Chimica Computazionale Fundamentals of Quantum Chemistry

Emanuele Coccia

PhotoInduced Quantum Dynamics (PIQD) Group

Nobel Prize in Chemistry in 1998

Photo from the Nobel Foundation archive. Walter Kohn Prize share: 1/2

Photo from the Nobel Foundation archive. John A. Pople Prize share: 1/2

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn "for his development of the density-functional theory" and John A. Pople "for his development of computational methods in quantum chemistry"

ヘロン 人間 とくほ とくほ とう

Fundamentals of quantum mechanics

< D > < B > < B</p>

Five postulates:

Five postulates:

• The state of the system is completely described by a wave function $\boldsymbol{\Psi}$

Five postulates:

- The state of the system is completely described by a wave function Ψ
- Observables are represented by operators

< 口 > < 同 > < 臣 > < 臣 >

Five postulates:

- The state of the system is completely described by a wave function Ψ
- Observables are represented by operators
- Ine expectation value of the observable represented by is

$$\langle A \rangle = \frac{\int \Psi^* \hat{A} \Psi d\tau}{\int \Psi^* \Psi d\tau}$$

Five postulates:

- The state of the system is completely described by a wave function Ψ
- Observables are represented by operators
- It is a spectation value of the observable represented by \hat{A} is

$$\langle A \rangle = rac{\int \Psi^* \hat{A} \Psi d\tau}{\int \Psi^* \Psi d\tau}$$

In the second secon

Five postulates:

- The state of the system is completely described by a wave function Ψ
- Observables are represented by operators
- Ine expectation value of the observable represented by is

$$\langle A \rangle = rac{\int \Psi^* \hat{A} \Psi d\tau}{\int \Psi^* \Psi d\tau}$$

- ${f 0}$ Probability to find a particle in d au is proportional to $|\Psi|^2$
- Ψ evolves in time according to

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H} \Psi$$

Hamiltonian operator

• Hamiltonian operator \hat{H}

<ロ> (四) (四) (日) (日) (日)

Variational principle

 An approximate wave function has an energy W above or equal to the exact energy E₀

Variational principle

- An approximate wave function has an energy W above or equal to the exact energy E₀
- Proof:
- Assume that a complete basis is given

$$\hat{H}\Psi_{I} = E_{I}\Psi_{I} \quad I = 0, 1, 2, ..., \infty$$
$$\langle \Psi_{I} | \Psi_{J} \rangle = \delta_{IJ}$$

Approximate wave function

$$\Phi = \sum_{l=0}^{\infty} a_l \Psi_l$$

And its energy W

$$W = \frac{\langle \Phi | \hat{H} | \Phi \rangle}{\langle \Phi | \Phi \rangle}$$
$$= \frac{\sum_{I,J=0}^{\infty} \alpha_{I} \alpha_{J} \langle \Psi_{I} | \hat{H} | \Psi_{J} \rangle}{\sum_{I,J=0}^{\infty} \alpha_{I} \alpha_{J} \langle \Psi_{I} | \Psi_{J} \rangle_{\text{constant}}}$$

Variational principle

• W reduces to

$$W = \frac{\sum_{l=0}^{\infty} a_l^2 E_l}{\sum_{l=0}^{\infty} a_l^2}$$

2

• W reduces to

$$W = \frac{\sum_{l=0}^{\infty} \alpha_l^2 E_l}{\sum_{l=0}^{\infty} \alpha_l^2}$$

•
$$W \ge E_0$$
 or $(W - E_0) \ge 0$

$$W - E_0 = \frac{\sum_{l=0}^{\infty} a_l^2 E_l}{\sum_{l=0}^{\infty} a_l^2} - E_0 = \frac{\sum_{l=0}^{\infty} a_l^2 (E_l - E_0)}{\sum_{l=0}^{\infty} a_l^2} \ge 0$$

- E_0 is the lowest energy
- Since $a_l^2 \ge 0$ and $(E_l E_0) \ge 0$, this completes the proof

< ロ > < 同 > < 三 >

• Protons and neutrons are ≈ 1800 times more massive than electrons

- Protons and neutrons are ≈ 1800 times more massive than electrons
- Nuclei move much more slowly than electrons

< 口 > < 同 > < 臣 > < 臣 >

- Protons and neutrons are ≈ 1800 times more massive than electrons
- Nuclei move much more slowly than electrons
- Electronic dynamics with respect to nuclear motion is instantaneous

- Protons and neutrons are ≈ 1800 times more massive than electrons
- Nuclei move much more slowly than electrons
- Electronic dynamics with respect to nuclear motion is instantaneous
- Nuclear and electronic motion are decoupled

- Protons and neutrons are ≈ 1800 times more massive than electrons
- Nuclei move much more slowly than electrons
- Electronic dynamics with respect to nuclear motion is instantaneous
- Nuclear and electronic motion are decoupled
- Electronic energy (and properties) computed at frozen nuclear geometry

- Protons and neutrons are ≈ 1800 times more massive than electrons
- Nuclei move much more slowly than electrons
- Electronic dynamics with respect to nuclear motion is instantaneous
- Nuclear and electronic motion are decoupled
- Electronic energy (and properties) computed at frozen nuclear geometry
- Exceptions: conical intersection, photochemistry... (not treated here)

$$\begin{array}{rcl} \hat{H}_{e} &=& \hat{T}_{e} + \hat{V}_{ee} + \hat{V}_{eN} \\ \hat{H}_{N} &=& \hat{T}_{N} + \hat{V}_{NN} \\ \hat{H}_{tot} &=& \hat{H}_{e} + \hat{H}_{N} \end{array}$$

æ

$$\begin{array}{rcl} \hat{H}_{e} &=& \hat{T}_{e} + \hat{V}_{ee} + \hat{V}_{eN} \\ \hat{H}_{N} &=& \hat{T}_{N} + \hat{V}_{NN} \\ \hat{H}_{tot} &=& \hat{H}_{e} + \hat{H}_{N} \end{array}$$

• Schrödinger equation

$$\hat{H}_{tot}\Psi_{tot} = E_{tot}\Psi_{tot}$$

イロン イボン イヨン イヨン

$$\begin{array}{rcl} \hat{H}_{e} &=& \hat{T}_{e} + \hat{V}_{ee} + \hat{V}_{eN} \\ \hat{H}_{N} &=& \hat{T}_{N} + \hat{V}_{NN} \\ \hat{H}_{tot} &=& \hat{H}_{e} + \hat{H}_{N} \end{array}$$

Schrödinger equation

$$\hat{H}_{tot} \Psi_{tot} = E_{tot} \Psi_{tot} \Psi_{tot}(\mathbf{r}, \mathbf{R}) = \Psi_N(\mathbf{R}) \Psi_e(\mathbf{r}; \mathbf{R}) \hat{H}_e \Psi_e(\mathbf{r}; \mathbf{R}) = E_e(\mathbf{R}) \Psi_e(\mathbf{r}; \mathbf{R})$$

イロン イボン イヨン イヨン

$$\begin{array}{rcl} \hat{H}_{e} &=& \hat{T}_{e} + \hat{V}_{ee} + \hat{V}_{eN} \\ \hat{H}_{N} &=& \hat{T}_{N} + \hat{V}_{NN} \\ \hat{H}_{tot} &=& \hat{H}_{e} + \hat{H}_{N} \end{array}$$

Schrödinger equation

$$\hat{H}_{tot} \Psi_{tot} = E_{tot} \Psi_{tot}$$

$$\Psi_{tot}(\mathbf{r}, \mathbf{R}) = \Psi_N(\mathbf{R}) \Psi_{\theta}(\mathbf{r}; \mathbf{R})$$

$$\hat{H}_{\theta} \Psi_{\theta}(\mathbf{r}; \mathbf{R}) = E_{\theta}(\mathbf{R}) \Psi_{\theta}(\mathbf{r}; \mathbf{R})$$

$$(\hat{H}_N + E_{\theta}(\mathbf{R})) \Psi_N(\mathbf{R}) = E_{tot} \Psi_N(\mathbf{R})$$

イロン イボン イヨン イヨン

$$\begin{array}{rcl} \hat{H}_{e} &=& \hat{T}_{e} + \hat{V}_{ee} + \hat{V}_{eN} \\ \hat{H}_{N} &=& \hat{T}_{N} + \hat{V}_{NN} \\ \hat{H}_{tot} &=& \hat{H}_{e} + \hat{H}_{N} \end{array}$$

Schrödinger equation

$$\hat{H}_{tot} \Psi_{tot} = E_{tot} \Psi_{tot}$$

$$\Psi_{tot}(\mathbf{r}, \mathbf{R}) = \Psi_N(\mathbf{R}) \Psi_e(\mathbf{r}; \mathbf{R})$$

$$\hat{H}_e \Psi_e(\mathbf{r}; \mathbf{R}) = E_e(\mathbf{R}) \Psi_e(\mathbf{r}; \mathbf{R})$$

$$(\hat{H}_N + E_e(\mathbf{R})) \Psi_N(\mathbf{R}) = E_{tot} \Psi_N(\mathbf{R})$$

• From here on, $\Psi \equiv \Psi_e$, $\hat{H} \equiv \hat{H}_e$ and $E \equiv E_{e}$

- Ψ depends parametrically on the nuclear coordinates
- Ψ provides a potential energy surface (PES) upon which the nuclei move: E(R)
- Electron-nucleus correlation removed

- Ψ depends parametrically on the nuclear coordinates
- Ψ provides a potential energy surface (PES) upon which the nuclei move: E(R)
- Electron-nucleus correlation removed
- Neglect of the nuclear-electron coupling is usually only a minor approximation compared with other (numerical) errors
- Error in H₂ is about 10⁻⁴ Hartree
- Even better for heavier nuclei

- Ψ depends parametrically on the nuclear coordinates
- Ψ provides a potential energy surface (PES) upon which the nuclei move: E(R)
- Electron-nucleus correlation removed
- Neglect of the nuclear-electron coupling is usually only a minor approximation compared with other (numerical) errors
- Error in H₂ is about 10⁻⁴ Hartree
- Even better for heavier nuclei
- \hat{V}_{NN} is an additive constant to $E(\mathbf{R})$

Potential energy surface

- PES: hypersurface of the potential energy of a collection of atoms over all possible arrangements
- In general, 3K 6 degrees of freedom (K number of nuclei)
- Chemically interesting regions of the PES

Hartree-Fock method

æ

・ロン ・聞と ・ 語と ・ 語とう

Solving the Schrödinger equation

HIGHER ACCURACY

æ

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Hartree product

• Independent-particle model

$$\hat{H}_{\rm IP} = \sum_{i}^{N} \hat{h}_{i}$$
$$\hat{h}_{i} = -\frac{1}{2} \nabla_{i}^{2} - \sum_{k}^{K} \frac{Z_{k}}{r_{ik}}$$

<ロ> (四) (四) (日) (日) (日)

Hartree product

• Independent-particle model

$$\hat{H}_{\rm IP} = \sum_{i}^{N} \hat{h}_{i}$$
$$\hat{h}_{i} = -\frac{1}{2} \nabla_{i}^{2} - \sum_{k}^{K} \frac{Z_{k}}{r_{ik}}$$

• Eigenfunctions of \hat{h}_i (one-electron molecular orbitals) $\hat{h}_i \phi_i = \epsilon_i \phi_i$

< ロ > < 同 > < 三 >

< ≣ >

Hartree product

• Independent-particle model

$$\hat{H}_{\rm IP} = \sum_{i}^{N} \hat{h}_{i}$$
$$\hat{h}_{i} = -\frac{1}{2} \nabla_{i}^{2} - \sum_{k}^{K} \frac{Z_{k}}{r_{ik}}$$

- Eigenfunctions of \hat{h}_i (one-electron molecular orbitals) $\hat{h}_i \phi_i = \epsilon_i \phi_i$
- Eigenfunctions of $\hat{H}_{\rm IP}$ (product of ϕ_i)

$$\Psi_{\rm HP} = \phi_1 \phi_2 \cdots \phi_N$$
$$\hat{\mathcal{H}}_{\rm IP} \Psi_{\rm HP} = \left(\sum_i^N \epsilon_i\right) \Psi_{\rm HP}$$
- Including interelectronic repulsion is challenging
- Ψ_{HP} good to estimate the energy from the "true" Hamiltonian Ĥ?
- Orbitals ϕ_i minimizing $\langle \Psi_{\rm HP} | \hat{H} | \Psi_{\rm HP} \rangle$ are eigenfunctions of

$$\hat{\hat{h}}_{i} = -\frac{1}{2}\nabla_{i}^{2} - \sum_{k}^{K} \frac{Z_{k}}{r_{ik}} + V_{i}\{j\}$$
$$= \hat{h}_{i} + V_{i}\{j\}$$

イロン イ理シ イヨン イヨン

- Including interelectronic repulsion is challenging
- Ψ_{HP} good to estimate the energy from the "true" Hamiltonian Ĥ?
- Orbitals ϕ_i minimizing $\langle \Psi_{\rm HP} | \hat{H} | \Psi_{\rm HP} \rangle$ are eigenfunctions of

$$\hat{\tilde{h}}_{i} = -\frac{1}{2}\nabla_{i}^{2} - \sum_{k}^{K} \frac{Z_{k}}{r_{ik}} + V_{i}\{j\}$$
$$= \hat{h}_{i} + V_{i}\{j\}$$
$$V_{i}\{j\} = \sum_{j \neq i} \int \frac{\rho_{j}}{r_{ij}} d\mathbf{r}$$
$$\rho_{j} = |\phi_{j}|^{2}$$

イロト イポト イヨト イヨト

- Including interelectronic repulsion is challenging
- Ψ_{HP} good to estimate the energy from the "true" Hamiltonian Ĥ?
- Orbitals ϕ_i minimizing $\langle \Psi_{\rm HP} | \hat{H} | \Psi_{\rm HP} \rangle$ are eigenfunctions of

$$\hat{\hat{h}}_{i} = -\frac{1}{2}\nabla_{i}^{2} - \sum_{k}^{K} \frac{Z_{k}}{r_{ik}} + V_{i}\{j\}$$

$$= \hat{h}_{i} + V_{i}\{j\}$$

$$V_{i}\{j\} = \sum_{j \neq i} \int \frac{\rho_{j}}{r_{ij}} d\mathbf{r}$$

$$\rho_{j} = |\phi_{j}|^{2}$$

$$\hat{\hat{h}}_{i}\phi_{i} = \tilde{\epsilon}_{i}\phi_{i}$$

• $V_i\{j\}$ describes the repulsion between electron in ϕ_i and the others in all ϕ_j

Solving

$$\hat{\tilde{h}}_i \phi_i = \tilde{\epsilon}_i \phi_i \tag{1}$$

・ロン ・聞と ・ 語と ・ 語とう

implies knowledge of ϕ_j

æ

Solving

$$\hat{\tilde{h}}_i \phi_i = \tilde{\epsilon}_i \phi_i \tag{1}$$

< ロ > < 同 > < 三 >

implies knowledge of ϕ_i

Self-consistent field (SCF) method

• Initial guess for ϕ_j to get \hat{h}_i

< ≣ > -

Solving

$$\hat{\tilde{h}}_i \phi_i = \tilde{\epsilon}_i \phi_i \tag{1}$$

< ロ > < 同 > < 三 >

implies knowledge of ϕ_i

- Self-consistent field (SCF) method
 - Initial guess for ϕ_i to get \tilde{h}_i
 - 2 Solving Eq. (1) \rightarrow new ϕ_i

< ≣ > -

Solving

$$\hat{\tilde{h}}_i \phi_i = \tilde{\epsilon}_i \phi_i \tag{1}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

implies knowledge of ϕ_i

- Self-consistent field (SCF) method
 - Initial guess for ϕ_j to get \tilde{h}_i
 - 2 Solving Eq. (1) \rightarrow new ϕ_i
 - O Update \tilde{h}_i , and solve again Eq. (1)

Solving

$$\hat{\tilde{h}}_i \phi_i = \tilde{\epsilon}_i \phi_i \tag{1}$$

イロン イ理シ イヨン イヨン

implies knowledge of ϕ_i

Self-consistent field (SCF) method

- Initial guess for ϕ_i to get \tilde{h}_i
- 2 Solving Eq. (1) \rightarrow new ϕ_i
- O Update \tilde{h}_i , and solve again Eq. (1)
- Repeat points 2 and 3 until convergence
- Convergence criterion: $(E_{\text{step }a+i} E_{\text{step }a}) < E_{\text{thr}}$ or each $(\tilde{\epsilon}_{i,\text{step }a+1} \tilde{\epsilon}_{i,\text{step }a}) < \tilde{\epsilon}_{\text{thr}}$
- Tight convergence: more SCF cycles needed

• Ψ_{HP} is eigenfunction of

$$\hat{\tilde{H}}_{\text{IP}} = \sum_{i}^{N} \hat{\tilde{h}}_{i}$$
$$\tilde{E}_{\text{IP}} = \sum_{i}^{N} \tilde{\epsilon}_{i}$$

- Near independent-particle model: each electron sees an average repulsion from the other electrons
- Overcounting in \tilde{E}_{IP}

$$E = \tilde{E}_{\rm IP} - \frac{1}{2} \sum_{i \neq j} \int \int \frac{|\phi_i|^2 |\phi_j|^2}{r_{ij}} d\mathbf{r}_i d\mathbf{r}_j$$
$$= \tilde{E}_{\rm IP} - \frac{1}{2} \sum_{i \neq j} J_{ij}$$

Antisymmetry

- Spin quantum number for electrons
- Spin functions α (\uparrow , $+\frac{1}{2}$) and β (\downarrow , $-\frac{1}{2}$) eigenfunctions of \hat{S}_z

2

ヘロン ヘアン ヘビン ヘビン

Antisymmetry

- Spin quantum number for electrons
- Spin functions α (\uparrow , $+\frac{1}{2}$) and β (\downarrow , $-\frac{1}{2}$) eigenfunctions of \hat{S}_z
- Pauli exclusion principle: no two electrons with the same set of quantum numbers
- One α and one β electron in a given molecular orbital

Antisymmetry

- Spin quantum number for electrons
- Spin functions α (\uparrow , $+\frac{1}{2}$) and β (\downarrow , $-\frac{1}{2}$) eigenfunctions of \hat{S}_z
- Pauli exclusion principle: no two electrons with the same set of quantum numbers
- One α and one β electron in a given molecular orbital
- Electronic Ψ is antisymmetric: Ψ changes sign when the coordinates of two electrons are interchanged

$$\begin{split} \hat{P}_{ij} \quad \Psi \quad (\mathbf{q}_1, \cdots, \mathbf{q}_i, \cdots, \mathbf{q}_j, \cdots, \mathbf{q}_N) \\ &= \quad \Psi(\mathbf{q}_1, \cdots, \mathbf{q}_j, \cdots, \mathbf{q}_i, \cdots, \mathbf{q}_N) \\ &= \quad -\Psi(\mathbf{q}_1, \cdots, \mathbf{q}_i, \cdots, \mathbf{q}_j, \cdots, \mathbf{q}_N) \end{split}$$

- **q**_i: spatial + spin coordinates for electron i
- \hat{P}_{ij} : operator exchanging coordinates of electrons *i* and *j*

・ロト ・四ト ・ヨト ・ヨト

$^{3}\Psi_{\mathrm{HP}} = \phi_{a}(1)\alpha(1)\phi_{b}(2)\alpha(2)$

E. Coccia (DSCF)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

$$\hat{P}_{HP} = \phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2)$$

$$\hat{P}_{12}[\phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2)] = \phi_{b}(1)\alpha(1)\phi_{\alpha}(2)\alpha(2)$$

$$\neq -\phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2) = -{}^{3}\Psi_{HP}$$

æ

◆□ > ◆□ > ◆豆 > ◆豆 > →

$$\hat{P}_{HP} = \phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2)$$

$$\hat{P}_{12}[\phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2)] = \phi_{b}(1)\alpha(1)\phi_{\alpha}(2)\alpha(2)$$

$$\neq -\phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2) = -{}^{3}\Psi_{HP}$$

While

$${}^{3}\Psi_{\text{SD}} = \frac{1}{\sqrt{2}} [\phi_{a}(1)\alpha(1)\phi_{b}(2)\alpha(2) - \phi_{a}(2)\alpha(2)\phi_{b}(1)\alpha(1)]$$

æ

(日)

$$\hat{P}_{HP} = \phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2)$$

$$\hat{P}_{12}[\phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2)] = \phi_{b}(1)\alpha(1)\phi_{\alpha}(2)\alpha(2)$$

$$\neq -\phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2) = -{}^{3}\Psi_{HP}$$

While

$${}^{3}\Psi_{SD} = \frac{1}{\sqrt{2}} [\phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2) - \phi_{\alpha}(2)\alpha(2)\phi_{b}(1)\alpha(1)]$$
$$\hat{P}_{12}{}^{3}\Psi_{SD} = \frac{1}{\sqrt{2}} [\phi_{\alpha}(2)\alpha(2)\phi_{b}(1)\alpha(1) - \phi_{\alpha}(1)\alpha(1)\phi_{b}(2)\alpha(2)]$$
$$= -{}^{3}\Psi_{SD}$$

æ

(日)

• Slater determinant (SD)

$${}^{3}\Psi_{\text{SD}} = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_{\alpha}(1)\alpha(1) & \phi_{b}(1)\alpha(1) \\ \phi_{\alpha}(2)\alpha(2) & \phi_{b}(2)\alpha(2) \end{vmatrix}$$

*P*₁₂ interchanges the two rows: property of a determinant (Math overview)

• • • • • • • • • • •

Slater determinant (SD)

$${}^{3}\Psi_{\text{SD}} = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_{\sigma}(1)\alpha(1) & \phi_{b}(1)\alpha(1) \\ \phi_{\sigma}(2)\alpha(2) & \phi_{b}(2)\alpha(2) \end{vmatrix}$$

- *P*₁₂ interchanges the two rows: property of a determinant (Math overview)
- In general

$$\Psi_{\text{SD}} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(1) & \psi_2(1) & \cdots & \psi_N(1) \\ \psi_1(2) & \psi_2(2) & \cdots & \psi_N(2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(N) & \psi_2(N) & \cdots & \psi_N(N) \end{vmatrix}$$

< D > < B > < E</p>

Slater determinant (SD)

$${}^{3}\Psi_{\text{SD}} = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_{\alpha}(1)\alpha(1) & \phi_{b}(1)\alpha(1) \\ \phi_{\alpha}(2)\alpha(2) & \phi_{b}(2)\alpha(2) \end{vmatrix}$$

- *P*₁₂ interchanges the two rows: property of a determinant (Math overview)
- In general

$$\Psi_{\text{SD}} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(1) & \psi_2(1) & \cdots & \psi_N(1) \\ \psi_1(2) & \psi_2(2) & \cdots & \psi_N(2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1(N) & \psi_2(N) & \cdots & \psi_N(N) \end{vmatrix}$$
$$\Psi_{\text{SD}} = |\psi_1\psi_2\psi_3\cdots\psi_N\rangle$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• ψ_i is a spin-orbital

E. Coccia (DSCF)

• Electron repulsion energy with ${}^{3}\Psi_{SD}$

$$\langle {}^{3}\Psi_{\text{SD}}| \quad \frac{1}{r_{12}} \quad |{}^{3}\Psi_{\text{SD}}\rangle = \int {}^{3}\Psi_{\text{SD}}\frac{1}{r_{12}}{}^{3}\Psi_{\text{SD}}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2}$$

æ

• Electron repulsion energy with ${}^{3}\Psi_{SD}$

$$\begin{aligned} \langle^{3}\Psi_{\text{SD}}| & \frac{1}{r_{12}} & |^{3}\Psi_{\text{SD}}\rangle &= \int^{3}\Psi_{\text{SD}}\frac{1}{r_{12}}{}^{3}\Psi_{\text{SD}}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ &= & \frac{1}{2}\int |\phi_{\alpha}(1)|^{2}|\alpha(1)|^{2}\frac{1}{r_{12}}|\phi_{b}(2)|^{2}|\alpha(2)|^{2}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \end{aligned}$$

æ

• Electron repulsion energy with ${}^{3}\Psi_{SD}$

$$\begin{aligned} \langle^{3}\Psi_{\text{SD}}| & \frac{1}{r_{12}} & |^{3}\Psi_{\text{SD}}\rangle &= \int^{3}\Psi_{\text{SD}}\frac{1}{r_{12}}{}^{3}\Psi_{\text{SD}}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ &= & \frac{1}{2}\int |\phi_{\alpha}(1)|^{2}|\alpha(1)|^{2}\frac{1}{r_{12}}|\phi_{b}(2)|^{2}|\alpha(2)|^{2}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ &- & \int \phi_{\alpha}(1)\phi_{b}(1)|\alpha(1)|^{2}\frac{1}{r_{12}}\phi_{b}(2)\phi_{\alpha}(2)|\alpha(2)|^{2}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \end{aligned}$$

æ

• Electron repulsion energy with ${}^{3}\Psi_{SD}$

$$\begin{split} & \langle {}^{3}\Psi_{\rm SD}| \quad \frac{1}{r_{12}} \quad |{}^{3}\Psi_{\rm SD}\rangle = \int {}^{3}\Psi_{\rm SD} \frac{1}{r_{12}} {}^{3}\Psi_{\rm SD} d{\bf r}_{1} d\omega_{1} d{\bf r}_{2} d\omega_{2} \\ & = \quad \frac{1}{2} \int |\phi_{\alpha}(1)|^{2} |\alpha(1)|^{2} \frac{1}{r_{12}} |\phi_{b}(2)|^{2} |\alpha(2)|^{2} d{\bf r}_{1} d\omega_{1} d{\bf r}_{2} d\omega_{2} \\ & - \quad \int \phi_{\alpha}(1)\phi_{b}(1) |\alpha(1)|^{2} \frac{1}{r_{12}} \phi_{b}(2)\phi_{\alpha}(2) |\alpha(2)|^{2} d{\bf r}_{1} d\omega_{1} d{\bf r}_{2} d\omega_{2} \\ & + \quad \frac{1}{2} \int |\phi_{\alpha}(2)|^{2} |\alpha(2)|^{2} |\alpha(2)|^{2} \frac{1}{r_{12}} |\phi_{b}(1)|^{2} |\alpha(1)|^{2} d{\bf r}_{1} d\omega_{1} d{\bf r}_{2} d\omega_{2} \end{split}$$

æ

• Electron repulsion energy with ${}^{3}\Psi_{SD}$

$$\begin{split} & \langle {}^{3}\Psi_{\text{SD}}| \quad \frac{1}{r_{12}} \quad |{}^{3}\Psi_{\text{SD}}\rangle = \int {}^{3}\Psi_{\text{SD}} \frac{1}{r_{12}} {}^{3}\Psi_{\text{SD}} d\mathbf{r}_{1} d\omega_{1} d\mathbf{r}_{2} d\omega_{2} \\ & = \quad \frac{1}{2} \int |\phi_{\alpha}(1)|^{2} |\alpha(1)|^{2} \frac{1}{r_{12}} |\phi_{b}(2)|^{2} |\alpha(2)|^{2} d\mathbf{r}_{1} d\omega_{1} d\mathbf{r}_{2} d\omega_{2} \\ & - \quad \int \phi_{\alpha}(1)\phi_{b}(1) |\alpha(1)|^{2} \frac{1}{r_{12}} \phi_{b}(2)\phi_{\alpha}(2) |\alpha(2)|^{2} d\mathbf{r}_{1} d\omega_{1} d\mathbf{r}_{2} d\omega_{2} \\ & + \quad \frac{1}{2} \int |\phi_{\alpha}(2)|^{2} |\alpha(2)|^{2} \frac{1}{r_{12}} |\phi_{b}(1)|^{2} |\alpha(1)|^{2} d\mathbf{r}_{1} d\omega_{1} d\mathbf{r}_{2} d\omega_{2} \\ & = \quad \frac{1}{2} \int |\phi_{\alpha}(1)|^{2} \frac{1}{r_{12}} |\phi_{b}(2)|^{2} d\mathbf{r}_{1} d\mathbf{r}_{2} \quad (J_{\alpha b}) \\ & - \quad \int \phi_{\alpha}(1)\phi_{b}(1) \frac{1}{r_{12}} \phi_{b}(2)\phi_{\alpha}(2) d\mathbf{r}_{1} d\mathbf{r}_{2} \quad (K_{\alpha b}) \\ & + \quad \frac{1}{2} \int |\phi_{\alpha}(2)|^{2} \frac{1}{r_{12}} |\phi_{b}(1)|^{2} d\mathbf{r}_{1} d\mathbf{r}_{2} \quad (J_{\alpha b}) \end{split}$$

æ

• Electron repulsion energy with ${}^{3}\Psi_{SD}$

$$\begin{split} \langle {}^{3}\Psi_{\rm SD} | & \frac{1}{r_{12}} \quad |{}^{3}\Psi_{\rm SD} \rangle = \int {}^{3}\Psi_{\rm SD} \frac{1}{r_{12}} {}^{3}\Psi_{\rm SD} d{\bf r}_{1} d\omega_{1} d{\bf r}_{2} d\omega_{2} \\ & = \quad \frac{1}{2} \int |\phi_{\alpha}(1)|^{2} |\alpha(1)|^{2} \frac{1}{r_{12}} |\phi_{b}(2)|^{2} |\alpha(2)|^{2} d{\bf r}_{1} d\omega_{1} d{\bf r}_{2} d\omega_{2} \\ & - \quad \int \phi_{\alpha}(1)\phi_{b}(1) |\alpha(1)|^{2} \frac{1}{r_{12}} \phi_{b}(2)\phi_{\alpha}(2) |\alpha(2)|^{2} d{\bf r}_{1} d\omega_{1} d{\bf r}_{2} d\omega_{2} \\ & + \quad \frac{1}{2} \int |\phi_{\alpha}(2)|^{2} |\alpha(2)|^{2} \frac{1}{r_{12}} |\phi_{b}(1)|^{2} |\alpha(1)|^{2} d{\bf r}_{1} d\omega_{1} d{\bf r}_{2} d\omega_{2} \\ & = \quad \frac{1}{2} \int |\phi_{\alpha}(1)|^{2} \frac{1}{r_{12}} |\phi_{b}(2)|^{2} d{\bf r}_{1} d{\bf r}_{2} \quad (J_{ab}) \\ & - \quad \int \phi_{\alpha}(1)\phi_{b}(1) \frac{1}{r_{12}} \phi_{b}(2)\phi_{\alpha}(2) d{\bf r}_{1} d{\bf r}_{2} \quad (K_{ab}) \\ & + \quad \frac{1}{2} \int |\phi_{\alpha}(2)|^{2} \frac{1}{r_{12}} |\phi_{b}(1)|^{2} d{\bf r}_{1} d{\bf r}_{2} \quad (J_{ab}) \\ & = \quad J_{ab} - K_{ab} \end{split}$$

æ

- Exchange integral Kab: Fermi hole around each electron
- Correlation effect with the same spin

- Exchange integral Kab: Fermi hole around each electron
- Correlation effect with the same spin
- Instead, with

$${}^{1}\Psi_{\text{SD}} = \frac{1}{\sqrt{2}} [\phi_{a}(1)\alpha(1)\phi_{b}(2)\beta(2) - \phi_{a}(2)\alpha(2)\phi_{b}(1)\beta(1)]$$

Electron repulsion energy

$$\langle {}^{1}\Psi_{\rm SD}| \quad \frac{1}{r_{12}} \quad |{}^{1}\Psi_{\rm SD}\rangle = \int {}^{1}\Psi_{\rm SD}\frac{1}{r_{12}}{}^{1}\Psi_{\rm SD}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2}$$

< 口 > < 同 > < 臣 > < 臣 >

- Exchange integral Kab: Fermi hole around each electron
- Correlation effect with the same spin
- Instead, with

$${}^{1}\Psi_{\text{SD}} = \frac{1}{\sqrt{2}} [\phi_{a}(1)\alpha(1)\phi_{b}(2)\beta(2) - \phi_{a}(2)\alpha(2)\phi_{b}(1)\beta(1)]$$

Electron repulsion energy

$$\langle {}^{1}\Psi_{\rm SD}| \quad \frac{1}{r_{12}} \quad |{}^{1}\Psi_{\rm SD}\rangle = \int {}^{1}\Psi_{\rm SD} \frac{1}{r_{12}} {}^{1}\Psi_{\rm SD} d\mathbf{r}_{1} d\omega_{1} d\mathbf{r}_{2} d\omega_{2}$$

$$= \quad \frac{1}{2} \int |\phi_{a}(1)|^{2} |\alpha(1)|^{2} \frac{1}{r_{12}} |\phi_{b}(2)|^{2} |\beta(2)|^{2} d\mathbf{r}_{1} d\omega_{1} d\mathbf{r}_{2} d\omega_{2}$$

< 口 > < 同 > < 臣 > < 臣 >

- Exchange integral Kab: Fermi hole around each electron
- Correlation effect with the same spin
- Instead, with

$${}^{1}\Psi_{\text{SD}} = \frac{1}{\sqrt{2}} [\phi_{a}(1)\alpha(1)\phi_{b}(2)\beta(2) - \phi_{a}(2)\alpha(2)\phi_{b}(1)\beta(1)]$$

Electron repulsion energy

$$\begin{array}{ll} \langle^{1}\Psi_{\rm SD}| & \frac{1}{r_{12}} & |^{1}\Psi_{\rm SD}\rangle = \int^{1}\Psi_{\rm SD}\frac{1}{r_{12}} |\Psi_{\rm SD}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ \\ &= & \frac{1}{2}\int |\phi_{\sigma}(1)|^{2}|\alpha(1)|^{2}\frac{1}{r_{12}}|\phi_{b}(2)|^{2}|\beta(2)|^{2}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ \\ &- & \int \phi_{\sigma}(1)\phi_{b}(1)\alpha(1)\beta(1)\frac{1}{r_{12}}\phi_{b}(2)\phi_{\sigma}(2)\alpha(2)\beta(2)d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \end{array}$$

< ロ > < 同 > < 三 >

- Exchange integral Kab: Fermi hole around each electron
- Correlation effect with the same spin
- Instead, with

$${}^{1}\Psi_{\text{SD}} = \frac{1}{\sqrt{2}} [\phi_{a}(1)\alpha(1)\phi_{b}(2)\beta(2) - \phi_{a}(2)\alpha(2)\phi_{b}(1)\beta(1)]$$

Electron repulsion energy

$$\begin{split} \langle^{1}\Psi_{\rm SD}| & \frac{1}{r_{12}} \quad |^{1}\Psi_{\rm SD}\rangle = \int^{1}\Psi_{\rm SD}\frac{1}{r_{12}}{}^{1}\Psi_{\rm SD}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ &= \frac{1}{2}\int |\phi_{a}(1)|^{2}|\alpha(1)|^{2}\frac{1}{r_{12}}|\phi_{b}(2)|^{2}|\beta(2)|^{2}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ &- \int \phi_{a}(1)\phi_{b}(1)\alpha(1)\beta(1)\frac{1}{r_{12}}\phi_{b}(2)\phi_{a}(2)\alpha(2)\beta(2)d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ &+ \frac{1}{2}\int |\phi_{a}(2)|^{2}|\alpha(2)|^{2}\frac{1}{r_{12}}|\phi_{b}(1)|^{1}|\beta(2)|^{2}d\mathbf{r}_{1}d\omega_{1}d\mathbf{r}_{2}d\omega_{2} \\ &= \frac{1}{2}J_{ab} + \frac{1}{2}J_{ab} = J_{ab} \end{split}$$

• SCF extension to Slater determinants

• Orbitals ϕ_i eigenfunctions of the Fock operator

$$\hat{f}_{i} = -\frac{1}{2}\nabla_{i}^{2} - \sum_{k}^{K} \frac{Z_{k}}{r_{ik}} + V_{i}^{\mathsf{HF}}\{j\}$$

$$V_{i}^{\mathsf{HF}}\{j\} = \sum_{j \neq i} (\hat{J}_{i} - \hat{K}_{i})$$

$$\hat{J}_{i}\phi_{j}(2) = \left[\int \phi_{i}(1) \frac{1}{r_{12}}\phi_{i}(1)d\mathbf{r}_{1}\right]\phi_{j}(2)$$

$$\hat{K}_{i}\phi_{j}(2) = \left[\int \phi_{i}(1) \frac{1}{r_{12}}\phi_{j}(1)d\mathbf{r}_{1}\right]\phi_{i}(2)$$

イロト イポト イヨト イヨト

• Hartree-Fock energy

$$E_{\mathsf{HF}} = \sum_{i}^{N} \epsilon_{i}^{\mathsf{HF}} - rac{1}{2} \sum_{i}^{N} \sum_{j}^{N} (J_{ij} - K_{ij})$$

æ

◆□ > ◆圖 > ◆臣 > ◆臣 > -

Hartree-Fock energy

$$\mathcal{E}_{\mathsf{HF}} = \sum_{i}^{N} \epsilon_{i}^{\mathsf{HF}} - rac{1}{2} \sum_{i}^{N} \sum_{j}^{N} (J_{ij} - K_{ij})$$

- Koopmans' theorem
 - Frozen MO approximation
 - Ionization energy equal to $-\epsilon_i^{\rm HF}$

< 三→ --

< ロ > < 同 > < 三 >

Restricted and unrestricted Hartree-Fock

- RHF: Restricted Hartree-Fock
 - Same spatial orbital for α and β
 - Even number of electrons, singlet state

< 口 > < 同 > < 臣 > < 臣 >

Restricted and unrestricted Hartree-Fock

- RHF: Restricted Hartree-Fock
 - Same spatial orbital for α and β
 - Even number of electrons, singlet state
- UHF: Unrestricted Hartree-Fock
 - No restriction on the form of spatial orbitals

Restricted and unrestricted Hartree-Fock

- RHF: Restricted Hartree-Fock
 - Same spatial orbital for α and β
 - Even number of electrons, singlet state
- UHF: Unrestricted Hartree-Fock
 - No restriction on the form of spatial orbitals
- ROHF: Restricted Open-shell Hartree-Fock
 - Same spatial part of doubly-occupied orbitals

RHF:

- Ethanol CH₃CH₂OH
- 26 electrons, closed-shell molecule
- 13 different occupied spatial MOs

- RHF:
 - Ethanol CH₃CH₂OH
 - 26 electrons, closed-shell molecule
 - 13 different occupied spatial MOs
- ROHF:
 - Methyl radical CH[:]₃
 - 9 electrons, open-shell system
 - 4 doubly-occupied MOs, 1 for the ninth electron

- RHF:
 - Ethanol CH₃CH₂OH
 - 26 electrons, closed-shell molecule
 - 13 different occupied spatial MOs
- ROHF:
 - Methyl radical CH[:]₃
 - 9 electrons, open-shell system
 - 4 doubly-occupied MOs, 1 for the ninth electron
- UHF:
 - Same system
 - 5 α MOs, 4 β MOs
 - Spin contamination: UHF wave function is not a pure spin state
 - $\langle \hat{S}^2
 angle = 0.75$ for a doublet, = 2 for a triplet

イロン イ理シ イヨン イヨン

Linear combination of atomic orbitals (LCAO)

• Molecular orbitals represented by a basis set (see Basis sets)

$$\phi_i = \sum_{\mu} \mathbf{C}^i_{\mu} \chi_{\mu}$$

Linear combination of atomic orbitals (LCAO)

• Molecular orbitals represented by a basis set (see Basis sets)

$$\phi_i = \sum_{\mu} c^i_{\mu} \chi_{\mu}$$

Atomic orbital (AO) on each nucleus

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Linear combination of atomic orbitals (LCAO)

• Molecular orbitals represented by a basis set (see Basis sets)

$$\phi_i = \sum_{\mu} c^i_{\mu} \chi_{\mu}$$

- Atomic orbital (AO) on each nucleus
- Effective linear combination:
 - AO energies are comparable
 - AO must overlap
 - Same symmetry properties

LCAO: N₂

2

LCAO: water

Electron density: ethylene

$$\rho = \sum_i |\phi_i|^2$$

Isodensity surface

≣ ▶

Image: A math a math

Configuration Interaction

・ロン ・回 と ・ ヨ と ・ ヨ と

Correlation energy

$$E_{\rm corr} = E_0 - E_{\rm HF}$$

• *E*_{HF} is the lowest energy with a single Slater determinant, with MOs from HF equations

Image: A matrix and a matrix

Correlation energy

$$E_{\rm corr} = E_0 - E_{\rm HF}$$

- *E*_{HF} is the lowest energy with a single Slater determinant, with MOs from HF equations
- Even lower energy considering a more sophisticated wf

$$\Psi = c_0 \Psi_{\rm HF} + c_1 \Psi_1 + c_2 \Psi_2 + \dots$$

Correlation energy

$$E_{\rm corr} = E_0 - E_{\rm HF}$$

- *E*_{HF} is the lowest energy with a single Slater determinant, with MOs from HF equations
- Even lower energy considering a more sophisticated wf

$$\Psi = c_0 \Psi_{\rm HF} + c_1 \Psi_1 + c_2 \Psi_2 + \dots$$

• Electronic correlation: dynamical and static

- Correlated motion of each electron with every other is neglected in HF
- HF does not account for dynamical correlation
- Due to electron-electron interaction

- Correlated motion of each electron with every other is neglected in HF
- HF does not account for dynamical correlation
- Due to electron-electron interaction
- Recovered in density functional theory (see Density functional theory) in different flavours

- Correlated motion of each electron with every other is neglected in HF
- HF does not account for dynamical correlation
- Due to electron-electron interaction
- Recovered in density functional theory (see Density functional theory) in different flavours
- Explicit electron-electron distance in Ψ (quantum Monte Carlo)

Static correlation

Ethylene torsional barrier

$$\Psi = c_0 \Psi_0 + c_1 \Psi_1$$

Configuration Interaction

$$\Psi = c_0 \Psi_{\text{HF}} + \sum_{i}^{\text{occ}} \sum_{\alpha}^{\text{vir}} c_i^{\alpha} \Psi_i^{\alpha} + \sum_{i,j}^{\text{occ}} \sum_{\alpha,b}^{\text{vir}} c_{ij}^{\alpha b} \Psi_{ij}^{\alpha b} + \dots$$

- Post-HF method
- Ψ_i^a : singly-excited Slater determinant
- Ψ^{ab}_{ij}: doubly-excited Slater determinant
 HF Slater determinant as reference

Configuration Interaction

- Optimization of the CI coefficients c_0 , c_i^a , c_{ii}^{ab} ...
- MOs are not re-optimized, MOs from HF calculation
- Secular equation in Slater-determinant space

$$\begin{vmatrix} H_{11} - E & H_{12} & \cdots & H_{1N} \\ H_{21} & H_{22} - E & \cdots & H_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ H_{N1} & H_{N2} & \cdot & H_{NN} - E \end{vmatrix} = 0$$

With

$$H_{mn} = \langle \Psi_m | \hat{H} | \Psi_n \rangle$$

- Ψ_m and Ψ_n are Slater determinants
- \hat{H} : electronic Hamiltonian

Which excitations to include?

- H-H distance of 0.75 Å
- Minimal basis set STO-6G (see Basis sets)

$$\Psi = c_0 \Psi_{\rm HF} + c_1 \Psi_{11}^{22}$$

イロン イボン イヨン イヨン

- H-H distance of 0.75 Å
- Minimal basis set STO-6G (see Basis sets)

$$\Psi = c_0 \Psi_{\rm HF} + c_1 \Psi_{11}^{22}$$

- H-H distance of 0.75 Å
- Minimal basis set STO-6G (see Basis sets)

$$\Psi = c_0 \Psi_{\rm HF} + c_1 \Psi_{11}^{22}$$

•
$$E_{HF} = -1.12473$$
 Ha
 $E_{CI} = -1.14574$ Ha (> 50 kJ mol⁻¹ lower)
• $|c_0|^2 = 0.986$, $|c_1|^2 = 0.013$

◆ヨシー

< ロ > < 同 > < 三 >

CI with doubles (CID)

- Example: H₂ with a minimal basis set
- Two HF orbitals, σ and σ^*
- Double excitation: both electrons in σ^*

< ロ > < 同 > < 三 >

CI with doubles (CID)

- Example: H₂ with a minimal basis set
- Two HF orbitals, σ and σ^*
- Double excitation: both electrons in σ^*
- Secular equation

$$\begin{vmatrix} H_{11} - E_{\text{CID}} & H_{12} \\ H_{21} & H_{22} - E_{\text{CID}} \end{vmatrix} = 0$$

• With solutions

$$E_{\text{CID},\pm} = \frac{1}{2} \left[H_{11} + H_{22} \pm \sqrt{(H_{22} - H_{11})^2 + 4H_{12}^2} \right]$$

- *E*_{CID,-} is the CID ground-state energy
- $E_{\rm HF} \equiv H_{11}$ and $H_{12} > 0$

- H₂O energy with cc-pVDZ basis set (see Basis sets)
- 90% of *E*_{corr} recovered with double excitations

Level	E (Hartree)	E _{corr} (Hartree)	E _{corr} (kJ mol ⁻¹)
HF	-76.02129	0.00000	0.00
CISD	-76.22749	-0.20620	-541.37
CISDT	-76.23066	-0.20937	-549.70
CISDTQ	-76.23970	-0.21841	-573.43
Full Cl	-76.24006	-0.21877	-574.38

イロト イ団ト イヨト イヨト

Size of the CI matrix

- Full CI: all excited determinants are included, provided a finite basis set
- With *N* electrons and *B* basis functions (2*B* spin orbitals), the number *S* of Slater determinants is

$$S = \begin{pmatrix} 2B \\ N \end{pmatrix}$$

•
$$N = 10, B = 20 \rightarrow S \approx 8.5 \times 10^8$$

ヘロト ヘ回ト ヘヨト ヘヨト

Density functional theory

イロン イボン イヨン イヨン

Electronic density

- Ψ is a complicated function of 3N and N spin coordinates
- Also, Ψ is not directly referencing to a physical quantity

Electronic density

- Ψ is a complicated function of 3N and N spin coordinates
- Also, Ψ is not directly referencing to a physical quantity
- Some physical observable of a reference object?
- Electronic density

$$N = \int \rho(\mathbf{r}) d\mathbf{r}$$
$$\frac{\partial \bar{\rho}(\mathbf{R}_A)}{\partial \mathbf{R}_A} = -2Z_A \rho(\mathbf{R}_A)$$

- \mathbf{R}_A : position of nucleus A
- $\bar{\rho}$: rotationally-averaged ρ

Electronic density

- Ψ is a complicated function of 3N and N spin coordinates
- Also, Ψ is not directly referencing to a physical quantity
- Some physical observable of a reference object?
- Electronic density

$$N = \int \rho(\mathbf{r}) d\mathbf{r}$$
$$\frac{\partial \bar{\rho}(\mathbf{R}_A)}{\partial \mathbf{R}_A} = -2Z_A \rho(\mathbf{R}_A)$$

- \mathbf{R}_A : position of nucleus A
- $\bar{\rho}$: rotationally-averaged ρ
- How to get the energy from ρ ? \rightarrow Density functional theory (DFT)

- Electrons interact with each other and with an external potential
- External potential: nuclear attraction in atoms and molecules

イロト イポト イヨト イヨト

First Hohenberg-Kohn theorem

- Existence theorem
- The external potential (and hence the total energy) is a unique functional of the electron density
- Reductio per absurdum

First Hohenberg-Kohn theorem

- Existence theorem
- The external potential (and hence the total energy) is a unique functional of the electron density
- Reductio per absurdum
- Two different external potentials \hat{v}_a and \hat{v}_b define the same nondegenerate ground-state density ρ_0

$$\hat{V}_{a}
ightarrow \hat{H}_{a}
ightarrow \Psi_{0,a}, E_{0,a}, \hat{V}_{b}
ightarrow \hat{H}_{b}
ightarrow \Psi_{0,b}, E_{0,b}, E_$$

According to the variational principle

$$\textit{E}_{0,a} < \langle \Psi_{0,b} | \hat{\textit{H}}_{a} | \Psi_{0,b} \rangle$$

First Hohenberg-Kohn theorem

$$\begin{array}{lll} E_{0,\alpha} &< & \langle \Psi_{0,b} | \hat{H}_{\alpha} | \Psi_{0,b} \rangle \\ E_{0,\alpha} &< & \langle \Psi_{0,b} | \hat{H}_{\alpha} - \hat{H}_{b} + \hat{H}_{b} | \Psi_{0,b} \rangle \\ & < & \langle \Psi_{0,b} | \hat{H}_{\alpha} - \hat{H}_{b} | \Psi_{0,b} \rangle + \langle \Psi_{0,b} | \hat{H}_{b} | \Psi_{0,b} \rangle \\ & < & \langle \Psi_{0,b} | \hat{V}_{\alpha} - \hat{V}_{b} | \Psi_{0,b} \rangle + E_{0,b} \end{array}$$

æ

・ロン ・聞と ・ 語と ・ 語とう
First Hohenberg-Kohn theorem

$$\begin{array}{lll} E_{0,a} &< & \langle \Psi_{0,b} | \hat{H}_{a} | \Psi_{0,b} \rangle \\ E_{0,a} &< & \langle \Psi_{0,b} | \hat{H}_{a} - \hat{H}_{b} + \hat{H}_{b} | \Psi_{0,b} \rangle \\ & < & \langle \Psi_{0,b} | \hat{H}_{a} - \hat{H}_{b} | \Psi_{0,b} \rangle + \langle \Psi_{0,b} | \hat{H}_{b} | \Psi_{0,b} \rangle \\ & < & \langle \Psi_{0,b} | \hat{\nu}_{a} - \hat{\nu}_{b} | \Psi_{0,b} \rangle + E_{0,b} \end{array}$$

Integral form

$$E_{0,\alpha} < \int (\hat{v}_{\alpha}(\mathbf{r}) - \hat{v}_{b}(\mathbf{r}))\rho_{0}(\mathbf{r})d\mathbf{r} + E_{0,b}$$

$$E_{0,b} < \int (\hat{v}_{b}(\mathbf{r}) - \hat{v}_{\alpha}(\mathbf{r}))\rho_{0}(\mathbf{r})d\mathbf{r} + E_{0,\alpha}$$
(2)
(3)

• (2) + (3)

æ

・ロン ・四と ・ ヨン・

First Hohenberg-Kohn theorem

$$\begin{split} E_{0,\alpha} + E_{0,b} &< \int (\hat{v}_b(\mathbf{r}) - \hat{v}_a(\mathbf{r}))\rho_0(\mathbf{r})d\mathbf{r} + \int (\hat{v}_a(\mathbf{r}) - \hat{v}_b(\mathbf{r}))\rho_0(\mathbf{r})d\mathbf{r} \\ &+ E_{0,b} + E_{0,a} \\ &< \int (\hat{v}_b(\mathbf{r}) - \hat{v}_a(\mathbf{r}) + \hat{v}_a(\mathbf{r}) - \hat{v}_b(\mathbf{r}))\rho_0(\mathbf{r})d\mathbf{r} + E_{0,b} + E_{0,a} \\ &< E_{0,b} + E_{0,a} \quad \text{impossible!} \end{split}$$

- Initial assumption incorrect
- The nondegenerate ground-state density ρ_0 must determine \hat{v},\hat{H} and Ψ_0

イロン イボン イヨン イヨン

Second Hohenberg-Kohn theorem

- The first theorem only states a ρ_0 exists
- Variational principle applied to the density
- Given an approximate ρ'

$$N = \int
ho'(\mathbf{r}) d\mathbf{r}$$

• ρ' is positive definite everywhere

Second Hohenberg-Kohn theorem

- The first theorem only states a ρ_0 exists
- Variational principle applied to the density
- Given an approximate ρ'

$$N = \int
ho'(\mathbf{r}) d\mathbf{r}$$

• ρ' is positive definite everywhere

$$E[\rho'] \ge E_0[\rho_0]$$

• Equality holds when ho' is the exact ground-state density ho_0

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)
- Energy functional

 $E[\rho(\mathbf{r})] = T_{ni}[\rho(\mathbf{r})] + V_{ne}[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] + \Delta T[\rho(\mathbf{r})] + \Delta V_{ee}[\rho(\mathbf{r})]$

イロト イヨト イヨト イヨト

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)
- Energy functional

 $E[\rho(\mathbf{r})] = T_{ni}[\rho(\mathbf{r})] + V_{ne}[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] + \Delta T[\rho(\mathbf{r})] + \Delta V_{ee}[\rho(\mathbf{r})]$

 $T_{ni}[
ho(\mathbf{r})] \rightarrow$ kinetic energy for noninteracting electrons

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)
- Energy functional

 $E[\rho(\mathbf{r})] = T_{ni}[\rho(\mathbf{r})] + V_{ne}[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] + \Delta T[\rho(\mathbf{r})] + \Delta V_{ee}[\rho(\mathbf{r})]$

- $T_{ni}[
 ho(\mathbf{r})] \rightarrow$ kinetic energy for noninteracting electrons
- $V_{ne}[
 ho(\mathbf{r})] \rightarrow$ nucleus-electron interaction

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)
- Energy functional

 $E[\rho(\mathbf{r})] = T_{ni}[\rho(\mathbf{r})] + V_{ne}[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] + \Delta T[\rho(\mathbf{r})] + \Delta V_{ee}[\rho(\mathbf{r})]$

- $T_{ni}[
 ho(\mathbf{r})] \rightarrow$ kinetic energy for noninteracting electrons
- $V_{ne}[\rho(\mathbf{r})] \rightarrow$ nucleus-electron interaction
- $V_{ee}[
 ho(\mathbf{r})] \rightarrow classical electron-electron repulsion$

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)
- Energy functional

 $E[\rho(\mathbf{r})] = T_{ni}[\rho(\mathbf{r})] + V_{ne}[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] + \Delta T[\rho(\mathbf{r})] + \Delta V_{ee}[\rho(\mathbf{r})]$

- $T_{ni}[
 ho(\mathbf{r})] \rightarrow$ kinetic energy for noninteracting electrons
- $V_{ne}[\rho(\mathbf{r})] \rightarrow$ nucleus-electron interaction
- $V_{ee}[
 ho(\mathbf{r})] \rightarrow classical electron-electron repulsion$
- $\Delta T[
 ho(\mathbf{r})] \rightarrow correction to kinetic energy$

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)
- Energy functional

 $E[\rho(\mathbf{r})] = T_{ni}[\rho(\mathbf{r})] + V_{ne}[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] + \Delta T[\rho(\mathbf{r})] + \Delta V_{ee}[\rho(\mathbf{r})]$

- $T_{ni}[
 ho(\mathbf{r})] \rightarrow$ kinetic energy for noninteracting electrons
- $V_{ne}[\rho(\mathbf{r})] \rightarrow$ nucleus-electron interaction
- $V_{ee}[
 ho(\mathbf{r})] \rightarrow$ classical electron-electron repulsion
- $\Delta T[
 ho(\mathbf{r})] \rightarrow correction to kinetic energy$
- $\Delta V_{ee}[
 ho(\mathbf{r})] \rightarrow$ nonclassical electron-electron repulsion

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)
- Energy functional

 $E[\rho(\mathbf{r})] = T_{ni}[\rho(\mathbf{r})] + V_{ne}[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] + \Delta T[\rho(\mathbf{r})] + \Delta V_{ee}[\rho(\mathbf{r})]$

- $T_{ni}[
 ho(\mathbf{r})] \rightarrow$ kinetic energy for noninteracting electrons
- $V_{ne}[\rho(\mathbf{r})] \rightarrow$ nucleus-electron interaction
- $V_{ee}[
 ho(\mathbf{r})] \rightarrow$ classical electron-electron repulsion
- $\Delta T[
 ho(\mathbf{r})] \rightarrow correction to kinetic energy$
- $\Delta V_{ee}[\rho(\mathbf{r})] \rightarrow$ nonclassical electron-electron repulsion

$$V_{ne}[\rho(\mathbf{r})] = -\sum_{k}^{nuclei} \int \frac{Z_k}{|\mathbf{r} - \mathbf{R}_k|} \rho(\mathbf{r}) d\mathbf{r}$$

- Fictitious system: non-interacting electrons
- Same ground-state ρ(r) as for the real system (electrons do interact!)
- Energy functional

 $E[\rho(\mathbf{r})] = T_{ni}[\rho(\mathbf{r})] + V_{ne}[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] + \Delta T[\rho(\mathbf{r})] + \Delta V_{ee}[\rho(\mathbf{r})]$

- $T_{ni}[
 ho(\mathbf{r})] \rightarrow$ kinetic energy for noninteracting electrons
- $V_{ne}[\rho(\mathbf{r})] \rightarrow$ nucleus-electron interaction
- $V_{ee}[
 ho(\mathbf{r})] \rightarrow$ classical electron-electron repulsion
- $\Delta T[
 ho(\mathbf{r})] \rightarrow correction to kinetic energy$
- $\Delta V_{ee}[
 ho(\mathbf{r})] \rightarrow$ nonclassical electron-electron repulsion

$$V_{ne}[\rho(\mathbf{r})] = -\sum_{k}^{nuclei} \int \frac{Z_k}{|\mathbf{r} - \mathbf{R}_k|} \rho(\mathbf{r}) d\mathbf{r}$$
$$V_{ee}[\rho(\mathbf{r})] = \sum_{i < j}^{N} \int \int \frac{\rho(\mathbf{r}_i)\rho(\mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|} d\mathbf{r}_i d\mathbf{r}_j$$

T_{ni}: sum of kinetic energy of the electrons
 Tore and the electro

• Using molecular orbitals

$$\rho = \sum_{i}^{N} \langle \phi_i | \phi_i \rangle$$

æ

・ロン ・聞と ・ 語と ・ 語とう

Using molecular orbitals

$$\rho = \sum_{i}^{N} \langle \phi_i | \phi_i \rangle$$

• the energy becomes

$$E[\rho(\mathbf{r})] = \sum_{i}^{N} \left(\langle \phi_{i} | -\frac{1}{2} \nabla_{i}^{2} | \phi_{i} \rangle - \langle \phi_{i} | \sum_{k}^{\mathsf{nuclei}} \frac{Z_{k}}{|\mathbf{r}_{i} - \mathbf{R}_{k}|} | \phi_{i} \rangle \right) \\ + \sum_{i}^{N} \langle \phi_{i} | \frac{1}{2} \int \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}_{i}|} d\mathbf{r} | \phi_{i} \rangle + E_{xc}[\rho(\mathbf{r})]$$

• $E_{xc}[\rho(\mathbf{r})]$: exchange-correlation energy (contains ΔT and ΔV_{ee})

(日) (同) (目) (日) (日)

• Find the ϕ_i set minimising E

$$\begin{aligned} h_i^{KS}\phi_i &= \epsilon_i\phi_i \\ h_i^{KS} &= -\frac{1}{2}\nabla_i^2 - \sum_k^{\text{nuclei}} \frac{Z_k}{|\mathbf{r}_i - \mathbf{R}_k|} + \int \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}_i|} d\mathbf{r} + V_{xc} \\ V_{xc} &= \frac{\partial E_{xc}}{\partial \rho} \end{aligned}$$

• In principle, one gets exact ground-state energy E

• Exact density ρ provided by orbitals ϕ_i

- Separable non-interacting Hamiltonian $\hat{H}_{ni} = \sum_{i}^{N} h_{i}^{KS}$
- Slater determinant of optimized ϕ_i as eigenfunction of \hat{H}_{ni}

$$\hat{H}_{ni}|\phi_1\phi_2\cdots\phi_N\rangle = \sum_i^N \epsilon_i |\phi_1\phi_2\cdots\phi_N\rangle$$

- Fictitious system of non-interacting electrons with exact density
- T_{ni} is a large fraction of the actual system

イロン イ理シ イヨン イヨン

- Separable non-interacting Hamiltonian $\hat{H}_{ni} = \sum_{i}^{N} h_{i}^{KS}$
- Slater determinant of optimized ϕ_i as eigenfunction of \hat{H}_{ni}

$$\hat{H}_{ni}|\phi_1\phi_2\cdots\phi_N\rangle = \sum_i^N \epsilon_i |\phi_1\phi_2\cdots\phi_N\rangle$$

- Fictitious system of non-interacting electrons with exact density
- T_{ni} is a large fraction of the actual system
- LCAO approach to represent molecular orbitals

• HF theory is approximate, DFT is in principle exact

イロン イボン イヨン イヨン

- HF theory is approximate, DFT is in principle exact
- No guidance to find E_{xc}
- Practical use of DFT implies approximations in Exc
- DFT can violate the variational principle, because of E_{xc}
 - H atom energy with BPW91 = -0.5042 Hartree
 - Exact H energy is -0.5 Hartree
- In general $E_{xc} = E_x + E_c$

イロト イポト イヨト イヨトー

$$E_{xc}[\rho(\mathbf{r})] = \int \rho(\mathbf{r}) \epsilon_{xc}[\rho(\mathbf{r})] d\mathbf{r}$$

• ϵ_{xc} : exchange-correlation energy density

æ

・ロン ・四と ・ ヨン・

$$E_{xc}[
ho(\mathbf{r})] = \int
ho(\mathbf{r}) \epsilon_{xc}[
ho(\mathbf{r})] d\mathbf{r}$$

- ϵ_{xc} : exchange-correlation energy density
- Local density approximation (LDA):
 - ϵ_{xc} (E_{xc}) only from density values
 - Local functional
 - Uniform electron gas: ρ has the same value at every position

イロト イヨト イヨト -

$$E_{xc}[
ho(\mathbf{r})] = \int
ho(\mathbf{r}) \epsilon_{xc}[
ho(\mathbf{r})] d\mathbf{r}$$

- ϵ_{xc} : exchange-correlation energy density
- Local density approximation (LDA):
 - ϵ_{xc} (E_{xc}) only from density values
 - Local functional
 - Uniform electron gas: ρ has the same value at every position
- Exchange energy E_x computed analytically

$$E_x^{\text{LDA}}[\rho(\mathbf{r})] = -C_x \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$$
$$\epsilon_x^{\text{LDA}} = -C_x \rho^{1/3}$$

ヘロン ヘアン ヘビン ヘビン

$$E_{xc}[\rho(\mathbf{r})] = \int \rho(\mathbf{r}) \epsilon_{xc}[\rho(\mathbf{r})] d\mathbf{r}$$

- ϵ_{xc} : exchange-correlation energy density
- Local density approximation (LDA):
 - ϵ_{xc} (E_{xc}) only from density values
 - Local functional
 - Uniform electron gas: ρ has the same value at every position
- Exchange energy E_x computed analytically

$$E_x^{\text{LDA}}[\rho(\mathbf{r})] = -C_x \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$$
$$\epsilon_x^{\text{LDA}} = -C_x \rho^{1/3}$$

• *E_c* estimated by accurate quantum Monte Carlo calculations

E. Coccia (DSCF)

- LDA is widely used in condensed-matter community
- Approximation of a slowly varying electron density is rather valid (metals)

イロト イポト イヨト イヨト

- LDA is widely used in condensed-matter community
- Approximation of a slowly varying electron density is rather valid (metals)
- In molecules, ρ is not spatially uniform!

- LDA is widely used in condensed-matter community
- Approximation of a slowly varying electron density is rather valid (metals)
- LDA in a molecule:
 ε^{LDA}_{xc} at every **r** is the same as it would be for the uniform electron gas with the same *ρ* at **r**
- In molecules, ρ is not spatially uniform!
- LDA for molecules is a rough approximation

- Correction to LDA: include nonlocal effects, i.e. the gradient of the density
- Generalized gradient approximation (GGA)

$$\epsilon_{xc}^{\text{GGA}} = \epsilon_{xc}^{\text{LDA}} + \Delta \epsilon_{xc} \left[\frac{|\nabla \rho(\mathbf{r})|}{\rho^{4/3}(\mathbf{r})} \right]$$

イロト イポト イヨト イヨト

- Correction to LDA: include nonlocal effects, i.e. the gradient of the density
- Generalized gradient approximation (GGA)

$$\epsilon_{xc}^{\text{GGA}} = \epsilon_{xc}^{\text{LDA}} + \Delta \epsilon_{xc} \left[\frac{|\nabla \rho(\mathbf{r})|}{\rho^{4/3}(\mathbf{r})} \right]$$

• PBE is likely the most known GGA functional

$$\epsilon_x^{\text{PBE}} = \epsilon_x^{\text{LDA}} F(x)$$

$$F(x) = 1 + \alpha - \frac{\alpha}{1 + bx^2}$$

$$x = \frac{|\nabla \rho(\mathbf{r})|}{\rho^{4/3}}$$

$$\begin{aligned} \epsilon_{c}^{\text{PBE}} &= \epsilon_{c}^{\text{LDA}} + B(g) \\ B(g) &= cf_{3}^{3} \ln \left[1 + dg^{2} \left(\frac{1 + Ag^{2}}{1 + Ag^{2} + A^{2}g^{4}} \right) \right] \\ A &= d \left[\exp \left(-\frac{\epsilon_{c}^{\text{LDA}}}{cf_{3}^{3}} - 1 \right) \right]^{-1} \\ f_{3}(\zeta) &= \frac{1}{2} [(1 + \zeta)^{2/3} + (1 - \zeta)^{2/3}] \\ g &= [2(3\pi^{3})^{1/3}f_{3}]^{-1}x \\ \zeta &= \frac{\rho_{\alpha} - \rho_{\beta}}{\rho_{\alpha} + \rho_{\beta}} \end{aligned}$$

• *a*, *b*, *c* and *d* are parameters

E. Coccia (DSCF)

3

▲口> ▲圖> ▲理> ▲理> --

• Meta-GGA: including a dependence from the Laplacian of the density $\nabla^2\rho$

イロン イボン イヨン イヨン

- Meta-GGA: including a dependence from the Laplacian of the density $\nabla^2\rho$
- Hybrid functionals: including a part of exact (HF) exchange

$$E_{xc} = (1 - a)E_{xc}^{\mathsf{DFT}} + aE_{x}^{\mathsf{HF}}$$

- DFT = LDA or GGA etc.
- *a* is an empirical parameter

- Meta-GGA: including a dependence from the Laplacian of the density $\nabla^2\rho$
- Hybrid functionals: including a part of exact (HF) exchange

$$E_{xc} = (1 - a)E_{xc}^{\mathsf{DFT}} + aE_{x}^{\mathsf{HF}}$$

- DFT = LDA or GGA etc.
- *a* is an empirical parameter
- B3LYP hybrid functional

$$E_{xc}^{\text{B3LYP}} = (1 - a)E_x^{\text{LDA}} + aE_x^{\text{HF}} + b\Delta E_x^{\text{B}} + (1 - c)E_c^{\text{LDA}} + cE_c^{\text{LYP}}$$

• a = 0.20, b = 0.72 and c = 0.81 (fitted parameters)

ヘロト ヘヨト ヘヨト ヘヨト

DFT vs wave-function methods

• DFT scales as B^3 , HF as B^4

DFT vs wave-function methods

- DFT scales as B^3 , HF as B^4
- KS orbitals are successfully used for qualitative analysis

Image: A matrix
DFT vs wave-function methods

- DFT scales as B^3 , HF as B^4
- KS orbitals are successfully used for qualitative analysis
- DFT extension to excited states is challenging

- DFT scales as B^3 , HF as B^4
- KS orbitals are successfully used for qualitative analysis
- DFT extension to excited states is challenging
- DFT and wave function: improvability by increasing the basis set

- DFT scales as B^3 , HF as B^4
- KS orbitals are successfully used for qualitative analysis
- DFT extension to excited states is challenging
- DFT and wave function: improvability by increasing the basis set
- Cl is systematically improvable; Jacob's ladder for DFT (less quantitative)

- DFT scales as B^3 , HF as B^4
- KS orbitals are successfully used for qualitative analysis
- DFT extension to excited states is challenging
- DFT and wave function: improvability by increasing the basis set
- Cl is systematically improvable; Jacob's ladder for DFT (less quantitative)
- Parameters in DFT functionals

- DFT scales as B^3 , HF as B^4
- KS orbitals are successfully used for qualitative analysis
- DFT extension to excited states is challenging
- DFT and wave function: improvability by increasing the basis set
- Cl is systematically improvable; Jacob's ladder for DFT (less quantitative)
- Parameters in DFT functionals
- DFT election method for large-size applications (catalysis, biomolecules etc.)

Weak interactions poorly described by DFT

- Noble gases show slight interaction (pure repulsion in DFT)
- No correct R^{-6} behaviour
- Ad hoc corrections

Weak interactions poorly described by DFT

- Noble gases show slight interaction (pure repulsion in DFT)
- No correct R^{-6} behaviour
- Ad hoc corrections
- Loosely bound electrons
 - Anions
 - Positive HOMO energy with inadequate basis sets

Weak interactions poorly described by DFT

- Noble gases show slight interaction (pure repulsion in DFT)
- No correct R^{-6} behaviour
- Ad hoc corrections
- Loosely bound electrons
 - Anions
 - Positive HOMO energy with inadequate basis sets
- Inter- and intra-molecular charge transfer is badly described
 - Range-separated functionals mitigate the issue

イロト イポト イヨト イヨト

• Weak interactions poorly described by DFT

- Noble gases show slight interaction (pure repulsion in DFT)
- No correct R^{-6} behaviour
- Ad hoc corrections
- Loosely bound electrons
 - Anions
 - Positive HOMO energy with inadequate basis sets
- Inter- and intra-molecular charge transfer is badly described
 - Range-separated functionals mitigate the issue
- Different spin multiplicity
 - Transition metal systems: several low-energy spin states are often possible
 - Such states cannot be described by a single determinant
 - Broken-symmetry DFT

ヘロン ヘアン ヘビン ヘビン

DFT performances

- RMS: root mean square deviation $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i x_i)^2}$
- MAD: mean absolute deviation $\frac{1}{n}\sum_{i=1}^{n} |y_i x_i|$
- Over a large set of molecules (atomization energies, ionization potentials, electron and proton affinities)
- Against experimental data
- Residual gradient \rightarrow accuracy of optimized geometries

Functional	RMS (gradient)	RMS (kJ/mol)	MAD (kJ/mol)	
HF	35	649	885	
LSDA	16	439	510	
PW91	15	80	99	
PBE	16	87	93	
PKBZ	21	75	29	
BLYP	19	41	40	
PBE0	11	50	28	
OLYP	14	40	25	
B3LYP	11	40	21	
VSXC	11	39	14	
HTCT	11	33	30	
τ -HCTH	11	31		
τ -HCTH-hybrid	10	26		
TPSS			24	
TPSSh			16	
Coccia (DSCF)				

65/7

Basis sets

2

< □ > < □ > < □ > < □ > < □ > .

Basis functions

• Molecular orbitals are represented using a basis set

$$\phi_{i}=\sum_{\mu}\mathcal{c}_{\mu}^{i}\chi_{\mu}$$

æ

Basis functions

• Molecular orbitals are represented using a basis set

$$\phi_i = \sum_{\mu} \mathbf{C}^i_{\mu} \chi_{\mu}$$

- Two types of basis functions (atomic orbitals):
 - Slater-type orbitals (STO)

$$\chi_{\zeta,n,l,m}(r,\theta,\phi) = NY_{l,m}(\theta,\phi)r^{n-1}e^{-\zeta r}$$

Basis functions

• Molecular orbitals are represented using a basis set

$$\phi_i = \sum_{\mu} c^i_{\mu} \chi_{\mu}$$

Two types of basis functions (atomic orbitals):
 Slater-type orbitals (STO)

$$\chi_{\zeta,n,l,m}(r,\theta,\phi) = NY_{l,m}(\theta,\phi)r^{n-1}e^{-\zeta r}$$

• Gaussian-type orbitals (GTO)

$$\chi_{\zeta,n,l,m}(r,\theta,\phi) = NY_{l,m}(\theta,\phi)r^{2n-2-l}e^{-\zeta r^2}$$

< ロ > < 同 > < 三 >

- N normalization constant
- *n* principal quantum number
- I electron angular momentum
- *m* projection of *l* on an axis
- $Y_{l,m}(\theta,\phi)$ spherical harmonics

STO vs GTO

- At the nucleus STO has a cusp, GTO has zero slope
- GTO falls off too rapidly at large distances

イロト イポト イヨト イヨト

STO vs GTO

- At the nucleus STO has a cusp, GTO has zero slope
- GTO falls off too rapidly at large distances
- But GTOs are computationally more efficient

GTO contraction

E. Coccia (DSCF)

• GTOs centered on nuclei

- GTOs centered on nuclei
- Minimal basis set:
 - Single s function for H and He
 - 1s, 2s, $2p_x$, $2p_y$ and $2p_z$ for first-row atoms
 - Etc.

イロン イ理シ イヨン イヨン

- GTOs centered on nuclei
- Minimal basis set:
 - Single s function for H and He
 - 1s, 2s, $2p_x$, $2p_y$ and $2p_z$ for first-row atoms
 - Etc.
- Double Zeta (DZ): doubling all the basis functions
 - 1s and 1s' for H and He
 - Four s and six p functions for first-row atoms
 - Etc.

< □ > < □ > < □

- GTOs centered on nuclei
- Minimal basis set:
 - Single s function for H and He
 - 1s, 2s, $2p_x$, $2p_y$ and $2p_z$ for first-row atoms
 - Etc.
- Double Zeta (DZ): doubling all the basis functions
 - 1s and 1s' for H and He
 - Four s and six p functions for first-row atoms
 - Etc.

Triple (TZ), quadruple (QZ), quintuple (5Z) and sextuple (6Z)
Split-valence type

Polarization functions

• Higher angular momentum functions

イロン イロン イヨン イヨン

Polarization functions

- Higher angular momentum functions
- Ammonia umbrella inversion (actvation energy 5.8 kcal/mol)
- With only *s* and *p* functions, HF predicts the planar geometry as a minimum structure

Polarization functions

- Higher angular momentum functions
- Ammonia umbrella inversion (actvation energy 5.8 kcal/mol)
- With only *s* and *p* functions, HF predicts the planar geometry as a minimum structure

• *d* functions in H₂O improve hydrogen bond description

Diffuse functions

- Standard basis sets fail in describing large spatial extension
 - Molecular orbitals of anions
 - Rydberg electronic states
 - Supramolecular complexes

< 口 > < 同 > < 臣 > < 臣 >

Diffuse functions

- Standard basis sets fail in describing large spatial extension
 - Molecular orbitals of anions
 - Rydberg electronic states
 - Supramolecular complexes
- "Augmentation" with diffuse GTOs
 - Smaller exponent than valence GTOs
 - Same angular momentum as valence GTOs
 - Uncontracted GTOs

E. Coccia (DSCF)

Pople-type basis sets

- STO-*n*g:
 - n GTO primitives (PGTO) fitting a STO
 - Minimal basis set (n = 3 is accurate)

2

Pople-type basis sets

- STO-ng:
 - *n* GTO primitives (PGTO) fitting a STO
 - Minimal basis set (n = 3 is accurate)
- 3-21G:
 - Split-valence basis: 3 PGTOs for core, inner (outer) valence with 2 (1) PGTOs

Pople-type basis sets

- STO-*n*g:
 - *n* GTO primitives (PGTO) fitting a STO
 - Minimal basis set (n = 3 is accurate)
- 3-21G:
 - Split-valence basis: 3 PGTOs for core, inner (outer) valence with 2 (1) PGTOs
- 6-31G:
 - Split-valence basis: 6 PGTOs for core, inner (outer) valence with 3 (1) PGTOs
- 6-311G:
 - Triple split-valence basis: 6 PGTOs for core, valence with 3 functions: 3, 1 and 1 PGTOs

Basis	Hydrogen		First row elements		Second row elements	
	Contracted	Primitive	Contracted	Primitive	Contracted	Primitive
STO-3G	1s	3s	2s1p	6s3p	3s2p	9s6p
3-21G	2s	3s	3s2p	6s3p	4s3p	9s6p
6-31G(d,p)	2s1p	4s	3s2p1d	10s4p	4s3p1d	16s10p
6-311G(2df,2pd)	3s2p1d	5s	4s3p2d1f	11s5p	6s4p2d1f ^a	13s9p ^a

Dunning-type basis sets

- Correlation consistent (cc) basis sets
- Functions with similar amount of correlation energy included at the same stage
- *s* and *p* exponents optimized at HF level, polarization exponents at CISD level
- cc-pVXZ: correlation consistent polarized Valence X Zeta (X=D, T, Q, 5, 6)

Basis	Hydrogen		First row elements		Second row elements	
	Contracted	Primitive	Contracted	Primitive	Contracted	Primitive
cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z	2s1p 3s2p1d 4s3p2d1f 5s4p3d2f1g 6s5p4d3f2g1h	4s 5s 6s 8s 10s	3s2p1d 4s3p2d1f 5s4p3d2f1g 6s5p4d3f2g1h 7s6p5d4f3g2h1i	9s4p 10s5p 12s6p 14s8p 16s10p	4s3p2d 5s4p3d1f 6s5p4d2f1g 7s6p5d3f2g1h 8s7p6d4f3g2h1i	12s8p 15s9p 16s11p 20s12p 21s14p

イロン イ理シ イヨン イヨン

- Basis sets of DZ, TZ and QZ quality
- Split Valence Polarized (SVP)
- Triple Zeta Valence (TZV)
- Quadruple Zeta Valence (QZV)

Basis	Hydrogen		First row	elements	Second row elements	
	Contracted	Primitive	Contracted	Primitive	Contracted	Primitive
SVP	2s1p	4s	3s2p1d	7s4p	4s3p1d	10s7p
TZV	3s2p1d	5s	5s3p2d1f	11s6p	5s4p2d1f	14s9p
QZV	4s3p2d1f	7s	7s4p3d2f1g	15s8p	9s6p4d2f1g	20s14p

< ロ > < 同 > < 三 >

HF limit

- HF solution with infinite basis set
- Extrapolation

- Heavy elements are challenging for quantum chemistry
- \bullet Large number of electrons \rightarrow large number of basis functions

《曰》《聞》《臣》《臣》

- Heavy elements are challenging for quantum chemistry
- \bullet Large number of electrons \rightarrow large number of basis functions
- Core electrons need only a minimal representation

- Heavy elements are challenging for quantum chemistry
- \bullet Large number of electrons \rightarrow large number of basis functions
- Core electrons need only a minimal representation
- Replace core electrons with analytical functions: effective core potential (ECP)
- ECP describes the nuclear-electronic core to explicit electrons

- Heavy elements are challenging for quantum chemistry
- Large number of electrons \rightarrow large number of basis functions
- Core electrons need only a minimal representation
- Replace core electrons with analytical functions: effective core potential (ECP)
- ECP describes the nuclear-electronic core to explicit electrons
- Also relativistic effects included

