero slope
GTO falls off too rapidly at large distances

But GTOs are computationally more efficient
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GTO contraction

STO-3G = a1GTO-1 + a2GTO-2 + a3GTO-3

E. Coccia (DSCF) 69 / 77



Classification of a basis set

GTOs centered on nuclei

Minimal basis set:
Single s function for H and He
1s, 2s, 2px , 2py and 2pz for first-row atoms
Etc.

Double Zeta (DZ): doubling all the basis functions
1s and 1s′ for H and He
Four s and six p functions for first-row atoms
Etc.

Triple (TZ), quadruple (QZ), quintuple (5Z) and sextuple (6Z)
Split-valence type
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Polarization functions

Higher angular momentum functions

Ammonia umbrella inversion (actvation energy 5.8 kcal/mol)
With only s and p functions, HF predicts the planar geometry
as a minimum structure

d functions in H2O improve hydrogen bond description
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Diffuse functions
Standard basis sets fail in describing large spatial extension

Molecular orbitals of anions
Rydberg electronic states
Supramolecular complexes

”Augmentation” with diffuse GTOs
Smaller exponent than valence GTOs
Same angular momentum as valence GTOs
Uncontracted GTOs
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Pople-type basis sets
STO-ng:

n GTO primitives (PGTO) fitting a STO
Minimal basis set (n = 3 is accurate)

3-21G:
Split-valence basis: 3 PGTOs for core, inner (outer) valence
with 2 (1) PGTOs

6-31G:
Split-valence basis: 6 PGTOs for core, inner (outer) valence
with 3 (1) PGTOs

6-311G:
Triple split-valence basis: 6 PGTOs for core, valence with 3
functions: 3, 1 and 1 PGTOs

E. Coccia (DSCF) 73 / 77



Pople-type basis sets
STO-ng:

n GTO primitives (PGTO) fitting a STO
Minimal basis set (n = 3 is accurate)

3-21G:
Split-valence basis: 3 PGTOs for core, inner (outer) valence
with 2 (1) PGTOs

6-31G:
Split-valence basis: 6 PGTOs for core, inner (outer) valence
with 3 (1) PGTOs

6-311G:
Triple split-valence basis: 6 PGTOs for core, valence with 3
functions: 3, 1 and 1 PGTOs

E. Coccia (DSCF) 73 / 77



Pople-type basis sets
STO-ng:

n GTO primitives (PGTO) fitting a STO
Minimal basis set (n = 3 is accurate)

3-21G:
Split-valence basis: 3 PGTOs for core, inner (outer) valence
with 2 (1) PGTOs

6-31G:
Split-valence basis: 6 PGTOs for core, inner (outer) valence
with 3 (1) PGTOs

6-311G:
Triple split-valence basis: 6 PGTOs for core, valence with 3
functions: 3, 1 and 1 PGTOs

E. Coccia (DSCF) 73 / 77



Dunning-type basis sets

Correlation consistent (cc) basis sets
Functions with similar amount of correlation energy included
at the same stage
s and p exponents optimized at HF level, polarization
exponents at CISD level
cc-pVXZ: correlation consistent polarized Valence X Zeta
(X=D, T, Q, 5, 6)
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Ahlrichs-type basis sets

Basis sets of DZ, TZ and QZ quality
Split Valence Polarized (SVP)
Triple Zeta Valence (TZV)
Quadruple Zeta Valence (QZV)
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HF limit

HF solution with infinite basis set
Extrapolation
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Effective core potentials

Heavy elements are challenging for quantum chemistry
Large number of electrons→ large number of basis functions

Core electrons need only a minimal representation
Replace core electrons with analytical functions: effective
core potential (ECP)
ECP describes the nuclear-electronic core to explicit
electrons
Also relativistic effects included
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